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Abstract: Conotoxins are small and highly potent neurotoxic peptides derived from the venom
of marine cone snails which have captured the interest of the scientific community due to their
pharmacological potential. These toxins display significant sequence and structure diversity, which
results in a wide range of specificities for several different ion channels and receptors. Despite
the recognized importance of these compounds, our ability to determine their binding targets and
toxicities remains a significant challenge. Predicting the target receptors of conotoxins, based solely
on their amino acid sequence, remains a challenge due to the intricate relationships between structure,
function, target specificity, and the significant conformational heterogeneity observed in conotoxins
with the same primary sequence. We have previously demonstrated that the inclusion of post-
translational modifications, collisional cross sections values, and other structural features, when
added to the standard primary sequence features, improves the prediction accuracy of conotoxins
against non-toxic and other toxic peptides across varied datasets and several different commonly
used machine learning classifiers. Here, we present the effects of these features on conotoxin class and
molecular target predictions, in particular, predicting conotoxins that bind to nicotinic acetylcholine
receptors (nAChRs). We also demonstrate the use of the Synthetic Minority Oversampling Technique
(SMOTE)-Tomek in balancing the datasets while simultaneously making the different classes more
distinct by reducing the number of ambiguous samples which nearly overlap between the classes.
In predicting the alpha, mu, and omega conotoxin classes, the SMOTE-Tomek PCA PLR model,
using the combination of the SS and P feature sets establishes the best performance with an overall
accuracy (OA) of 95.95%, with an average accuracy (AA) of 93.04%, and an f1 score of 0.959. Using
this model, we obtained sensitivities of 98.98%, 89.66%, and 90.48% when predicting alpha, mu, and
omega conotoxin classes, respectively. Similarly, in predicting conotoxins that bind to nAChRs, the
SMOTE-Tomek PCA SVM model, which used the collisional cross sections (CCSs) and the P feature
sets, demonstrated the highest performance with 91.3% OA, 91.32% AA, and an f1 score of 0.9131.
The sensitivity when predicting conotoxins that bind to nAChRs is 91.46% with a 91.18% sensitivity
when predicting conotoxins that do not bind to nAChRs.

Keywords: conotoxins; machine learning; collisional cross section; post-translational modifications;
prediction; receptors; ion channels; conotoxin class

Key Contribution: Improvement of the prediction of conotoxin class and molecular target through
new features.

1. Introduction

Conotoxins are small and highly potent neurotoxic peptides derived from the venom
of marine cone snails which have captured the interest of the scientific community due
to their pharmacological potential [1,2]. These toxins display significant sequence and
structure diversity, which results in a wide range of specificities for several different ion
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channels and receptors [3]. As a result of their specific binding to ion channels, some
conotoxins have already been developed into therapeutic agents, such as the pain reliever
ziconotide [4].

Despite the recognized importance of these compounds, our ability to determine their
binding targets and toxicities remains a significant challenge. To effectively characterize
conotoxins, it is necessary to employ a variety of intricate and demanding experimental
techniques [5]. When the difficulty of experimental characterization is coupled to the
thousands of new peptide sequences obtained through transcriptomics and proteomics,
a significant bottleneck arises in the identification and prediction of conotoxin molecular
targets and protentional therapeutic applications.

Given the demand for high-throughput methods for the characterization of conotoxins,
a natural approach is to apply computational techniques to accelerate the process. Direct
toxicity prediction of conotoxins from sequence, and even sequence and structure in many
cases, remains out of reach for current computational methods [6]. Two critical steps for
toxicity prediction are the sorting of conotoxins into classes and the determination of their
target receptors. Successful methods to accomplish these steps pave the way to solving
toxin–target complex structures as well as finally predicting receptor binding affinities and
compound toxicity.

Predicting the molecular targets of conotoxins, based solely on their amino acid se-
quence, remains a formidable challenge due to the intricate relationships between structure,
function, target specificity, and the significant conformational heterogeneity observed in
conotoxins with the same primary sequence such as AuIB [7], BuIA [8,9], and GI [10].
Nevertheless, function prediction is critical to harness the therapeutic potential of these
molecules and streamlining the discovery of new conotoxin-based drugs. Traditional se-
quence alignment and motif-based methods provide some insights into conotoxin–receptor
interactions [11]; however, the inclusion of dipeptide compositions, which encapsulates
local sequence information of the peptide, is necessary to achieve successful predictive
methods [12,13].

The advent of machine learning (ML) in bioinformatics has revolutionized predictive
modeling for a wide variety of molecular functions [14], and conotoxins have been no
exception to this trend [6,15]. Recently, a variety of ML-based methods have been proposed
to predict the functions of conotoxins. For instance, Yuan, et al. [12] used support vector
machines (SVMs) to predict the ion channel targets of conotoxins, implementing sequence-
derived features including amino acid compositions and dipeptide compositions. Xianfang
et al. [13] underscored the importance of dipeptide composition in predicting conotoxin
functions by demonstrating that integrating dipeptide data with sequence information
provides a deeper, more precise representation of peptide structure and conformation.
These studies collectively demonstrate how ML can tap into the predictive potential hidden
in the intricate data structures and conformations of peptide sequences.

