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Abstract: Heterogeneous persulfate activation is an advanced technology for treating harmful algae
in drinking water sources, while it remains a significant hurdle in the efficient management of
cyanobacterial blooms. In this study, super-dispersed cobalt-doped carbon nitride (2CoCN) was
prepared to activate peroxymonosulfate (PMS) for simultaneous Microcystis aeruginosa inhibition
and microcystin (MC-LR) degradation. When the initial PMS and 2CoCN concentrations were
0.3 g/L and 0.4 g/L, respectively, the efficiency of algal cell removal reached 97% in 15 min, and the
degradation of MC-LR reached 96%. Analyses by SEM, TEM, and EEM spectra revealed that the
reaction led to changes in algal cell morphology, damage to the cell membrane and cell wall, and the
diffusion of thylakoid membranes and liposomes. The activities of antioxidant enzymes (superoxide
dismutase and catalase) and antioxidants (glutathione) in algal cells generally increased, and the
content of malondialdehyde increased, indicating severe damage to the cell membrane. Radical
capture experiments confirmed that singlet oxygen (1O2) was the key species destroying algal cells in
the 2CoCN/PMS system. The 2CoCN/PMS system was effective in removing M. aeruginosa within a
wide pH range (3–9), and 2CoCN had good reusability. Additionally, three degradation products
of MC-LR were identified by LC–MS/MS analysis, and a possible mechanism for the inactivation
of M. aeruginosa and the degradation of MC-LR was proposed. In conclusion, this study pioneered
the 2CoCN/PMS system for inhibiting M. aeruginosa and degrading microcystin, aiming to advance
water purification and algae removal technology.

Keywords: Microcystis aeruginosa; persulfate; 2CoCN; singlet oxygen; oxidative stress; MC-LR

Key Contribution: This study introduced a novel super-dispersed cobalt-doped carbon nitride
(2CoCN) system that effectively activates peroxymonosulfate (PMS) to inhibit Microcystis aeruginosa
and degrade microcystin (MC-LR) with over 97% removal efficiency in just 15 minutes. Additionally,
it explores the mechanisms of algal cell damage and highlights the system’s effectiveness across a
wide pH range, contributing significantly to water purification technology.

1. Introduction

The worldwide prevalence of algal proliferations has been noted to severely disrupt
aquatic ecological balance, contributing to the generation of harmful algal metabolites.
These metabolites pose a substantial risk to human health, livestock, and aquatic ecosys-
tems, thereby raising environmental concerns. Microcystis aeruginosa (M. aeruginosa) is the
dominant species responsible for these blooms, which is known to produce microcystin
compounds [1–5]. The prolonged consumption of water contaminated with microcystin
can potentially induce hepatic and biliary tract abnormalities [6]. A large number of studies
have confirmed that microbial degradation, chemical methods, and physical treatments
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are effective strategies to reduce cyanobacterial blooms [7]. Nonetheless, the practical
implementation of these methods harbors certain shortcomings. For example, microbial
degradation may be limited by environmental conditions, such as temperature and pH,
resulting in unstable degradation efficiency [8]. Chemical methods may cause secondary
pollution and potential harm to the environment [9]. Physical treatment methods may have
high costs and limited effectiveness for large-scale cyanobacterial bloom treatment [10].
Thus, the development of methods is urgently warranted for simultaneously removing
cyanobacteria and intracellular organic matter.

Recently, numerous novel technologies for disinfection and algae inactivation have
arisen [11–13]. Advanced oxidation processes (AOPs) are a technology that oxidatively
degrades pollutants by generating reactive oxygen species (ROS) such as hydroxyl radicals.
Among the various AOPs, persulfate-based AOPs (PS-AOPs) have garnered substantial in-
terest, owing to their exceptional oxidation capability (ranging from 2.5 to 3.1 V), prolonged
lifetime (30–40 µs), and broad pH applicability (spanning 11 to 14). The effective activa-
tion of persulfate (PS) is achieved through a variety of heterogeneous catalysts, including
metal oxides, metal-supported catalysts, metal-nonmetal hybrids, nano-carbon derivatives,
and clay minerals [14–16]. Notably, changes in the valence of the metal catalyst enhance
electron transfer, which in turn catalyzes the generation of substantial amounts of sulfate
radicals (•SO4

