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Abstract: The distribution and relative potency of post-synaptic neurotoxic activity within Cro-
talinae venoms has been the subject of less investigation in comparison with Elapidae snake ven-
oms. No previous studies have investigated post-synaptic neurotoxic activity within the Atropoides,
Metlapilcoatlus, Cerrophidion, and Porthidium clade. Given the specificity of neurotoxins to relevant
prey types, we aimed to uncover any activity present within this clade of snakes that may have been
overlooked due to lower potency upon humans and thus not appearing as a clinical feature. Using
biolayer interferometry, we assessed the relative binding of crude venoms to amphibian, lizard, bird,
rodent and human «-1 nAChR orthosteric sites. We report potent alpha-1 orthosteric site binding
in venoms from Atropoides picadoi, Metlapilcoatlus occiduus, M. olmec, M. mexicanus, M. nummifer.
Lower levels of binding, but still notable, were evident for Cerrophidion godmani, C. tzotzilorum and
C. wilsoni venoms. No activity was observed for Porthidium venoms, which is consistent with sig-
nificant alpha-1 orthosteric site neurotoxicity being a trait that was amplified in the last common
ancestor of Atropoides/Cerrophidion/Metlapilcoatlus subsequent to the split by Porthidium. We also
observed potent taxon-selective activity, with strong selection for non-mammalian targets (amphib-
ian, lizard, and bird). As these are poorly studied snakes, much of what is known about them is
from clinical reports. The lack of affinity towards mammalian targets may explain the knowledge
gap in neurotoxic activity within these species, since symptoms would not appear in bite reports.
This study reports novel venom activity, which was previously unreported, indicating toxins that
bind to post-synaptic receptors may be more widespread in pit vipers than previously considered.
While these effects appear to not be clinically significant due to lineage-specific effects, they are of
significant evolutionary novelty and of biodiscovery interest. This work sets the stage for future
research directions, such as the use of in vitro and in vivo models to determine whether the alpha-1
orthosteric site binding observed within this study confers neurotoxic venom activity.
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Key Contribution: We report novel neurotoxic effects for the Atropoides, Metlapilcoatlus and
Cerrophidion clade of pit vipers.
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1. Introduction
distributed under the terms and

Snake venom toxins have evolved to disrupt a range of pathophysiological targets to
immobilise prey [1]. One way in which snake venoms can incapacitate prey is targeting the
nervous system, causing flaccid or spastic paralysis. While post-synaptic neurotoxicity is
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typically found within Elapidae and Colubridae, there is growing evidence for widespread
post-synaptic neurotoxic activity within viperid snakes [2-5].

Snake venom neurotoxins can cause flaccid paralysis via the inhibition of the or-
thosteric site of post-synaptic muscle-type -1 nicotinic acetylcholine receptors (nAChRs).
Snake toxins targeting the a-1 nAChR have evolved independently on three separate
occasions: 3FTx (three-finger toxins) which are abundant in many elapid and colubrid
snake venoms [6-9]; phospholipase A, (PLA;) toxins such as those from Bitis [10-12];
de novo evolution of neurotoxic peptides within the propeptide region of the gene encoding
for natriuretic peptides, which are present in linear forms, including azemiopsins from
Azemiops [10] and waglerins from Tropidolaemus venoms [12,13]. While these toxins are
responsible for lethal effects in some venoms, as seen in elapid snakes, they may be highly
specific for non-mammalian lineages [4,7,8,14]. Consequently, as many snake venom effects
are known only from clinical reports, the non-mammalian selective neurotoxic activity may
not be noted in case studies. Such selectivity may be present within a higher order lineage;
this can be seen in the venom of the snake-specialist Ophiophagus hannah, which is not only
selective for reptiles, but possesses even higher selectivity towards snake nAChRs relative
to lizard [15].

Coagulotoxicity dominates the clinical landscape for viper venoms, and consequently
this aspect of venom biochemistry has been the focus of extensive research [16-30]. Of
the neurotoxins, the effect of presynaptic neurotoxins is significant in human enveno-
mations [31,32]; as such, the focus of viper venom neurotoxicity research has been on
presynaptic toxins. Notably, crotoxin isolated from Crotalus dissurus terrificus, and subse-
quent isoforms found in other species, cause flaccid paralysis by preventing the release
of acetylcholine [33—41]. While post-synaptic neurotoxicity has long been known from
Tropidolaemus [5] and Azemiops [10], it has only been described recently from few pit vipers
such as Bothriechis, Calloselasma, and Tropidolaemus [3,5,36].