Though previous work has classified conotoxins by superfamily and predicted cono-
toxins that target ion channels [15], conotoxin classes (pharmacological families), which
display striking conformational variations with differing numbers of disulfide bridges
(Figure 1), have not been classified successfully. The heterogeneity observed in the se-
quences and the conformational structures of conotoxins results in diverse binding modes
across distinct ion channels (Figure 2). The diversity and specificity of binding for these
toxins make them potential new therapeutics but increases the challenge of characteriz-
ing them.
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Figure 1. Example structures of the alpha, mu, kappa, and omega classes (pharmacological families) 

of conotoxins. The backbone structures are shown in a pink cartoon representation. Disulfide 

bridges are shown in yellow. Class, toxin name, and mass are given below each structure. PDB ref-

erences are 1MXN [7], 7SAV [16], 1DW4 [17], and 1AV3 [18] clockwise from top left. 

 

Figure 1. Example structures of the alpha, mu, kappa, and omega classes (pharmacological families)
of conotoxins. The backbone structures are shown in a pink cartoon representation. Disulfide bridges
are shown in yellow. Class, toxin name, and mass are given below each structure. PDB references are
1MXN [7], 7SAV [16], 1DW4 [17], and 1AV3 [18] clockwise from top left.
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Figure 2. Samples of different conotoxin classes bound to their target receptors. (a) Alpha conotoxin
PNIA (PDB: 2BR8 [19]) bound to the Acetylcholine binding protein (AChBP). To the left, a complex
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structure shows the toxin in pink, its disulfide bonds in yellow, and the AChBP in silver. To the
right, circles are zoomed-in to show the same binding site, but the bottom circle shows a transparent
receptor to more easily see the conotoxin conformation. (b) Mu conotoxin KIIIA (PDB: 6J8E [20])
bound to the voltage gated sodium channel Nav1.2-beta2, with the right showing similar zoomed
in perspectives as (a). (c) Omega conotoxin MVIIA (PDB: 7MIX [21]), marketed as ziconotide, is
shown in its complex with the voltage gated calcium channel Cav2.2. The center structure is the
conotoxin/ion channel complex with a zoomed-in view of the bound toxin displayed in ribbon
representation (left) and a zoomed-in view showing the receptor (transparent) and the conotoxin in a
surface representation to illustrate the tight, key-like fit of the toxin binding site (right).

We have previously demonstrated that the inclusion of post-translational modifica-
tions (PTMs), collisional cross section (CCS) values, and other structural features, when
added to the standard primary sequence features, improves the prediction accuracy of
conotoxins against non-toxic and other toxic peptides across varied datasets and several
different commonly used ML classifiers [6]. Here, we present the effects of these features
on conotoxin class and target receptor predictions, in particular, predicting conotoxins
that bind to nicotinic acetylcholine receptors (nAChRs). Due to the small and unbal-
anced datasets available for this study, we also demonstrate a new ML framework that
employs the Synthetic Minority Oversampling Technique (SMOTE) [22] together with
Tomek method [23] to more accurately predict conotoxin classes and conotoxins that target
nAChRs. SMOTE-Tomek was selected over other sampling methods because it effectively
addresses both dataset imbalance and any noise in the data [22], thereby the improving
performance of the model [23,24].

2. Results
2.1. Construction of Datasets

One common challenge with building ML models for biological samples is that the
training datasets are usually small because of the sparse experimental biological data that
are currently available. This is the case for our datasets, given that only conotoxins with
experimentally solved 3-D structures are included. Our initial dataset of conotoxins with
solved structures was constructed from entries in the Protein Data Bank [25] (PDB) and the
Biological Magnetic Resonance Bank [26] (BMRB). These entries were then grouped into the
three most common classes of conotoxins, alpha, mu, and omega. With the delta and kappa
classes having only six and four entries, respectively, the algorithm has insufficient data to
create meaningful and diverse synthetic points, risking the generation of artificial samples
that poorly represent the underlying distribution. The delta and kappa class entries were
therefore discarded and not used for training. The distribution of conotoxins in each class
and conotoxins that bind or do not bind to nAChRs is shown in Table 1 and Figure S1.

Table 1. Number of samples in each conotoxin class and number of conotoxins that either bind or do
not bind to nAChRs that were used in this study.

Datasets Sample Sizes

alpha/mu/omega 98 alpha/29 mu/21 omega
nAChRs/non-nAChRs 102 nAChR binders */82 non-nAChR binders

* Note: there are more entries for nAChR binders than for alpha class since some conotoxins from delta, lambda
and psi classes also target to nAChRs.