−) and hydroxyl radicals (•OH) from persulfate (PS) while producing only a
small amount of singlet oxygen (1O2) [17]. The 1O2 species is stable at the sediment–water
interface and is less affected by variations in water quality, reducing the chances of its
quenching [18]. Currently, the investigation into the inactivation of algae via PS-AOP tech-
niques predominantly centers on pre-oxidation flocculation methods utilizing UV activated
persulfate (UV/PS) or Fe-activated persulfate (Fe/PS) systems [19]. Due to their reduced
secondary pollution, heterogeneous activation methods garner greater interest compared to
homogeneous activation. Consequently, further research is warranted into the inactivation
of algae using PS-AOPs, particularly focusing on heterogeneous catalytic systems and their
respective inactivation mechanisms.

Research has centered on the utilization of carbon materials impregnated with metal
nanoparticles (NPs) in heterogeneous Fenton-type or analogous processes [20]. To enhance
the metal utilization efficiency, a practical approach involves downscaling the metal parti-
cles and integrating them atomically onto supportive substrates [20]. For instance, cobalt
(Co), a transition metal, exhibits a favorable effect in activating PMS [21]. Nonetheless,
optimizing the Co/PMS system necessitates immobilizing cobalt (Co) transition metal
atoms onto an apt support that provides ample anchoring sites and robust metal-carrier
bonding, thus enhancing Co site dispersion and stability while preventing Co particle
aggregation. Previous studies have shown that the employment of Co-incorporating metal–
organic framework (MOF) material as a Co precursor effectively boosts the dispersion of
Co sites within the catalysts [21]. Graphitic carbon nitride (g-C3N4), an esteemed poly-
meric non-metallic semiconductor, is conducive to the formation of Co-Nx coordination
complexes, thereby serving as an ideal substrate for stabilizing positively charged cobalt
(Co) transition metal species [21]. Furthermore, g-C3N4 exhibits excellent physicochemical
stability, robust photocatalytic efficiency under visible light, adjustable electronic configura-
tion, cost-effectiveness, and environmental friendliness [22]. Accordingly, g-C3N4-based
catalysts emerge as optimal AOP materials in water treatment. Utilizing the inexhaustible
resource of visible light, g-C3N4 can be efficiently activated to generate electrons, which
then promote the transition from Co3+ to Co2+, thereby accelerating the generation of •OH,
•SO4

−, and 1O2 radicals and enhancing the removal efficiency of algal cells.
This study focuses on the synthesis of a highly dispersible 2CoCN composite, a

novel material designed to enhance the activation of PMS in heterogeneous systems. The
primary objective is to evaluate its effectiveness in not only inactivating M. aeruginosa
but also in degrading the algal toxins it produces, which pose significant risks to aquatic
ecosystems and human health. A series of optimization experiments were conducted
to examine how varying dosage levels and pH affect the catalytic performance of the
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2CoCN composite, as these parameters significantly influence reaction kinetics and
the PMS activation process. This research further investigates the morphological and
biological changes in algal cells after treatment, highlighting the oxidative stress in-
duced by active oxygen species. The composition of algal suspensions was analyzed
before and after treatment to assess the structural integrity and viability of the algal
cells. Advanced techniques were utilized to detect and quantify the active oxygen
species generated and to examine free-radical quenching, essential for understanding
the oxidative mechanisms involved. Additionally, an investigation into the mechanisms
behind cyanobacterial inactivation and toxin degradation was conducted, focusing on
the interactions between the 2CoCN composite and PMS, as well as the biochemical
pathways that lead to the neutralization of harmful algal blooms. Overall, this study
introduces an eco-friendly method to deactivate M. aeruginosa and degrade algal toxins,
offering innovative strategies for managing harmful cyanobacterial blooms. The findings
have potential applications in water treatment and environmental remediation.

