Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys
Abstract
:1. Introduction
2. Results
2.1. Method Validation
2.2. Toxicokinetic Parameters of ZEN in Female Donkey Plasma
2.3. Plasma Concentration of ZEN
2.4. Recovery of ZEN and Its Metabolites Excreted in Feces and Urine
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals, Products and Reagents
5.2. Animal and Treatment
5.3. Samples Collection
5.4. Sample Treatment
5.5. Standard Solutions
5.6. Method Validation
5.7. UPLC-MS/MS Analysis
5.8. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.W.; Klich, M.; Moselio, S. Encyclopedia of Microbiology. In Mycotoxins; Academic Press: Oxford, UK, 2009; Volume 16, pp. 559–565. [Google Scholar]
- Müller, H.-M.; Reimann, J.; Schumacher, U.; Schwadorf, K. Fusarium toxins in wheat harvested during six years in an area of southwest Germany. Nat. Toxins 1997, 5, 24–30. [Google Scholar] [CrossRef]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.; Guan, S.; Li, A.; Wang, J.; An, G.; Hofstetter, U.; Schatzmayr, G. Mycotoxin Occurrence in Feeds and Raw Materials in China: A Five-Year Investigation. Toxins 2023, 15, 63. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; He, D.; Olaniran, A.O.; Mokoena, M.P.; Shi, J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Prod. Process. Nutr. 2019, 1, 6. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Oswald, I.P. Risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA J. 2017, 15, e04851. [Google Scholar] [PubMed]
- Bennett, G.A.; Shotwell, O.L.; Hesseltine, C.W. Destruction of zearalenone in contaminated corn. J. Am. Oil Chem. Soc. 1980, 57, 245–247. [Google Scholar] [CrossRef]
- Ryu, D.; Hanna, M.A.; Bullerman, L.B. Stability of Zearalenone during Extrusion of Corn Grits. J. Food Prot. 1999, 62, 1482–1484. [Google Scholar] [CrossRef]
- Zinedine, A.; Soriano, J.M.; Molto, J.C.; Manes, J. Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone:: An oestrogenic mycotoxin. Food Chem. Toxicol. 2007, 45, 1–18. [Google Scholar] [CrossRef]
- Li, L.; Zhang, T.; Ren, X.; Li, B.; Wang, S. Male reproductive toxicity of zearalenone-meta-analysis with mechanism review. Ecotoxicol. Environ. Saf. 2021, 221, 112457. [Google Scholar] [CrossRef]
- Yang, C.; Song, G.; Lim, W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard. Mater. 2020, 389, 122087. [Google Scholar] [CrossRef]
- Fei, Z.; Rong, L.; Shuo, X.; Honglu, D.; Viveiros, M.M.; Xiao, S.; Xiaoqin, Y. Postweaning Exposure to Dietary Zearalenone, a Mycotoxin, Promotes Premature Onset of Puberty and Disrupts Early Pregnancy Events in Female Mice. Toxicol. Sci. 2013, 132, 431–442. [Google Scholar]
- Soffa, D.R.; Stewart, J.W.; Pack, E.D.; Arneson, A.G.; De Vita, R.; Knight, J.W.; Fausnacht, D.W.; Rhoads, R.P.; Clark, S.G.; Schmale, D.G., 3rd; et al. Short-term consumption of the mycotoxin zearalenone by pubertal gilts causes persistent changes in the histoarchitecture of reproductive tissues. J. Anim. Sci. 2023, 101, skac421. [Google Scholar] [CrossRef] [PubMed]