2.2. Feature Extraction and Selection

Features were extracted from PDB files using a combination of python and perl
scripts as well as obtained from the Define Secondary Structure of Proteins (DSSP) [27,28]
and the High Performance Collision Cross Section (HPCCS) [29] programs as previously
described [6]. Extracted features were divided into four feature sets (P, P2, SS, and CCS).
The P feature set contains 15 sequence-related features that include the frequency of amino
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acid occurrence and the physiochemical characteristics of all amino acids established by
the number of charged, polar, hydrophobic, small, large, aromatic residues as well as by
total charge, mass, dipeptide 0 gap, and dipeptide 1 gap. Dipeptide 0 and dipeptide 1 are
the frequencies of co-occurring residues in the sequence as adjacent neighbors or with one
residue separating them, respectively. Thus, each dipeptide feature contains 400 features,
bringing the total number of features in the P feature set to 813. Most of the current ML
models use only the P feature set to train ML algorithms [15]. The P2 feature set includes
the number of PTMs and frequency of dipeptide 2 gap which are the frequency of residues
appearing as neighbors with two residues separating them. By including the PTM amino
acids, the dipeptide 2 gap contains 528 features, bringing the total number of features in the
P2 feature set to 529. The SS feature set has a total of 16 features consisting of structural data
that include the number of residues in any helical secondary structure conformations as
defined by DSSP. The CCS feature set consists of 1 feature for each peptide and is calculated
by HPCCS program. All features were combined through concatenation to prevent bias
towards a specific feature or feature set. Feature concatenation has been widely used
to preserve and present all the information from the various features to an ML pipeline,
ensuring a comprehensive representation of the data [30]. A complete list of all features in
each set is shown in Table S1.

2.3. Conotoxin Class Prediction

In order to determine how PTMs, CCS, and structural feature sets affect the classi-
fication performance for predicting the alpha, mu, and omega conotoxin classes, these
feature sets were tested either individually or in combination with other feature sets, using
four different ML classifiers: Penalized Logistic Regression (PLR) [31], SVM [32], Random
Forest (RF) [33], and xGBoost (xGB) [34]. Due to the highly unbalanced datasets for these
three conotoxin classes used in this study, the oversampling technique, SMOTE [22], was
used to balance the conotoxin class distributions by generating artificial data for the minor-
ity classes. SMOTE works by generating synthetic samples along the line segments that
connect minority class samples, which fills in the gaps between minority class samples,
and densifies the minority clusters. In this way, noisy samples from the minority class are
added to the data, which increases the sample size without duplicating the samples in the
classes. This helps to increase the representation of the minority mu and omega conotoxin
classes, making them more comparable to the majority alpha conotoxin class. However, to
avoid overfitting the ML models, due to overlapping samples between each of the classes,
SMOTE-Tomek was used together as a hybrid method, combining both undersampling
and oversampling techniques to clean up overlapping samples. Tomek links are pairs of
instances, one from the majority class and one from the minority class, that are similar
to each other but belong to the different classes [24]. These pairs can be considered as
noisy or borderline examples. Tomek links can be removed from the dataset to improve the
separation between the classes; however, by combining SMOTE and Tomek techniques,
a more balanced and representative dataset was created, leading to better classification
performance in our imbalanced dataset scenarios. The sample sizes for the three classes of
conotoxins were similar after SMOTE-Tomek was applied to the datasets, indicating that a
more balanced dataset was constructed (Table S2).

In addition, due to the small dataset sizes, models were tested using leave-one-out
cross validation in which the models were trained using all but one entry and then tested
with the entry that was left out [15,35]. This method helps to reduce the variability in the
F-score by averaging results across all possible splits, leading to a more stable and reliable
performance estimate. The cross validation was then repeated leaving a different entry out
each time [15,35]. Four different classifiers: SVM, PLR, RF, and xGB, were coupled with
different procedures to create various models to predict the three conotoxin classes using
our different feature sets. The f1 scores, as shown in Table 2 and Figure 3, obtained for each
model were used to evaluate the classification performance as detailed in the Section 4.
Higher f1 values indicate better prediction performance.
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Table 2. The f1 scores obtained for different feature sets and feature set combinations on the perfor-
mance of different models in predicting the alpha, mu, and omega conotoxin classes using different
ML models.

F-Score
PLR

F-Score
SVM

SMOTE
PLR

SMOTE-
Tomek PLR

SMOTE-
Tomek PCA

PLR

SMOTE-
Tomek PCA

RF

SMOTE-
Tomek PCA

xGB

P 0.8920 0.8988 0.9520 0.9524 0.9520 0.9071 0.9391
SS 0.8732 0.8934 0.8757 0.8902 0.8981 0.8948 0.8407

SS + CCS 0.8598 0.8818 0.8621 0.8964 0.8823 0.8895 0.8902
P + CCS 0.8897 0.8814 0.9492 0.9528 0.9459 0.9083 0.9311
P + SS 0.9307 0.9112 0.9459 0.9524 0.9590 0.9083 0.9455