2. Results and Discussion
2.1. Removal of M. aeruginosa and MC-LR by the 2CoCN/PMS System

As shown in Figure 1a, compared to the control group with no additions, the
treatment with either PMS or 2CoCN alone did not significantly change the concentration
of Microcystis aeruginosa cells at pH 8.5, maintaining it close to the original suspension’s
level. The removal efficiency is 25% and 5% in 30 min, respectively. However, after the
addition of PMS (0.45 g/L) and 2CoCN (0.40 g/L), over the initial 10 min, the removal
efficiency for M. aeruginosa cells progressively attained 45%. Subsequently, the solution
rapidly attained transparency and clarity, with minimal suspended cells, achieving a
removal efficiency of 94%, thereby demonstrating its capacity to efficiently eliminate
Microcystis aeruginosa within 30 min. The results were mainly attributed to that the
2CoCN/PMS system may strongly release reactive oxygen species (ROS), which could
significantly contribute to the deactivation of cyanobacterial cells. Similar to this study,
Yu et al. [23,24] found that the single-iron-doped graphite/PMS system can efficiently
product ROS to inactivate four harmful cyanobacteria.
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Figure 1. Variations of algal removal efficiency (a) and MC-LR concentrations (b) in the 2CoCN/PMS
system. (C/C0 represents the concentration of MC-LR during the reaction divided by its initial
concentration.) Error bars represent the standard deviations (n = 3).

The 2CoCN/PMS system also evaluated the degradation of algal toxins (MC-LR) to
mitigate the harmful effects of algal toxins released due to cell rupture. The changes in the
MC-LR concentration, as a function of reaction time, are shown in Figure 1b. At the first
5 min, the concentration of MC-LR surpassed its initial level due to the rupture of numerous
algal cells. Subsequently, within the 2CoCN/PMS system, the MC-LR concentration
underwent a gradual decline. At last, the liberated concentration of MC-LR was degraded
to approximately 96% after a duration of 40 min. More importantly, the concentration of
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MC-LR did not increase over the subsequent 120 min; this suggests that the algal cells
may have ruptured in large numbers at 30 min and that MC-LR was also being removed
synchronously. It has also been demonstrated in our previous studies that MC-LR can
effectively degrade into smaller molecules [25].

To elucidate the impact of ROS generated in the 2CoCN/PMS system on cellular
morphology, we employed SEM and TEM to examine the extracellular morphological
alterations of Microcystis aeruginosa cells. In the control group (Figure 2a), the Microcystis
aeruginosa cells exhibited a regular spherical shape and an intact smooth surface at 0 min,
which were accompanied by natural metabolites such as extracellular polymeric substances
(EPSs). Similarly, the algae cell exhibited a normal morphology, with intact cellular mem-
branes (CMs) and cell walls (CWs) in Figure 2c. In this state, a regular arrangement of
thylakoid membranes (TMs) was clearly visible, with a uniform distribution of cytoplasm
and a normal central nucleoid region. As the reaction proceeds, the cell membrane folds
inward. After 30 min of reaction, the cell membrane folds inward severely in Figure 2b. It
suggests that ROS attacks the cell membrane, causing it to deform and fold. Moreover, as
illustrated in Figure 2d, following the reaction, both the cellular membrane and cell wall
sustained damage, resulting in the diffusion of thylakoid membranes and liposomes out-
side the cell. Such alterations may lead to the release of algal toxins, exerting adverse effects
on the surrounding environment [26]. It was demonstrated in a similar study that ROS
can penetrate into algal cells, triggering their release of algal toxins [25]. Additionally, the
2CoCN catalyst demonstrated proficiency in adhering to the surface of algal cells, enabling
the generated reactive species to efficiently compromise the cell membranes, ultimately
leading to the inactivation of the algal cells and the disintegration of extracellular and intra-
cellular components. The spontaneous fluorescence intensity of chlorophyll a can serve as
one of the important activity indicators of M. aeruginosa. Compared to 0 min in Figure 2e,
a notable alteration in the fluorescence intensity of algal cells was observed after 30 min,
indicating the demise of a substantial number of algal cells in Figure 2f. In our previous
experiment, we observed a distinct cell outline with intense fluorescence, indicating that
the captured cells remained intact by amorphous carbon-based zinc oxide [27].