- Gajęcka, M.; Zielonka, Ł.; Babuchowski, A.; Gajęcki, M.T. Exposure to Low Zearalenone Doses and Changes in the Homeostasis and Concentrations of Endogenous Hormones in Selected Steroid-Sensitive Tissues in Pre-Pubertal Gilts. Toxins 2022, 14, 790. [Google Scholar] [CrossRef] [PubMed]
- Abid-Essefi, S.; Ouanes, Z.; Hassen, W.; Baudrimont, I.; Creppy, E.; Bacha, H. Cytotoxicity, inhibition of DNA and protein syntheses and oxidative damage in cultured cells exposed to zearalenone. Toxicol. Vitr. Int. J. Publ. Assoc. Bibra 2004, 18, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ao, X.; Lei, Y.; Ji, C.; Ma, Q. Bacillus subtilis ANSB01G culture alleviates oxidative stress and cell apoptosis induced by dietary zearalenone in first-parity gestation sows. Anim. Nutr. 2020, 6, 372–378. [Google Scholar] [CrossRef]
- Wang, S.; Fu, W.; Zhao, X.; Chang, X.; Liu, H.; Zhou, L.; Li, J.; Cheng, R.; Wu, X.; Li, X. Zearalenone disturbs the reproductive-immune axis in pigs: The role of gut microbial metabolites. Microbiome 2022, 10, 234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhang, S.; Wang, J.; Shan, A.; Xu, L. Changes in intestinal barrier functions and gut microbiota in rats exposed to zearalenone. Ecotoxicol. Environ. Saf. 2020, 204, 111072. [Google Scholar] [CrossRef]
- Rai, A.; Das, M.; Tripathi, A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit. Rev. Food Sci. Nutr. 2020, 60, 2710–2729. [Google Scholar] [CrossRef]
- Fleck, S.C.; Churchwell, M.I.; Doerge, D.R. Metabolism and pharmacokinetics of zearalenone following oral and intravenous administration in juvenile female pigs. Food Chem. Toxicol. 2017, 106, 193–201. [Google Scholar] [CrossRef]
- Dänicke, S.; Swiech, E.; Buraczewska, L.; Ueberschär, K.H. Kinetics and metabolism of zearalenone in young female pigs. J. Anim. Physiol. Anim. Nutr. 2005, 89, 268–276. [Google Scholar] [CrossRef]
- Dong, M.; He, X.J.; Tulayakul, P.; Li, J.Y.; Dong, K.S.; Manabe, N.; Nakayama, H.; Kumagai, S. The toxic effects and fate of intravenously administered zearalenone in goats. Toxicon 2010, 55, 523–530. [Google Scholar] [CrossRef]
- Mallis, L.M.; Sarkahian, A.B.; Harris, H.A.; Zhang, M.Y.; McConnell, O.J. Determination of rat oral bioavailability of soy-derived phytoestrogens using an automated on-column extraction procedure and electrospray tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 796, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.S.; Hong, S.H.; Bulitta, J.B.; Hwang, S.W.; Kim, H.J.; Lee, J.B.; Yang, S.D.; Kim, J.E.; Yoon, H.S.; Kim, D.J.; et al. Disposition, oral bioavailability, and tissue distribution of zearalenone in rats at various dose levels. J. Toxicol. Environ. Health A 2009, 72, 1406–1411. [Google Scholar] [CrossRef]
- Shin, B.S.; Hong, S.H.; Hwang, S.W.; Kim, H.J.; Lee, J.B.; Yoon, H.S.; Kim, D.J.; Yoo, S.D. Determination of zearalenone by liquid chromatography/tandem mass spectrometry and application to a pharmacokinetic study. Biomed. Chromatogr. 2009, 23, 1014–1021. [Google Scholar] [CrossRef]