P + SS + CCS 0.8965 0.8965 0.9519 0.9520 0.9453 0.9013 0.9237
P + P2 0.8976 0.8816 0.9449 0.9311 0.9377 0.9016 0.9131
SS + P2 0.9376 0.9244 0.9098 0.9100 0.9116 0.8935 0.8746

CCS + SS + P2 0.9379 0.9447 0.9173 0.9022 0.9177 0.8941 0.8912
P + SS + CCS + P2 0.9107 0.9306 0.9421 0.9449 0.9377 0.9149 0.8976

Toxins 2024, 16, x FOR PEER REVIEW 7 of 15 
 

 

accuracy. Specifically, when the P2 feature set was combined with the SS feature set (SS + 

P2), with both the SS and CCS feature sets (CCS + SS + P2), or when all feature sets were 

combined (P + SS + CCS + P2), none of the four metric scores (OA, AA, Sn and f1) were 

improved compared to just using the P feature set alone. However, when the SS feature 

set was added on top of the P feature set (P + SS), the OA was increased by 0.68%, the AA 

by 1.15%, and the f1 score by 0.007, obtaining the same sensitivity for the alpha and omega 

classes as when using the P feature set alone. The sensitivity for predicting the mu cono-

toxin class was also increased by 3.45%. However, the sensitivity for predicting the omega 

conotoxin class was the same regardless of the feature sets and feature set combinations 

used. 

 

Figure 3. Comparison plots of f1 scores obtained from different ML models for the different feature 

sets and feature set combinations in predicting alpha, mu, and omega conotoxin classes using dif-

ferent ML models. 

The best average accuracy for SMOTE-Tomek PCA PLR model, 93.04%, was also 

achieved when using the combination of P and SS feature sets (P + SS). In addition, the SS 

feature set improved the prediction sensitivity for the mu conotoxin class, suggesting that 

there might be some distinct information in the SS feature set that may help to distinguish 

the mu conotoxin class further. 

Table 3. The effect of different feature sets and feature set combinations on the performance of 

SMOTE-Tomek PCA PLR model in predicting the alpha, mu, and omega conotoxin classes. 

 OA AA Sn-Alpha Sn-Mu Sn-Omega f1 

P 0.9527 0.9189 0.9898 0.8621 0.9048 0.9520 

SS 0.8986 0.8674 0.9388 0.7586 0.9048 0.8981 

SS + CCS 0.8851 0.8363 0.9490 0.6552 0.9048 0.8823 

P + CCS 0.9459 0.9236 0.9694 0.8966 0.9048 0.9459 

P + SS 0.9595 0.9304 0.9898 0.8966 0.9048 0.9590 

Figure 3. Comparison plots of f1 scores obtained from different ML models for the different feature
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ML models.

The results show that the SS feature set alone, or in combination with the CCS feature
set (SS + CCS) did not increase the prediction performance, compared to the P feature set
alone. Similarly, the addition of the CCS feature set on top of the P feature set (P + CCS),
the addition of the P2 feature set on top of the P feature set (P + P2), or the addition of
CCS and SS feature sets on top of the P feature set (P + SS + CCS) did not significantly
affect the performance of all models tested. Interestingly, the addition of the SS feature
set on top of the P2 feature set (SS + P2), the addition of CCS and SS feature sets on top
of the P2 feature set (CCS + SS + P2), or the addition of CCS, SS, and P2 feature sets on
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top of the P feature set (P + SS + CCS + P2) increased the F-score for both the PLR and
SVM models, but decreased the performance of the other five models. This was true
except for the (P + SS + CCS + P2) feature set using the SMOTE-Tomek PCA RF model,
which showed an f1 increase of 0.0078, compared to using the P feature set alone. Notably,
adding the SS feature set on top of the P feature set (P + SS) increased f1 scores across all
seven models tested (except for the SMOTE-PLR model) and the best f1 score of 0.9590
was obtained with the SMOTE-Tomek PCA PLR model. Moreover, the SMOTE-Tomek
PLR model outperformed the SMOTE-PLR when single feature sets were used or when
they were combined with each other, indicating that the SMOTE-Tomek hybrid technique
improved the overall performance of the models tested.

As shown in Table 2, the SMOTE-Tomek PCA PLR model, overall, has the best perfor-
mance in predicting conotoxin classes, across multiple different feature sets and feature
set combinations. This model, therefore, was used to classify the alpha, mu, and omega
conotoxin classes. Metrics, including overall accuracy (OA), average accuracy (AA), sensi-
tivity (Sn), and f1 score for each class were used to evaluate the classification performance
as indicated in the Section 4. Higher values for these metrics indicate better performance.