Excitation–emission matrix (EEM) spectra were utilized to analyze the chemical com-
position and variations in algal organic matter (AOM) during the inactivation of algae
by 2CoCN/PMS. As shown in Figure 3, three distinct fluorescence peaks have been iden-
tified, specifically at λex/λem = 275/320 nm (designated as peak A), 220/320 nm (peak
B), and 275/450 nm (peak C). These peaks correspond to dissolved microbial metabolites,
aromatic proteins (consisting of tyrosine and tryptophan), and fulvic-acid-like substances,
respectively [28]. The potential source of humic-acid-like and fulvic-acid-like substances
could be attributed to the oxidative decomposition of macromolecular organic matter or
naturally occurring apoptotic algal cells [29]. The significant intensities of peaks A and
B in the EOM spectrum indicate the rapid release of dissolved microbial metabolites and
aromatic proteins within 15 min due to cellular damage. However, the intensity of these
peaks decreased at 30 min, possibly because the 2CoCN/PMS system degraded EOM.
Peak A of IOM increased at 15 min, probably due to some stress response of the algae
that promoted the production of aromatic proteins [25]. Same as EOM, all peak intensities
decreased at 30 min; this phenomenon can be ascribed to a reduction in the quantity of
algal cells or to the direct action of 2CoCN/PMS on these substances. Based on the afore-
mentioned findings, it is evident that the 2CoCN/PMS system effectively facilitates the
catalytic inactivation of M. aeruginosa, along with the subsequent degradation of AOM.
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2.2. Influence Factors for Algae Removal Efficiency

A series of batch experiments were systematically conducted under varying pH
conditions to investigate the impact of acidity and alkalinity on the removal efficiency of M.
aeruginosa. The findings indicate that within neutral and mildly acidic environments, the
2CoCN/PMS system maintains a consistently high level of removal efficiency, as evident
in Figure 4c. Notably, this pH range is broader compared to homogeneous activation
methods, suggesting a greater adaptability of the 2CoCN/PMS system under diverse water
conditions [30]. However, under alkaline conditions, specifically when the pH exceeds 11.0,
a significant reduction in the removal effect was observed. This decrement is attributed
to the decreased oxidation capability of PMS under alkaline conditions, as reported in
previous studies [19]. In summary, the 2CoCN/PMS system demonstrates the effective
removal of M. aeruginosa within a pH range of 3–9. This system is applicable for the
inactivation of M. aeruginosa within a pH range spanning from 3.0 to 9.0. However, the
actual aquatic environments where algae thrive are often alkaline [31], thus indicating the
potential of the 2CoCN/PMS system for practical application in the control of algal blooms.
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Figure 4a,b demonstrated the synergistic impact of varying concentrations of 2CoCN
and PMS on the removal of M. aeruginosa. As the dosage of 2CoCN (or PMS) increased from
0.1 g·L−1 (0.15 g·L−1) to 0.40 g L−1 (0.60 g·L−1), the removal of M. aeruginosa increased
from 6% to 98%. This underscores the reliance of algae removal efficiency on the combined
effects of PMS and 2CoCN. At lower 2CoCN concentrations, PMS activation is presumably
hindered, while at lower PMS concentrations, despite effective activation, fewer free radi-
cals are generated for optimal algae removal. Furthermore, when PMS dosage was raised
from 0.3 g·L−1 to 0.6 g·L−1 under identical conditions, the removal efficiency reached a
saturation point, thus indicating an optimal dosage of 0.3 g·L−1 for both 2CoCN and PMS.
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The potential applicability of 2CoCN is contingent upon its reusability, a crucial
parameter that has been assessed accordingly. The experimental results indicate that the
algae removal effect will not significantly decrease after five consecutive cycles of recycling
and reuse (Figure 4d). This result indicates that 2CoCN maintains good reusability.

2.3. Oxidative Stress Indicators and Proteins

To investigate the antioxidant defense mechanisms demonstrated by M. aeruginosa
in response to the 2CoCN/PMS system, we measured antioxidant defense enzymes (su-
peroxide dismutase and catalase) and antioxidants (glutathione) [32]. When confronted
with adverse environmental stress, microalgae trigger the production of substantial ROS
within their cells, leading to severe oxidative damage. This damage can progress to cel-
lular structural impairment, membrane rupture, and, ultimately, the leakage of cellular
contents [33]. To counteract this excessive ROS generation, algal cells produce and accumu-
late antioxidant enzymes and antioxidants, thereby protecting themselves from oxidative
damage [34]. Figure 5a–c correspond to the effects of the 2CoCN/PMS system on the
superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activities of M. aerugi-
nosa, respectively. The activities of SOD, GSH, and CAT all exhibited an overall upward
trend after the reaction. Specifically, GSH and CAT reached their peak activities at 15 min
and then declined after 30 min. However, the activity of SOD peaked after 30 min of the
reaction, reaching 1.98 times higher than that before the reaction. This indicates that under
environmental stress, the antioxidant stress defense system of M. aeruginosa, including SOD,
GSH, and CAT, undergoes certain destruction as a response to the increased stress [35].
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Lipids are biomacromolecules that play a crucial role in cellular physiological activities,
and changes in cellular lipid content can reflect the physiological state of algal cells [36].
Malondialdehyde (MDA) can reflect the level of lipid peroxidation, thereby indicating the
level of oxidative damage to cell membranes [37]. In response to stress, the content of MDA
continuously increased within 30 min, reaching 3.42 times higher than before the stress
(Figure 5d), indicating severe damage to the cell membranes of Microcystis aeruginosa [38].