- Buranatragool, K.; Poapolathep, S.; Isariyodom, S.; Imsilp, K.; Klangkaew, N.; Poapolathep, A. Dispositions and tissue residue of zearalenone and its metabolites α-zearalenol and β-zearalenol in broilers. Toxicol. Rep. 2015, 2, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Devreese, M.; Antonissen, G.; Broekaert, N.; De Baere, S.; Vanhaecke, L.; De Backer, P.; Croubels, S. Comparative toxicokinetics, absolute oral bioavailability, and biotransformation of zearalenone in different poultry species. J. Agric. Food Chem. 2015, 63, 5092–5098. [Google Scholar] [CrossRef]
- Schelstraete, W.; Devreese, M.; Croubels, S. Comparative toxicokinetics of Fusarium mycotoxins in pigs and humans. Food Chem. Toxicol. 2020, 137, 111140. [Google Scholar] [CrossRef]
- Chai, W.; Xu, J.; Qu, H.; Ma, Q.; Zhu, M.; Li, M.; Zhan, Y.; Wang, T.; Gao, J.; Yao, H.; et al. Differential proteomic analysis to identify potential biomarkers associated with quality traits of Dezhou donkey meat using a data-independent acquisition (DIA) strategy. LWT 2022, 166, 113792. [Google Scholar] [CrossRef]
- Kang, R.; Qu, H.; Guo, Y.; Ji, C.; Cheng, J.; Wang, Y.; Huang, S.; Zhao, L.; Ji, C.; Ma, Q. Toxicokinetics of Deoxynivalenol in Dezhou Male Donkeys after Oral Administration. Toxins 2023, 15, 426. [Google Scholar] [CrossRef]
- Kang, R.; Qu, H.; Guo, Y.; Zhang, M.; Fu, T.; Huang, S.; Zhao, L.; Zhang, J.; Ji, C.; Ma, Q. Toxicokinetics of a Single Oral Dose of OTA on Dezhou Male Donkeys. Toxins 2023, 15, 88. [Google Scholar] [CrossRef] [PubMed]
- Guerre, P. Fusariotoxins in Avian Species: Toxicokinetics, Metabolism and Persistence in Tissues. Toxins 2015, 7, 2289–2305. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Applegate, T. Zearalenone (ZEN) in Livestock and Poultry: Dose, Toxicokinetics, Toxicity and Estrogenicity. Toxins 2020, 12, 377. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, D.W.; Arbuckle, L.D.; Hassen, A.M. Zearalenone metabolism and excretion in the rat: Effect of different doses. J. Environ. Sci. Health B 1988, 23, 343–354. [Google Scholar] [CrossRef]
- Dänicke, S.; Ueberschär, K.H.; Halle, I.; Valenta, H. Investigations on metabolism of zearalenone in broilers. Mycotoxin Res. 2000, 16 (Suppl. S2), 204–207. [Google Scholar] [CrossRef]
- Dailey, R.E.; Reese, R.E.; Brouwer, E.A. Metabolism of [14C]zearalenone in laying hens. J. Agric. Food Chem. 1980, 28, 286–291. [Google Scholar] [CrossRef]
- Binder, S.B.; Schwartz-Zimmermann, H.E.; Varga, E.; Bichl, G.; Michlmayr, H.; Adam, G.; Berthiller, F. Metabolism of Zearalenone and Its Major Modified Forms in Pigs. Toxins 2017, 9, 56. [Google Scholar] [CrossRef]
Matrix | Composition | Slope | R2 | Range (µg/L)/(µg/kg) | Sensitivity (µg/L)/(µg/kg) | |
---|---|---|---|---|---|---|
LOD | LOQ | |||||
Plasma | ZEN | 2828 | 0.9988 | 1.25–25 | 1.5 | 4.5 |
α-ZOL | 404.0 | 0.9954 | 1.25–25 | 1.0 | 3.0 | |
β-ZOL | 797.6 | 0.9968 | 1.25–25 | 1.5 | 4.5 | |
α-ZAL | 4376 | 0.9921 | 1.25–25 | 0.5 | 1.5 | |
β-ZAL | 8972 | 0.9953 | 1.25–25 | 0.5 | 1.5 | |
ZAN | 1930 | 0.9995 | 1.25–25 | 1.5 | 4.5 | |
Feces | ZEN | 5094 | 0.9932 | 1.25–500 | 1.0 | 3.0 |
α-ZOL | 1235 | 0.9925 | 1.25–500 | 0.3 | 1.0 | |
