Cobalt-Doped Carbon Nitride for Efficient Removal of Microcystis aeruginosa via Peroxymonosulfate Activation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Removal of M. aeruginosa and MC-LR by the 2CoCN/PMS System
2.2. Influence Factors for Algae Removal Efficiency
2.3. Oxidative Stress Indicators and Proteins
2.4. Mechanism and Functionality of ROS
3. Materials and Methods
3.1. Chemicals and Algal
3.2. Synthesis of 2CoCN Catalysts
3.3. Experimental Procedures
3.4. Analytical Methods
3.4.1. Determination of Chla Removal Efficiency
3.4.2. Observation of Algae Cell Morphology
3.4.3. The Excitation Emission Matrix Spectra
3.4.4. Analysis of MC-LR and Its Degradation Byproducts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alamsjah, M.A.; Hirao, S.; Ishibashi, F.; Fujita, Y. Isolation and structure determination of algicidal compounds from Ulva fasciata. Biosci. Biotechnol. Biochem. 2005, 69, 2186–2192. [Google Scholar] [CrossRef] [PubMed]
- Balaji-Prasath, B.; Wang, Y.; Su, Y.P.; Hamilton, D.P.; Lin, H.; Zheng, L.W.; Zhang, Y. Methods to control harmful algal blooms: A review. Environ. Chem. Lett. 2022, 20, 3133–3152. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Zheng, L.; Fu, P.; Wang, Y.; Nguyen, H.; Shen, X.; Sui, Y. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to harmful algae Microcystis aeruginosa and high pH. Chemosphere 2020, 243, 125241. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Environmental science. Blooms bite the hand that feeds them (vol 342, pg 433, 2013). Science 2013, 342, 693. [Google Scholar] [CrossRef]
- Su, R.C.; Meyers, C.M.; Warner, E.A.; Garcia, J.A.; Refsnider, J.M.; Lad, A.; Breidenbach, J.D.; Modyanov, N.; Malhotra, D.; Haller, S.T.; et al. Harmful Algal Bloom Toxicity in Lithobates catesbeiana Tadpoles. Toxins 2020, 12, 378. [Google Scholar] [CrossRef]
- Wang, K.; Saththasivam, J.; Yiming, W.; Loganathan, K.; Liu, Z.Y. Fast and efficient separation of seawater algae using a low-fouling micro/nano-composite membrane. Desalination 2018, 433, 108–112. [Google Scholar] [CrossRef]
- Motahari, F.; Mozdianfard, M.R.; Soofivand, F.; Salavati-Niasari, M. NiO nanostructures: Synthesis, characterization and photocatalyst application in dye wastewater treatment. RSC Adv. 2014, 4, 27654–27660. [Google Scholar] [CrossRef]
- He, Y.; Zhou, Y.Z.; Zhou, Z.J.; He, J.S.; Liu, Y.; Xiao, Y.L.; Long, L.L.; Deng, O.P.; Xiao, H.; Shen, F.; et al. Allelopathic effect of pyrogallic acid on cyanobacterium: The regulatory role of nitric oxide and its significance for controlling harmful algal blooms (HABs). Sci. Total Environ. 2023, 858, 159785. [Google Scholar] [CrossRef]
- Kibuye, F.A.; Zamyadi, A.; Wert, E.C. A critical review on operation and performance of source water control strategies for cyanobacterial blooms: Part I-chemical control methods. Harmful Algae 2021, 109, 102099. [Google Scholar] [CrossRef]
- Maredova, N.; Altman, J.; Kastovsky, J. The effects of macrophytes on the growth of bloom-forming cyanobacteria: Systematic review and experiment*. Sci. Total Environ. 2021, 792, 148413. [Google Scholar] [CrossRef]
- Cai, Y.W.; Liu, J.Y.; Li, G.Y.; Wong, P.K.; An, T.C. Formation mechanisms of viable but nonculturable bacteria through induction by light-based disinfection and their antibiotic resistance gene transfer risk: A review. Crit. Rev. Env. Sci. Tec. 2022, 52, 3651–3688. [Google Scholar] [CrossRef]