Toxins 2024, 16, 455 8 of 14

2.4. Mechanism and Functionality of ROS

To gain a deeper understanding of the M. aeruginosa inactivation process, experiments
focusing on ROS and hole trapping were devised to identify the key ROS involved in
the degradation pathway. Consequently, to quench hydroxyl radicals (•OH), sulfate rad-
icals (SO4

•−), holes (h+), and singlet oxygen (1O2), specified concentrations (50 mM) of
isopropanol (IPA), tert-butyl alcohol (TBA), ethanol (EtOH), furfuryl alcohol (FFA), and
L-histidine were introduced [39–41]. Figure 6a demonstrates the quenching efficacy of
various scavengers on free radicals. After quenching treatments with isopropanol, ethanol,
tert-butanol, L-histidine, and furfuryl alcohol, the algal removal rates were 97%, 95%,
94%, 81%, 14%, and 6%, respectively. The removal of algal cells is evidently attributed
to a significant contribution of 1O2. When L-histidine and FFA (as quenchers for 1O2)
were added, the inactivation efficiency was significantly reduced. The reaction rate was
also reduced when C2H6O and IPA were added. To further elucidate the production of
reactive oxygen species (ROS), electron paramagnetic resonance (EPR) spectroscopy was
employed for investigation during the activation of PMS by 2CoCN. TEMP is utilized
as the scavenging agent for 1O2 (Figure 6b) and DMPO as the capture agent for O2

•−,
•OH, and SO4

•− (Figure 6c,d). The 1:1:1 characteristic triple signal of TEMP-1O2 is clearly
shown in Figure 6b. Meanwhile, the signals corresponding to DMPO—•OH and DMPO
SO4

•−—exhibit a characteristic ratio of 1:2:1:2:1:2:1, which is clearly shown in Figure 6c,
this is due to the direct oxidation of DMPO by single-electron sources [42]. Additionally,
the concentration of these free radicals progressively rises. The findings reinforce the notion
that in the 2CoCN-activated PMS system, the inactivation of algal cells is primarily ascribed
to 1O2.
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Based on the comprehensive LC–MS/MS analysis, three distinct degradation products
of MC-LR (m/z = 834.4, 734.5 and 608.6) were successfully identified and characterized.
Figure 7 illustrates the potential degradation pathways of MC-LR within the 2CoCN/PMS
system. MC-LR (m/z = 995.6), a biologically active cyclic heptapeptide, consists of the
amino acid sequence comprising Adda, Glu, Mdha, Ala, Leu, MeAsp, and Arg. It has been
documented that the double bond within the Adda side-chain undergoes hydroxylation,
leading to the formation of a dihydroxy intermediate, denoted as A1–1 (m/z = 1052.0), A1–2
(m/z = 1029.5), and A1–3 (m/z = 1011.5) [43]. Owing to bond cleavage, the intermediates



Toxins 2024, 16, 455 9 of 14

persist in yielding ketone derivatives B1-1 (m/z = 834.4) and B1-2 (m/z = 734.5) [44]. As the
bond continues to break, the intermediates continue to produce ketone derivatives C1-1
(m/z = 608.6) [43].
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A plausible mechanism for the inactivation of M. aeruginosa and MC-LR in the
2CoCN/PMS system is presented in Figure 8. The generation pathways of superoxide
anions (O2

•−), sulfate radicals (SO4
•−), and singlet oxygen (1O2) are depicted in the figure

as follows. In persulfate-mediated reactions, the disruption of –O–O– bonds can lead to the
formation of free radicals such as hydroxyl (•OH) and sulfate (SO4

•−) [41]. The continual
transformation of two valence states of Co ions on the surface of the 2CoCN catalyst allows
for the possible generation of 1O2 through two pathways, specifically, either through direct
oxidation or recombination of O2