Table 3 shows the effect of different feature sets and feature set combinations on the
performance of the SMOTE-Tomek PCA PLR model to predict the three conotoxin classes.
These results demonstrate that the SS features alone, or in combination with the CCS feature
set (SS + CCS) did not improve prediction accuracy, compared to the P feature set alone.
Similarly, the addition of the CCS feature set on top of the P feature set (P + CCS), the
addition of P2 feature set on top of the P feature set (P + P2), or the addition of CCS and
SS feature sets on top of the P feature set (P+ SS + CCS) also did not have any effect on
prediction accuracy. The addition of the P2 feature set did not increase prediction accuracy.
Specifically, when the P2 feature set was combined with the SS feature set (SS + P2), with
both the SS and CCS feature sets (CCS + SS + P2), or when all feature sets were combined
(P + SS + CCS + P2), none of the four metric scores (OA, AA, Sn and f1) were improved
compared to just using the P feature set alone. However, when the SS feature set was added
on top of the P feature set (P + SS), the OA was increased by 0.68%, the AA by 1.15%, and
the f1 score by 0.007, obtaining the same sensitivity for the alpha and omega classes as
when using the P feature set alone. The sensitivity for predicting the mu conotoxin class
was also increased by 3.45%. However, the sensitivity for predicting the omega conotoxin
class was the same regardless of the feature sets and feature set combinations used.

Table 3. The effect of different feature sets and feature set combinations on the performance of
SMOTE-Tomek PCA PLR model in predicting the alpha, mu, and omega conotoxin classes.

OA AA Sn-Alpha Sn-Mu Sn-Omega f1

P 0.9527 0.9189 0.9898 0.8621 0.9048 0.9520
SS 0.8986 0.8674 0.9388 0.7586 0.9048 0.8981

SS + CCS 0.8851 0.8363 0.9490 0.6552 0.9048 0.8823
P + CCS 0.9459 0.9236 0.9694 0.8966 0.9048 0.9459
P + SS 0.9595 0.9304 0.9898 0.8966 0.9048 0.9590

P + SS + CCS 0.9459 0.9155 0.9796 0.8621 0.9048 0.9453
P + P2 0.9392 0.8959 0.9898 0.7931 0.9048 0.9377
SS + P2 0.9122 0.8742 0.9592 0.7586 0.9048 0.9116

CCS + SS + P2 0.9189 0.8776 0.9694 0.7586 0.9048 0.9177
P + SS + CCS + P2 0.9392 0.8959 0.9898 0.7931 0.9048 0.9377

The best average accuracy for SMOTE-Tomek PCA PLR model, 93.04%, was also
achieved when using the combination of P and SS feature sets (P + SS). In addition, the SS
feature set improved the prediction sensitivity for the mu conotoxin class, suggesting that
there might be some distinct information in the SS feature set that may help to distinguish
the mu conotoxin class further.
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2.4. Prediction of Conotoxins That Target nAChRs

Next, the feature sets were evaluated for their effect on the classification performance of
conotoxins that bind to nAChRs. Similar to the approach in Section 2.3, to determine the best
model for conotoxin class prediction, several different models were tested; however, since
the performance of the models using the hybrid SMOTE-Tomek technique considerably
improved the conotoxin class prediction, only models using this protocol are presented
here. The f1 scores, obtained for each feature set, and the feature set combinations for each
model used in predicting conotoxins that bind to nAChRs are shown in Table 4.

Table 4. The f1 scores obtained for different feature sets and feature set combinations on the perfor-
mance of different SMOTE-Tomek models in predicting conotoxins that bind to nAChRs.

SMOTE-
Tomek PLR

SMOTE-
Tomek PCA

PLR

SMOTE-
Tomek SVM

SMOTE-
Tomek PCA

SVM

SMOTE-
Tomek PCA

RF

SMOTE-
Tomek PCA

xGB

P 0.9024 0.9078 0.9077 0.8968 0.8241 0.8970
SS 0.8474 0.8743 0.8527 0.8580 0.8860 0.8747

SS + CCS 0.8743 0.8743 0.8690 0.8636 0.8697 0.8751
P + CCS 0.9078 0.8969 0.9077 0.9131 0.8796 0.8862

P + SS 0.8807 0.8860 0.9022 0.9022 0.8393 0.8970
P + SS + CCS 0.8915 0.8915 0.8967 0.9076 0.8341 0.8807

P + P2 0.9023 0.8914 0.8965 0.9076 0.8912 0.9133
SS + P2 0.8743 0.8577 0.8524 0.8631 0.8570 0.8858

CCS + SS + P2 0.8468 0.8690 0.8524 0.8687 0.8796 0.8588
P + SS + CCS + P2 0.8859 0.8914 0.8856 0.8856 0.8634 0.8916

As shown in Table 4, when the P feature or the SS feature sets were used by themselves,
added on top of the P2 feature set (P2 + SS), or in combination with the CCS feature set
(SS + CCS), the prediction performance was not improved across the five models tested,
except for the SMOTE-Tomek PCA RF model. Similarly, the addition of CCS and SS feature
sets on top of the P2 feature set (CCS + SS + P2) or the combination of all feature sets
(P + SS + CCS + P2), except for the SMOTE-Tomek PCA RF model, also did not improve
the performance of the other models tested.