Venom from the Atropoides, Cerrophidion, Metlapilcoatlus, Porthidium clade have been
subject to limited research, with mainly proteomics and few coagulotoxic investigations
performed [28,42-48]. Proteomic analysis shows that venom composition remains similar
between species, with metalloproteinases (SVMP), serine proteases (SVSP) and PLA;s
comprising the majority of toxins present. Remarkably, Angulo’s analysis of M. mexicanus
venom revealed the presence of a 3FTx in the venom proteome [47]. However, the extent
of the functional biological activity of this toxin within M. mexicanus’s venom remains
unknown.

Functional coagulotoxic research has revealed that, despite proteomic similarity, ven-
oms are active on a plethora of pathophysiological targets within the coagulation cascade.
For instance, Porthidium volcanicum was uniquely procoagulant within the clade, activating
FXII to form strong blood clots in vitro [28]. While no neurotoxic symptoms have been
reported clinically, humans are of course not a natural prey item to these species, and
many of the species take a large proportion of non-mammalian prey in their diet. Given
that diet is a main driver of venom evolution, as well as the specificity of a-neurotoxins
and the diversity of venom effects seen within this clade, the absence of symptoms in
bite victims does not exclude the presence of neurotoxins [49]. Therefore, the functional
testing of neurotoxicity against relevant prey types is necessary to understand not only the
evolutionary history of a venom, but also the ecological role it plays.

To understand the potential unique neurotoxic effects of venoms, as well as species-
specific activity, we used biolayer interferometry to measure binding to the alpha-1 or-
thosteric site of a variety of relevant prey mimotopes. Venoms from these genera have
never been assessed for neurotoxicity, providing an opportunity to describe new venom
phenotypes.
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2. Results

Of the 14 species tested, we observed alpha-1 orthosteric site binding by eight species
(Figure 1). All Metlapilcoatlus species included within this study showed potent binding
similar to the positive control, T. wagleri. Metlapilcoatlus occiduus was the most potent,
displaying strong binding across all taxon receptors, but with non-mammalian targets
bound much stronger than rodent or human. Within Cerrophidion, lower levels of binding
were seen for C. godmani, C. wilsoni, and C. tzotzilorum. Whereas C. petlalcalensis showed no
significant binding. None of the Porthidium species tested presented significant binding to
any mimotope tested.

A. picadoi C. godmani C. petlalcalensis C. tzotzilorum
2.0 2.0 2.0 2.0
1.5 1.5 1.5 1.5
1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5
— - — — ———
0.0 00— 0.0 e — e 0.0
20 40 60 80 100 120 1] 20 40 0 80 100 120 0 20 40 60 &0 100 120 0 20 40 G0 80 100 120
C. wilsoni M. mexicanus M. nummifer M. occiduus
2.0 2.0 2.0 2.0
1.5 1.5 I g 1.5
1.0 1.0 1.0
0.5 0.5 . e SRS——— 0.5
P
0.0 — 0.0 0.0 0.0
0 20 40 60 80 100 120 1] 20 40 60 a0 100 120 o 20 40 60 80 100 120 0 20 40 60 80 100 120

M. olmec P. dunni P. nasutum P. ophryomegas
2.0 2.0 20 2.0
1.5 1.5 1.5 1.5
1.0 1.0 1.0 1.0
0.5 0.5 05 0.5
- —— ——e————

0.0 0.0 : 0.0 0.0 — —

0 20 40 60 80 100 120 0 200 40 60 B0 100 120 O 20 40 60 80 100 120 0 20 40 60 B0 100 120

P. voleanicum P. yucatanicum T. wagleri (Positive Control) C. horridus (Negative Control)

290 2.0 2.0 2.0
1.5 1.5 1.5 1.5
1.0 1.0 1.0 1.0
0.5 0.5 0.5 0.5
0.0 e — L gl 0.0 S—

0 20 40 60 80 100 120 0 20 40 B0 8O 100 120 0 20 40 60 8D 100 120 0 20 40 60 80 100 120

® Amphibian

Anole ® Bird ® Gecko ® Human ® Rodent

Figure 1. Comparison of wavelength (nm) curves of Atropoides/Cerrophidion/Metlapilcoatlus / Porthidium
venom over a 120 s period. To keep controls consistent to Crotalinae, T. wagleri was used as the
positive control and C. horridus as the negative. All venoms were tested against amphibian (green),
anole (orange), bird (blue), gecko (purple), human (red), and rodent (brown) mimotopes. Dots
surrounding the mean lines represent the standard error of the mean (SEM). Each venom was tested

in triplicate (1 = 3).
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AUC (Area under curve) values indicate taxon-specific activity where binding was
observed in relation to snake phylogeny (Figure 2). The highest relative binding was ob-
served with the bird mimotope, while lower binding is reported for mammalian mimotopes.
Metlapilcoatlus mexicanus showed the greatest increase in binding (318%) from the rodent to
the bird receptors.
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Figure 2. Heat map comparison of Atropoides/Cerrophidion /Metlapilcoatlus / Porthidium species. Values
are AUC =+ SEM and are derived from binding-rate curves; warmer colours indicate stronger binding
whereas cooler colours indicate weaker/no binding. Snake phylogeny is based on Alencar et al. [50].
Species phylogeny was obtained by entering the taxa into www.timetree.org (accessed 1 May 2023).