•−, or through the oxidation of SO5
•−.
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3. Materials and Methods
3.1. Chemicals and Algal

All the chemicals used in this work were of HPLC grade. Urea (CH4N2O) and cobalt
nitrate hexahydrate (Co(NO3)2·6H2O) were obtained from Aladdin Reagent (Shanghai,
China). Potassium monopersulfate triple salt (K5H3S4O18 [42–46% KHSO5 basis]) and L-
histidine (C6H9N3O2) were obtained from Macklin (China). Acetonitrile (CH3CN, gradient
grade for liquid chromatography) and methanol (CH4O, ≤100%, gradient grade for liquid
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chromatography) were purchased from Merck (Darmstadt, Germany). H2SO4, NaOH,
HNO3, pentanediol (C5H12O2), ethanol (C2H6O and EtOH), isopropanol (IPA), furfuryl
alcohol, and tert-butanol were obtained from Sinopharm Chemical Reagent Co. Ltd.
(Beijing, China). Ultrapure water with a resistance of 18.2 MΩ cm was prepared using a
water purification device (Direct-Q 3UV, Darmstadt, Germany).

M. aeruginosa (NO. FACHB-905) was provided by the Institute of Hydrobiology, Chi-
nese Academy of Sciences (Wuhan, Hubei, China). The cells were cultured in BG11 medium
and placed in an artificial climate incubator (HP1500GS, Shanghai Jingsheng Instrument
Co., Ltd., Shanghai, China) at room temperature under a light intensity of 3000 lux and a
light–dark ratio of 14 h:10 h. The algae cultures were shaken regularly every day.

3.2. Synthesis of 2CoCN Catalysts

Utilizing a one-step synthesis approach, super-dispersed cobalt-doped carbon nitride
(abbreviated as 2CoCN) was successfully fabricated. Briefly, CoNO3·6H2O (2.0 mmol) and
urea (10 g) were dissolved in ultrapure water and subsequently transferred into a 50 mL
alumina crucible. Meanwhile, the mixtures were ultrasonicated individually for 1 h and
subsequently dried at 70 ◦C for 24 h to yield the precursor. The alumina crucible was heated
to 520 ◦C at a rate of 5 ◦C/min for 2 h. Once cooled to room temperature, the products
were pulverized to powder form. This powder was washed three times with 0.1 M H2SO4,
ethanol (EtOH), and ultrapure water, followed by drying at 60 ◦C for 48 h.

3.3. Experimental Procedures

Another set of diluted algal suspension was prepared with an initial cell density of
3.2 × 106 cells·mL−1. Ahead of experimentation, the pH of the algal solution was calibrated
to 8.5 by 0.1 M of H2SO4 and 0.1 M of NaOH. The predetermined quantities of 2CoCN
(0.015 g) and PMS (0.015 g) were incorporated into the prepared 50 mL algal solution
and thoroughly agitated. Following the resuspension of the algal solution, sampling was
conducted. Subsequently, a high-speed freezing centrifuge (KDC-140HR) was utilized
to centrifuge the solution at 4 ◦C and 4000 rpm for 10 min, yielding the algal precipitate
for further analysis. To derive the mean and its associated standard deviation, triplicate
parallel trials were executed.

To establish the optimal concentrations of 2CoCN and PMS, orthogonal test groups
were arranged, encompassing 2CoCN concentrations spanning 0.10 to 0.40 g L−1 and PMS
concentrations ranging from 0.15 to 0.60 g L−1. To assess the influence of pH on inactivation
efficiency, a set of experiments was undertaken at diverse initial pH levels, encompassing
3.0, 5.0, 6.0, 7.0, 9.0, and 11.0. The reusability of 2CoCN was evaluated through intermittent
experiments (5 times). A 0.45 µm filter was used to capture and retain the catalysts for
every reaction. Prior to reuse, the filtrate was washed multiple times in a mixture of
toluene and n-hexane (v/v = 1:1) as well as distilled water. To quench SO4

•−, •OH, and 1O2
radicals, a concentration of 20.0 mM was used for the addition of TBA, MeOH, IPA, C2H6O,
FFA, and L-histidine. Furthermore, to lyse algae cells resuspended in 0.5M phosphate
buffered saline, we utilized an ultrasonic homogenizer (SCIENTZ-IID) at 500W intervals for
a duration of 7 min. Then, we checked the oxidative stress and phycobiliprotein levels in
the supernatant obtained after centrifugation. The concentrations of CAT (A007-1-1), SOD
(A001-3), MDA (A003-1), GSH (A006-2-1), and total protein (TP; A045-2) were assessed
employing techniques outlined by the Nanjing Jiancheng Biotechnology Research Institute
located in China.