Interestingly, the addition of the SS feature set (P + SS), or the addition of the CCS
and SS feature sets (P + SS + CCS) increased the performance of both the SMOTE-Tomek
PCA RF and the SMOTE-Tomek PCA SVM models but did not increase the performance
of the other four models. Adding the P2 feature set on top of the P feature set (P + P2)
increased the performance of only half of the models tested. The addition of the CCS
feature set on top of the P feature set (P + CCS) improved the performance of two of the
six models tested. The f1 score (0.9131) for the SMOTE-Tomek PCA SVM model with the
(P + CCS) feature set was the highest score obtained for any of the feature sets and feature
set combinations, across all six models tested. Consequently, the SMOTE-Tomek PCA SVM
model was chosen for further evaluation in predicting conotoxins that bind to nAChRs
since it showed the highest performance across multiple feature set combinations (Table 4).

The SMOTE-Tomek PCA SVM model was evaluated for its ability to classify the
conotoxins that bind to nAChRs based on the OA, AA, Sn, and f1 score as indicated in
the Section 4. The effect of different feature sets and feature set combinations on the
performance of the SMOTE-Tomek PCA SVM model is shown in Table 5. The results
demonstrate that the SS feature alone, or in combination with the CCS feature set (SS + CCS)
did not improve the model performance, across all four metrics when compared to the P
feature set alone. Similarly, the addition of the P2 feature set on top of the P feature set
(P + P2), the addition of the SS feature set on top of the P2 feature set (P2 + SS), the addition
of CCS and SS feature sets on top of the P2 feature set (CCS + SS + P2) or when all feature
sets are combined (P + SS + CCS + P2) did not improve the model performance, based
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on all four metric values. However, these feature set combinations showed an increase in
sensitivity of 1–2% when predicting conotoxins that do not bind to nAChRs.

Table 5. The effect of different feature sets and feature set combinations on the performance of
SMOTE-Tomek PCA SVM model in predicting conotoxins that target nAChRs.

OA AA Sn-nAChR
Binders

Sn-nAChR Non
Binders f1

P 0.8967 0.8961 0.8902 0.9020 0.8968
SS 0.8587 0.8534 0.8049 0.9020 0.8580

SS + CCS 0.8641 0.8595 0.8171 0.9020 0.8636
P + CCS 0.9130 0.9132 0.9146 0.9118 0.9131

P + SS 0.9022 0.9010 0.8902 0.9118 0.9022
P + SS + CCS 0.9076 0.9059 0.8902 0.9216 0.9076

P + P2 0.8967 0.8937 0.8659 0.9216 0.8965
SS + P2 0.8641 0.8571 0.7927 0.9216 0.8631

CCS + SS + P2 0.8696 0.8632 0.8049 0.9216 0.8687
P + SS + CCS + P2 0.8859 0.8827 0.8537 0.9118 0.8856

Notably, when compared to just the P feature set, the addition of the CCS feature set
(P + CCS), the addition of the SS feature set (P + SS), or the addition of both the SS and CCS
feature sets (P + SS + CCS), increased all three metric scores OA, AA and f1, in addition
to 1–2% increase in sensitivity when predicting conotoxins that do not bind to nAChRs.
The (P + CCS) feature set combination had the highest overall performance metrics, with
an AA score of 91.32% (an increase of 1.71%), a highest OA score of 91.30% (an increase
of 1.63%), and an f1 score of 0.9131, (an increase of 0.0163), when compared to just the P
feature set alone. In addition, the use of (P + CCS) feature set combination also increased
the sensitivity in predicting conotoxins that bind to nAChRs by 2.46% and in predicting
conotoxins that do not bind to nAChRs by 0.98%.

3. Discussion

We have demonstrated that the implementation of the hybrid SMOTE-Tomek tech-
nique in all models improved their performance in predicting conotoxin classes and cono-
toxins that bind to nAChRs. In predicting the alpha, mu, and omega conotoxin classes,
the SMOTE-Tomek PCA PLR model, using the combination of the SS and P feature sets
establishes the best performance with an OA of 95.95%, an AA of 93.04%, and an f1 score
of 0.959. Using this model, we obtained sensitivities of 98.98%, 89.66%, and 90.48% when
predicting alpha, mu, and omega conotoxin classes, respectively. Similarly, in predicting
conotoxins that bind to nAChRs, the SMOTE-Tomek PCA SVM model, which used the
CCS and the P feature sets, demonstrated the highest performance with a 91.3% OA, a
91.32% AA and an f1 score of 0.9131. The sensitivity when predicting conotoxins that bind
to nAChRs is 91.46% with a 91.18% sensitivity when predicting conotoxins that do not bind
to nAChRs. The effectiveness of the hybrid SMOTE-Tomek technique, when applied to
conotoxin class prediction, is not surprising given the challenges of working with conotoxin
data sets that are data sparse, leading to imbalanced training datasets. The use of the
SMOTE-Tomek aids in balancing the datasets while simultaneously making the different
classes more distinct by reducing the number of ambiguous samples which nearly overlap
between the classes.