- Wang, W.J.; Liu, Y.; Li, G.Y.; Liu, Z.N.; Wong, P.K.; An, T.C. Mechanism insights into bacterial sporulation at natural sphalerite interface with and without light irradiation: The suppressing role in bacterial sporulation by photocatalysis. Environ. Int. 2022, 168, 107460. [Google Scholar] [CrossRef]
- Wang, W.J.; Wang, H.N.; Li, G.Y.; Wong, P.K.; An, T.C. Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms. Water Res. 2020, 176, 115746. [Google Scholar] [CrossRef]
- Yan, J.C.; Gao, W.G.; Dong, M.G.; Han, L.; Qian, L.B.; Nathanail, C.P.; Chen, M.F. Degradation of trichloroethylene by activated persulfate using a reduced graphene oxide supported magnetite nanoparticle. Chem. Eng. J. 2016, 295, 309–316. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, B.; An, H.Z.; Dong, G.J.; Feng, J.; Wei, T.; Ren, Y.M.; Ma, J. Enhanced activation of peroxymonosulfate by Sr-doped LaFeO perovskite for Orange I degradation in the water. Sep. Purif. Technol. 2021, 256, 117838. [Google Scholar] [CrossRef]
- Zhou, J.H.; Liu, J.; Zhao, Z.W.; Peng, W.; Cui, F.Y.; Liang, Z.J. Microcystis aeruginosa-laden water treatment using peroxymonosulfate enhanced Fe(II) coagulation: Performance and the role of in situ formed FeO. Chem. Eng. J. 2020, 382, 123012. [Google Scholar] [CrossRef]
- He, H.B.; Zhao, X.B.; Jian, X.; Zhang, H.; Zeng, T.X.; Feng, B.B.; Hu, Y.A.; Yuan, Z.Q.; Gao, X.M.; Fu, F. Promoting photothermal catalytic CO reduction of Cd InS/CdZnS heterojunction with encapsulated hydrogen evolution active site by accelerating charge transfer kinetics. Chem. Eng. J. 2023, 476, 146442. [Google Scholar] [CrossRef]
- Zhao, Y.M.; Sun, M.; Wang, X.X.; Wang, C.; Lu, D.W.; Ma, W.; Kube, S.A.; Ma, J.; Elimelech, M. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 2020, 11, 6228. [Google Scholar] [CrossRef]
- Zhai, Q.Y.; Song, L.L.; Huang, S.H.; Ji, X.Y.; Yu, Y.S.; Ye, J.; Wei, H.; Xu, W.W.; Hou, M.F. Removal mechanism of in Fe/sodium percarbonate and Fe/sodium persulfate advanced oxidation-flocculation system. Environ. Sci. Pollut. R. 2023, 30, 40911–40918. [Google Scholar] [CrossRef]
- Li, Y.A.; Wei, J.; Cui, N.; Li, J.M.; Xu, M.D.; Pan, G.P.; Jiang, Z.J.; Cui, X.R.; Niu, X.R.; Li, J. Recent Advance of Atomically Dispersed Dual-Metal Sites Carbocatalysts: Properties, Synthetic Materials, Catalytic Mechanisms, and Applications in Persulfate-Based Advanced Oxidation Process. Adv. Funct. Mater. 2023, 33. [Google Scholar] [CrossRef]
- Liu, N.; Lu, N.; Yu, H.T.; Chen, S.; Quan, X. Degradation of aqueous bisphenol A in the CoCN/Vis/PMS system: Catalyst design, reaction kinetic and mechanism analysis. Chem. Eng. J. 2021, 407, 127228. [Google Scholar] [CrossRef]
- Cao, S.; Yu, J. g-C3N4-Based Photocatalysts for Hydrogen Generation. J. Phys. Chem. Lett. 2014, 5, 2101–2107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Yu, B.Z.; Li, X.Z.; Li, Y.; Zhong, Y.C.; Ding, J.F. Inactivation of Microcystis aeruginosa by peroxydisulfate activated with single-atomic iron catalysis: Efficiency and mechanisms. J. Environ. Chem. Eng. 2022, 10, 108310. [Google Scholar] [CrossRef]