3. Discussion

This study reports that venoms from all Metlapilcoatlus species tested show high
affinity for alpha-1 orthosteric sites, with M. occiduus, M. olmec, and M. mexicanus being
equipotent to the results obtained for the Asian pit viper Tropidolaemus wagleri (Figure 1),
which is well-documented as being neurotoxic [5,12,14]. In addition to the overall levels
of binding, Metlapilcoatlus and Atropoides species also had a faster onset in comparison to
that of T. wagleri. This is consistent with Atropoides and Metlapilcoatlus being sit-and-wait
ambush-predators. As they are morphologically stout, and consequently slow-moving
(but fast-striking), they have limited abilities to pursue prey. Therefore, prey escape is a
strong selection pressure acting upon these venoms, which is consistent with our results of
fast-acting neurotoxins. This is congruent with other species of venomous animal, in which
venoms are selected for very fast-onsetting neurotoxins due to the potential for prey escape
(such as cone snails) [51,52] or prey retaliation (seen in the blue long-glanded coral snake
Calliophis bivirgatus which feeds on other venomous snakes) [53].

Consistent with the hypothesis that prey escape potential is a strong selection pres-
sure for these venoms, all Atropoides and Metlapilcoatlus venoms displayed the strongest
affinity toward the bird receptor (Figures 1 and 2). Based on few limited diet studies,
Metlapilcoatlus are thought to be generalists that opportunistically feed upon diverse prey,
with amphibians, lizards, small passerines, orthopterans, and mammals recovered from
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dietary studies [54]. Venom from these species reflects Calloselasma rhodostoma, an Asian pit
viper species with similar morphology, and inhabits the same niche as Atropoides, Metlapil-
coatlus and Cerrophidion, who have also been shown to possess post-synaptic neurotoxic
activity [55]. This research further emphasises the link between diet and venom activity,
highlighted by the specificity of x- neurotoxins to relevant prey receptors. In particular, the
greatest increase in binding was seen between the rodent and the bird receptors, indicat-
ing these toxins are specific for non-mammalian targets (Figure 2). Furthermore, the low
binding observed in the human receptor may explain the absence of neurotoxic symptoms
described within clinical envenomation reports [56,57]. As humans are not prey items
for these species, there is low selection pressure for neurotoxins to act upon human «-1
binding regions.

The toxin types responsible for the alpha-1 orthosteric site binding observed in this
study are unknown, just as they are for Central American pit vipers within the Bothriechis
genus [3] or the Asian pit viper Calloselasma rhodostoma [5]. While 3FTx has been shown in
very small quantities within the venom proteome of M. mexicanus, the levels present are far
too low to explain the level of activity observed in this study. As post-synaptic PLA; have
previously been isolated from Bitis venoms [58] and post-synaptic neurotoxicity is broadly
present within that genus [2], as well as other viperine genera [4], it is hypothesised that
similar PLA, are responsible for the alpha-1 orthosteric site binding activity in pit vipers
such as the species in this study. This may also be the case for the aforementioned activity
in other pit vipers, such as the American Bothriechis [3] and the Asian Calloselasma [5].

In contrast to the fast and potent activity of Atropoides and Metlapilcoatlus, only compar-
atively low binding was observed for Cerrophidion species, with C. petlalcalensis devoid of
any discernible significant activity. Similarly, all Porthidium species lacked notable alpha-1
orthosteric site binding. This pattern is congruent with that shown for relative anticoag-
ulant actions through the inhibition of clotting factors or destruction of fibrinogen. The
clades in this study that were the least neurotoxic, were shown to be the most potently
anticoagulant through enzyme-inhibition or fibrinogen-destruction [28]. Reciprocally, the
species shown to be the most potently neurotoxic in this study, were those in the clade pre-
viously shown to be anticoagulant through the pseudo-procoagulant mechanism whereby
fibrinogen is converted into abnormal, weakly structured fibrin clots that break down much
more rapidly than endogenously produced fibrin clots, and therefore ultimately contribute
to a net anticoagulant state by depleting fibrinogen levels [28].