Interestingly, when predicting the omega conotoxin class, the sensitivity is the same
(90.48%) across different feature sets and feature set combinations. Examining these results,
we found that the model consistently misclassified two entries in the omega class. One is
the conotoxin Eb1.6, which resembles an alpha conotoxin but inhibits the N-type calcium
ion channel as shown in the BMRB [26] and the other omega conotoxin is MVIIA (pdb code:
1dw5). Perhaps, slightly different structural conformations in MVIIA conotoxin and the
difference in amino acid sequence of Eb1.6 from the rest of the entries are the main causes
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leading to these misclassifications. Further investigation, including removing conotoxin
Eb1.6 and MVIIA entries one at a time from the omega class dataset should be carried out
to identify their effect on ML model performance.

We have also shown that the addition of the SS and CCS feature sets, on top of
the P feature set, increased prediction accuracy. In particular, compared to the use of
the P feature set alone, the addition of the SS feature set was found to have the highest
performance in predicting the three alpha, mu, and omega conotoxin classes. Similarly, the
addition of the CCS feature set, on top of the P feature set, had the highest performance
in predicting conotoxins that bind to nAChRs. The P feature set is expected to be of high
importance since the peptides from the same class may naturally share a high sequence
similarity with only slight mutations among the population to conserve function within
the evolutionary trajectory. The SS feature set is essential in dictating the structural features
of the peptides, and as a result, has a high impact in discriminating conotoxins between
classes. The peptide sequences dictate sidechain interaction compatibility when they
interact with their respective targets, while the CCS feature, a function of shape, size,
and charge, distinguishes between toxins according to what fits into the receptor binding
pocket, and thus plays an important role in predicting the target receptors, in this case, for
nAChRs. Conotoxins are short amino acid sequences but extremely diversified in both
three dimensional structures and, consequently, the receptors and ion channels that they
target. The number of disulfide bonds and specific disulfide bond patterns define their
distinct structures and conformations dictating the types of molecular targets that are
representative of each class of conotoxins. The improvement of the prediction accuracy
upon the addition of the SS and CCS feature sets, therefore, has strong implications on
the biological significance of the conotoxins as these features represent specific conotoxin
structures, shapes, sizes and charges, thus enhancing the structure and function relationship
in our models.

The increased accuracy observed using the SMOTE-Tomek models, together with the
added effect of new feature sets, has exciting implications for peptide-based drug discovery.
Conotoxins possess a rich potential for therapeutic applications, given their diverse phar-
macological profiles, and the ability to rapidly and accurately screen conotoxins for their
class and receptor target is revolutionary allowing identification of potential therapeutic
leads. Our results also suggest that there are conserved chemical and structural signatures
across conotoxins that distinguish them into different classes that target different host re-
ceptors. The acquisition of new, additional experimental data on conotoxin structures and
functions is necessary to expand training datasets and to increase the impact of CCS and
other structural features. Although the ML framework presented here improves accuracy
when predicting conotoxin classes and conotoxins targeting nAChRs, future experimental
validation must be randomly carried out to verify the accuracy of the predicted ML models.
Such experiments might include both structural and functional characterization to deter-
mine three-dimensional structures that target receptors and possible toxicities for unknown
conotoxins. While our models were trained to predict the three classes of alpha, mu, and
omega conotoxins, in practical applications, a confidence threshold could be determined to
allow prediction of unknown samples belonging to any one of the three classes the models
were trained on or to the other classes of conotoxins.

4. Materials and Methods
4.1. Construction of Datasets

Structures were collected from the PDB and BMRB as described previously [6], and
were further sorted into classes based on the original authors’ classifications. Conotox-
ins were also sorted into categories of nAChR binders and non-binders based on their
descriptions in UniProt [36].
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4.2. Feature Extraction

Features were extracted to capture sequence and structural information using perl
and python scripts, as well as the DSSP and HPCCS software (version 1.0). Features
include amino acid frequency, amino acid type frequencies, secondary structure content,
physiochemical surface characteristics, radius of gyration, and CCS values.

4.3. Dimensionality Reduction Procedures

Dimensionality reduction procedures are applied to high dimensional data [37], i.e.,
when the number of features is higher than the number of samples. This is especially
useful for our small conotoxin datasets. We have exploited the following dimensionality
reduction procedures.

4.3.1. F-Score

F-score is a metric that measures the classifying power of features, given the label of the
samples. For each feature, the F-score is defined as ratio of variance between classes over
variance within classes. A larger F-score indicates a higher classifying power. However,
F-score is a univariate feature selection algorithm, which cannot measure the classifying
power of a group of features.