β-ZOL | 1479 | 0.9974 | 1.25–500 | 0.5 | 1.5 | |
α-ZAL | 7069 | 0.9943 | 1.25–500 | 1.0 | 3.0 | |
β-ZAL | 9750 | 0.9981 | 1.25–500 | 1.0 | 3.0 | |
ZAN | 1024 | 0.9970 | 1.25–500 | 0.3 | 1.0 | |
Urine | ZEN | 13,176 | 0.9992 | 1.25–500 | 1.5 | 4.5 |
α-ZOL | 2997 | 0.9994 | 1.25–500 | 1.0 | 3.0 | |
β-ZOL | 2978 | 0.9989 | 1.25–500 | 2.0 | 6.0 | |
α-ZAL | 15,265 | 0.9985 | 1.25–500 | 0.5 | 1.5 | |
β-ZAL | 21,834 | 0.9988 | 1.25–500 | 0.5 | 1.5 | |
ZAN | 5591 | 0.9985 | 1.25–500 | 2.0 | 6.0 |
Item | Plasma Spike Level (µg/L) | Plasma Recovery (%) | Feces and Urine Spike Level (µg/L)/(µg/kg) | Feces Recovery (%) | Urine Recovery (%) |
---|---|---|---|---|---|
ZEN | 2.5 | 74.04 | 5.0 | 88.12 | 78.78 |
25 | 79.20 | 100 | 82.46 | 75.39 | |
α-ZOL | 2.5 | 88.06 | 5.0 | 83.98 | 93.15 |
25 | 78.65 | 100 | 71.46 | 75.86 | |
β-ZOL | 2.5 | 92.95 | 5.0 | 80.49 | 82.27 |
25 | 84.11 | 100 | 74.72 | 73.35 | |
α-ZAL | 2.5 | 95.44 | 5.0 | 75.13 | 85.41 |
25 | 76.22 | 100 | 83.91 | 80.25 | |
β-ZAL | 2.5 | 90.97 | 5.0 | 70.99 | 74.98 |
25 | 78.58 | 100 | 79.31 | 86.64 | |
ZAN | 2.5 | 91.14 | 5.0 | 80.97 | 86.85 |
25 | 88.94 | 100 | 76.17 | 76.70 |
Toxicokinetic Parameters | Value |
---|---|
Body weight (kg) | 154.88 ± 4.76 |
ZEN (µg·kg·BW−1) | 2000 |
Tmax (h) | 0.48 ± 0.10 |
Cmax (µg·L−1) | 15.34 ± 5.12 |
T1/2Elim (h) | 1.63 ± 0.46 |
AUC (µg·L−1·h) | 22.30 ± 2.42 |
Cl (L·kg·BW−1·h−1) | 95.20 ± 8.01 |
Vd (L·kg·BW−1) | 216.17 ± 58.71 |
Parameters | Mass Value (mg) | The Amount of Substance (µmol) |
---|---|---|
ZEN intake | 309.75 ± 9.53 | 972.94 ± 29.92 |
ZEN excretion via feces | 1.61 ± 0.23 | 5.06 ± 0.73 |
α-ZOL excretion via feces | 2.96 ± 0.48 | 9.25 ± 1.49 |
β-ZOL excretion via feces | 3.24 ± 0.82 | 10.10 ± 2.56 |
Total ZEN excretion through feces (%) | 2.50 ± 0.44 | 2.49 ± 0.43 |
Absorption rate (%) | 97.50 ± 0.44 | 97.51 ± 0.43 |
ZEN excretion via urine | 1.31 ± 0.30 | 4.13 ± 0.94 |
α-ZOL excretion via urine | 2.11 ± 0.59 | 6.58 ± 1.85 |
β-ZOL excretion via urine | 3.06 ± 0.52 | 9.56 ± 1.63 |
Total ZEN excretion through urine (%) | 2.11 ± 0.46 | 2.10 ± 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, H.; Zheng, Y.; Kang, R.; Feng, Y.; Li, P.; Wang, Y.; Cheng, J.; Ji, C.; Chai, W.; Ma, Q. Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys. Toxins 2024, 16, 51. https://doi.org/10.3390/toxins16010051
Qu H, Zheng Y, Kang R, Feng Y, Li P, Wang Y, Cheng J, Ji C, Chai W, Ma Q. Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys. Toxins. 2024; 16(1):51. https://doi.org/10.3390/toxins16010051
Chicago/Turabian StyleQu, Honglei, Yunduo Zheng, Ruifen Kang, Yulong Feng, Pengshuai Li, Yantao Wang, Jie Cheng, Cheng Ji, Wenqiong Chai, and Qiugang Ma. 2024. "Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys" Toxins 16, no. 1: 51. https://doi.org/10.3390/toxins16010051
APA StyleQu, H., Zheng, Y., Kang, R., Feng, Y., Li, P., Wang, Y., Cheng, J., Ji, C., Chai, W., & Ma, Q. (2024). Toxicokinetics of Zearalenone following Oral Administration in Female Dezhou Donkeys. Toxins, 16(1), 51. https://doi.org/10.3390/toxins16010051