Phylogenetic reconstruction of the evolutionary history and identification of the toxins
responsible for the alpha-1 orthosteric site binding activity is necessary to ascertain if
these toxins are homologous to those responsible for post-synaptic neurotoxicity in other
vipers (e.g., azemiopsin/waglerin peptides and PLA;s). Regardless, as both Atropoides
and Metlapilcoatlus show significant neurotoxicity, but are not sister genera, this suggests
that post-synaptic neurotoxicity was present in the last common ancestor of this clade,
and was independently amplified as a trait in Atropoides and Metlapilcoatlus. In light of
this, it is hypothesised that the toxins responsible will be shared with Bothriechis, the other
genus from the Americas shown to have significant levels of post-synaptic neurotoxicity [3].
Future studies should be conducted to provide a more definitive answer of neurotoxic
activity, such as utilizing both in vitro and in vivo models to determine if the binding
observed within this assay confers post-synaptic neurotoxicity.

4. Conclusions

We report widespread alpha-1 orthosteric site binding activity for Atropoides and
Metlapilcoatlus and lower levels in Cerrophidion species. In addition, we have shown the
neurotoxic toxins present are more selective towards non-mammalian prey. Further eco-
logical and natural history studies are required to link the functional testing of venom to
life history in order to understand the evolutionary history of these genera. The compar-
atively low levels on human receptors are congruent with these effects not being usual
clinical features.
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5. Materials and Methods
5.1. Venoms

All venom work was performed under the University of Queensland Animal Ethics
Approval 2021/AE000075 and UQ Biosafety Committee Approval # IBC/134B/SBS/2015.

Venoms were sources from fourteen captive snakes used within this study: Atropoides
picadoi (Costa Rica), Cerrophidion godmani (Mexico), Cerrophidion petlalcalensis (San Andres
Tenejapan, Veracrus, Mexico), Cerrophidion tzotzilorum (San Cristobal, Chiapas, Mexico),
Cerrophidion wilsoni (Honduras), Metlapilcoatlus mexicanus (Chiapas, Mexico), Metlapil-
coatlus nummifer (Veracruz, Mexico), Metlapilcoatlus occiduus (Mapastepec, Chiapas, Mexico),
Metlapilcoatlus olmec (Los Tuxtlas, Veracruz, Mexico), Porthidium dunni (Oaxaca, Mexico),
Porthidium nasutum (Mexico), Porthidium ophryomegas (Costa Rica), Porthidium volcanicum
(Costa Rica), and Porthidium yucatanicum (Solidaridad, Quintana Roo, Mexico). Lyophilized
venoms were reconstituted in double-deionised water (DDH2O) and centrifuged (4 °C,
10 min, 14,000 RCF). Working stock solutions were made to a concentration of 1 mg/mL
50% DDH20 and 50% glycerol. Concentrations of the working stock were determined in
triplicate using a NanoDrop 2000 (Thermofisher, Sydney, Australia) at 280 nm wavelength.

5.2. Mimotope Preparation

Following previously validated methods [15], a thirteen—fourteen amino acid chain mi-
motope of the vertebrate -1 nAChR orthosteric site was designed using publicly available
sequences of cholinergic receptors from amphibian, gecko, anole, bird, rodent, and human
receptors. Receptor sequences were sourced from Genbank and UniProt, and developed by
GeneticBio (Shanghai, China). Mimotope dry stocks were reconstituted in 100% dimethyl
sulfoxide (DMSO) and diluted 1:10 to produce a 50 pg/mL working stock in 10% DMSO.

5.3. Biolayer Interferometry

In order to test the neurotoxic activity, biolayer interferometry (BLI) was used on the
Octet HTX system (ForteBio, Fremont, CA, USA). BLI is an optical technique that measures
the thickness of biomolecules accumulated on an optical-fibre-coated biosensor. Bound
molecules cause a spectral shift in the wavelength of light being reflected through the
fibre-optic biosensor, allowing a quantified measure of binding. Full details of the assay
used within this study can be found in the validated protocol [15]. Prior to experimenta-
tion, Streptavidin biosensors were hydrated in a running buffer (Dulbecco’s phosphate-
buffered saline (DPBS) with 0.1% BSA and 0.05% Tween-20) for 30-60 min while shaken at
2.0 revolutions per minute (RPM). Venom (analyte) samples were diluted to make an ex-
perimental concentration of 50 pg/mL per well and mimotope aliquots were diluted to a
final concentration of 1 ug/mL per well. A standard acidic glycine buffer solution (10 mM
glycine (pH 1.5-1.7) in DDH2O) was used to cause the dissociation of analytes.

5.4. Data Analysis

Data processing was performed in accordance with the validated assay. Data were
extracted directly from the Octet HTX and imported into Prism 9.5.0 software (GraphPad
Software Inc., La Jolla, CA, USA) for data analysis. This study utilized area under the
curve (AUC) for ease of data viewing in a heatmap format. All raw data are available in
supplementary material.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/toxins15080487 /s1. Data can be viewed within Supplementary File S1.
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