- Yu, B.Z.; Li, X.Z.; He, M.F.; Li, Y.; Ding, J.F.; Zhong, Y.C.; Zhang, H.J. Selective production of singlet oxygen for harmful cyanobacteria inactivation and cyanotoxins degradation: Efficiency and mechanisms. J. Hazard. Mater. 2023, 441, 129940. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.Z.; Yan, W.; Meng, Y.J.; Liu, Z.Q.; Ding, J.F.; Zhang, H.J. A noteworthy response process of induced by exogenous reactive oxygen species in algae-laden water treatment. Chem. Eng. J. 2023, 476, 146471. [Google Scholar] [CrossRef]
- Xu, W.J.; Li, X.X.; Li, Y.P.; Sun, Y.F.; Zhang, L.; Huang, Y.; Yang, Z. Rising temperature more strongly promotes low-abundance Paramecium to remove and degrade microcystins. Environ. Pollut. 2021, 291, 118143. [Google Scholar] [CrossRef]
- Zhang, H.J.; Li, X.Z.; Wu, D.X.; Yu, B.Z.; Lu, S.H.; Wang, J.J.; Ding, J.F. A novel strategy for efficient capture of intact harmful algal cells using Zinc oxide modified carbon nitride composites. Algal Res. 2023, 69, 102932. [Google Scholar] [CrossRef]
- Henderson, R.K.; Baker, A.; Parsons, S.A.; Jefferson, B. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms. Water Res. 2008, 42, 3435–3445. [Google Scholar] [CrossRef]
- Qu, F.S.; Liang, H.; He, J.G.; Ma, J.; Wang, Z.Z.; Yu, H.R.; Li, G.B. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of and their impacts on UF membrane fouling. Water Res. 2012, 46, 2881–2890. [Google Scholar] [CrossRef]
- Gu, N.; Wu, Y.X.; Gao, J.L.; Meng, X.Y.; Zhao, P.; Qin, H.H.; Wang, K.T. Microcystis aeruginosa removal by in situ chemical oxidation using persulfate activated by Fe ions2+. Ecol. Eng. 2017, 99, 290–297. [Google Scholar] [CrossRef]
- Fang, F.; Gao, Y.; Gan, L.; He, X.Y.; Yang, L.Y. Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu, China. J. Appl. Phycol. 2018, 30, 1777–1793. [Google Scholar] [CrossRef]
- Li, D.P.; Kang, X.; Chu, L.L.; Wang, Y.F.; Song, X.S.; Zhao, X.X.; Cao, X. Algicidal mechanism of Raoultella ornithinolytica against Microcystis Antioxidant response, photosynthetic system damage and microcystin degradation. Environ. Pollut. 2021, 287, 117644. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, R.J.; Hu, L.J.; Xi, M.C.; Wang, M.J.; Ma, Y.J.; Chen, J.F.; Liu, C.C.; Song, Y.H.; Ding, N.; et al. Metabolites and metabolic pathways associated with allelochemical effects of linoleic acid on. J. Hazard. Mater. 2023, 447, 13081. [Google Scholar] [CrossRef] [PubMed]
- Ni, L.X.; Acharya, K.; Hao, X.Y.; Li, S.Y. Antioxidant and metabolism responses to polyphenol stress in cyanobacterium Microcystis aeruginosa. J. Environ. Sci. Health B 2013, 48, 153–161. [Google Scholar] [CrossRef]
- Jin, Y.; Pei, H.Y.; Hu, W.R.; Zhu, Y.W.; Xu, H.Z.; Ma, C.X.; Sun, J.M.; Li, H.M. A promising application of chitosan quaternary ammonium salt to removal of cells from drinking water. Sci. Total Environ. 2017, 583, 496–504. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, W.; Wang, H. Physiological response and morphological changes of to an algicidal compound prodigiosin. J. Hazard. Mater. 2020, 385, 121530. [Google Scholar] [CrossRef]
- Qian, H.F.; Xu, J.H.; Lu, T.; Zhang, Q.; Qu, Q.; Yang, Z.P.; Pan, X.L. Responses of unicellular alga to allelochemical linoleic acid. Sci. Total Environ. 2018, 625, 1415–1422. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Feng, J.; Lv, J.P.; Xie, S.L. Effect of high-doses pyrogallol on oxidative damage, transcriptional responses and microcystins synthesis in TY001 (Cyanobacteria). Ecotoxicol. Environ. Saf. 2016, 134, 273–279. [Google Scholar] [CrossRef]