3.4. Analytical Methods
3.4.1. Determination of Chla Removal Efficiency

To extract chlorophyll a (Chla) from the algal precipitate, a 95% ethanol solution was
administered, followed by the determination of absorbance at 665 and 649 nm using a UV
spectrophotometer (UV-1800, SHIMADZU). The Chla concentration was calculated using
the following formula [45]:
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Chla = 13.7 A665 − 5.76A649

The formula for calculating the removal efficiency of chlorophyll a is presented
as follows:

R = (Chla1 − Chla2)/Chla0 × 100%

In this context, Chla1 represents the initial content of chlorophyll a, while Chla2
denotes its content at t minutes.

3.4.2. Observation of Algae Cell Morphology

The M. aeruginosa suspension was centrifuged at 8000 rpm for 10 min before the super-
natant was discarded. The collected algae samples were mixed with 2% glutaraldehyde for
4 h and then rinsed using a phosphate buffer solution for 15 min. The rinsing was repeated
three times. Subsequently, the algae cells were dehydrated using different concentrations
of ethanol (30%, 50%, 70%, 80%, 90%, and 100%) for 10 min each with gentle agitation. The
dehydrated M. aeruginosa cells were dried by a vacuum freeze dryer and mounted on a
copper stub to coat with gold for further SEM and TEM analysis.

3.4.3. The Excitation Emission Matrix Spectra

Following centrifugation, the supernatant was passed through a 0.45 µm aqueous
phase filter membrane to obtain the solution for subsequent measurement. The fluores-
cence spectrophotometer was utilized to analyze the prepared solution, resulting in the
acquisition of the excitation–emission matrix (EEM) spectrum. The operational parameters
were set as follows: excitation and emission slits of 10 nm, PMT voltage adjusted to 700 V,
scanning speed set at 12,000 nm min−1, and the emission and excitation wavelength ranges
spanning 200–550 nm [46].

3.4.4. Analysis of MC-LR and Its Degradation Byproducts

The extraction cartridge (Oasis) was utilized to extract the samples. Post-conditioning,
rinsing, and recovery steps, the instrument was dried with nitrogen gas (MTN-2800D,
Tianjin Automation Scientific Instrument Co., Ltd., Tianjin, China) [47,48]. The solution was
re-dissolved in methanol and finally filtered through a PTFE membrane (0.22 µm, Shanghai
Aladdin Biochemical, Shanghai, China) for refinement. Subsequently, it was analyzed
using UPLC–MS/MS instrumentation (Xevo TQ-S, Waters, Milford, MA, USA). The solvent
system comprised a blend of water and acetonitrile at a volumetric ratio of 65:35. At the
same time, intermediate degradation products of MC-LR, exhibiting m/z values spanning
from 200 to 1000, were identified through continuous MS scanning mode within a range of
0 to 20 min.

4. Conclusions

The objective of this study was to establish the 2CoCN/PMS system for the mitigation
of detrimental algal bloom effects in drinking water resources, emphasizing the concurrent
deactivation of M. aeruginosa and the removal of MC-LR. In this study, super-dispersed
2CoCN was prepared to activate PMS for simultaneous M. aeruginosa inhibition and MC-LR
degradation. Under optimal conditions, the inhibition efficiency of algal cells reached 97%.
Despite reaction-induced oxidative stress damaging cell membranes, a 96% degradation
rate for MC-LR was observed after 40 min. Both algal cell inhibition and MC-LR degrada-
tion were achieved. Furthermore, the physiological reaction of algal cells to environmental
stress was thoroughly investigated, and a proposed mechanism for free-radical generation
and MC-LR degradation was outlined. Through rigorous free-radical capture experiments,
it was conclusively verified that singlet oxygen (1O2) was the vital species destroying algal
cells in the 2CoCN/PMS system. Overall, this study pioneers the 2CoCN/PMS system for
M. aeruginosa inhibition and microcystin degradation, aiming to advance water purification
and algae removal technology.
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