4.3.2. Redundant Feature Elimination

One effective preprocessing step is to remove highly correlated features [38]. This
helps other feature selection algorithms to avoid selecting only a group of highly similar
features and results in the creation of a dataset with diverse information. To help identify
redundant features, Pearson correlation coefficients are computed between all features. If
the correlation between two features is larger than a threshold, the feature with the smaller
F-score is removed. This procedure produces a smaller dataset, but with an independent
set of features. This preprocessing step is similar to Analysis of Variance Correlation (AVC)
described by Xianfang et al. [13].

4.3.3. Principle Component Analysis

Principal Component Analysis (PCA) is a widely used dimensionality reduction
technique and data analysis method in the field of statistics and ML [22]. Its primary
objective is to simplify complex data by transforming it into a new coordinate system
where the variance of the data along each axis is maximized. This process allows for
the identification of the most significant patterns, structures, or features within the data,
making them easier to visualize, analyze, and interpret.

4.3.4. Regularization

Regularization is not a dimensionality reduction method, per se, but is often used to
limit the complexity of models. Here, we also couple regularization with some classifiers to
create a lower complexity model, which is suitable for our small dataset.

4.4. Classifiers

We used four primary classifiers: PLR [31], SVM [32], RF [33], and GB [34]. These
classifiers were coupled with other procedures to create the various models.

4.5. SMOTE-Tomek

The SMOTE-Tomek method is a powerful technique in the field of ML and data
preprocessing and is specifically designed for addressing the issue of class imbalance in
datasets. Class imbalance occurs when one class (the minority class) has significantly
fewer samples than another class (the majority class), which can lead to biased models that
perform poorly in predicting the minority class. The SMOTE-Tomek method combines
two techniques: SMOTE and Tomek links. Tomek links are pairs of instances, one from the
majority class and one from the minority class, that are very close to each other but belong
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to different classes [24]. These pairs can be considered noisy or borderline examples. Tomek
links can be removed from the dataset to improve the separation between the classes. By
combining oversampling and undersampling techniques, SMOTE-Tomek aims to create a
more balanced and representative dataset, leading to better model performance in class-
imbalanced scenarios. A cartoon representation of how SMOTE-Tomek work together is
illustrated in Figure 4a.
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Figure 4. (a) A cartoon representation showing how SMOTE-Tomek works together to handle
imbalanced datasets. Top left, a mixture of classes, orange squares, and blue circles. The orange
squares are underrepresented relative to the circles. Top right, SMOTE produces additional square
entries, shown in green, by interpolating between the existing data. Bottom left, Tomek determines
pairs for square and circle data (red circle) that are at the boundary between the circle and square
classes. Bottom right, entries belonging to the more represented class in the Tomek pairs are removed,
and a more evenly balanced and clearly separated training set has been produced. (b) Overall ML
pipeline describing the process of using a dataset to train and cross validate a classifier.

Similar to other data balancing techniques, SMOTE-Tomek was applied only to the
training dataset, not the entire dataset, to avoid introducing synthetic data into the test
datasets, which should remain untouched to provide an accurate and unbiased evaluation
of the models’ performance. As shown in Figure 4b, the dataset was initially split into a
training set and a test sample set for the ML pipeline with leave-one-out cross validation.
SMOTE was first used to generate synthetic samples for the minority class, balancing the
training data. Afterward, Tomek links were applied to remove noisy or borderline samples,
particularly those that overlap between classes. The processed dataset was then moved to
the next step of the training process, which involved redundant feature elimination.

4.6. Performance Evaluation

To ensure consistency across datasets, a leave-one-out (or jack-knife) cross-validation
approach to evaluate classifier performance was employed [15]. We assessed classification
performance using four metrics: OA, AA, Sn, and f1 score, which are defined as follows:

OA =
TP0 + TP1

sample size

Sni =
TPi

TPi + FNi

AA = ∑ Sni/number o f classes

where TPi and FNi are true positives and false positives for the ith class.
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The f1 score is a comprehensive metric to assess the predictive power of a model. It is
first defined in the context of one-vs-all:

Precision =
TPi

TPi + FPi

Recall =
TPi

TPi + FNi

f1i = 2PrecisionRecall/(Precision + Recall)

Then the f1 score for multiclass classification is defined as f1 = ∑ wif1i where wi are
sample size proportion.

4.7. Machine Learning Pipeline

Figure 4 provides an overview of our comprehensive ML pipeline, showing how we
utilized the dataset for classifier training and cross-validation. The pipeline consists of four
primary stages: over/under-sampling, feature selection, classifier training, and prediction
on testing data. To ensure consistency, the jack-knife cross-validation method across all
classification tasks was employed.

The only parameter of the classifiers that was fine-tuned was the regularization pa-
rameter, and this adjustment was automatically determined during the cross-validation
phase within the training process. Subsequently, the trained classifier was applied to the
testing samples to make predictions about their labels. To assess performance, we utilized
metrics such as OA, AA, Sen, and the f1 score.
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treated with SMOTE-Tomek; File S1: Five datasets used in this study.
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