- Anipsitakis, G.P.; Dionysiou, D.D. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 2004, 38, 3705–3712. [Google Scholar] [CrossRef]
- Cheng, X.; Guo, H.; Zhang, Y.; Wu, X.; Liu, Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 2017, 113, 80–88. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Guo, H.; Cheng, X.; Liu, H.; Tang, W. Persulfate-assisted photodegradation of diethylstilbestrol using monoclinic BiVO4 under visible-light irradiation. Environ. Sci. Pollut. Res. Int. 2017, 24, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.L.; Wang, J.; Shan, C.; Zhang, J.; Lv, L.; Pan, B.C. Durable activation of peroxymonosulfate mediated by Co-doped mesoporous FePO via charge redistribution for atrazine degradation. Chem. Eng. J. 2019, 375, 122009. [Google Scholar] [CrossRef]
- Moon, B.R.; Kim, T.K.; Kim, M.K.; Choi, J.; Zoh, K.D. Degradation mechanisms of Microcystin-LR during UV-B photolysis and UV/H2O2 processes: Byproducts and pathways. Chemosphere 2017, 185, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Park, J.A.; Yang, B.; Jang, M.; Kim, J.H.; Kim, S.B.; Park, H.D.; Park, H.M.; Lee, S.H.; Choi, J.W. Oxidation and molecular properties of microcystin-LR, microcystin-RR and anatoxin-a using UV-light-emitting diodes at 255 nm in combination with HO. Chem. Eng. J. 2019, 366, 423–432. [Google Scholar] [CrossRef]
- Lee, J.; Kwak, M.; Chang, Y.K.; Kim, D. Green solvent-based extraction of chlorophyll a from Nannochloropsis sp. Using 2,3-butanediol. Sep. Purif. Technol. 2021, 276, 119248. [Google Scholar] [CrossRef]
- Yu, H.R.; Qu, F.S.; Zhang, X.L.; Shao, S.L.; Rong, H.W.; Liang, H.; Bai, L.M.; Ma, J. Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation. Chemosphere 2019, 228, 35–43. [Google Scholar] [CrossRef]
- Jiménez, L.D.Q.; Guzmán-Guillén, R.; Catunescu, G.M.; Campos, A.; Vasconcelos, V.; Jos, A.; Cameán, A.M. A new method for the simultaneous determination of cyanotoxins (Microcystins and Cylindrospermopsin) in mussels using SPE-UPLC-MS/MS. Environ. Res. 2020, 185, 109284. [Google Scholar] [CrossRef]
- Wang, J.; Pang, X.L.; Ge, F.; Ma, Z.Y. An ultra-performance liquid chromatography-tandem mass spectrometry method for determination of microcystins occurrence in surface water in Zhejiang Province, China. Toxicon 2007, 49, 1120–1128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, W.; Li, C.; Meng, Y.; Yue, Y.; Wen, T.; Ding, J.; Zhang, H. Cobalt-Doped Carbon Nitride for Efficient Removal of Microcystis aeruginosa via Peroxymonosulfate Activation. Toxins 2024, 16, 455. https://doi.org/10.3390/toxins16110455
Yan W, Li C, Meng Y, Yue Y, Wen T, Ding J, Zhang H. Cobalt-Doped Carbon Nitride for Efficient Removal of Microcystis aeruginosa via Peroxymonosulfate Activation. Toxins. 2024; 16(11):455. https://doi.org/10.3390/toxins16110455
Chicago/Turabian StyleYan, Wen, Chuqiao Li, Yunjuan Meng, Yao Yue, Teer Wen, Jiafeng Ding, and Hangjun Zhang. 2024. "Cobalt-Doped Carbon Nitride for Efficient Removal of Microcystis aeruginosa via Peroxymonosulfate Activation" Toxins 16, no. 11: 455. https://doi.org/10.3390/toxins16110455
APA StyleYan, W., Li, C., Meng, Y., Yue, Y., Wen, T., Ding, J., & Zhang, H. (2024). Cobalt-Doped Carbon Nitride for Efficient Removal of Microcystis aeruginosa via Peroxymonosulfate Activation. Toxins, 16(11), 455. https://doi.org/10.3390/toxins16110455