Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity
Abstract
:1. Introduction
2. Results
2.1. Benthic Toxicity
2.2. Multitoxic Biofilms
2.3. The Role of Mucilage
2.4. Toxicity and Taxonomy
2.5. Relationships to Benthic Macroinvertebrates
3. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferrão-Filho, A.S.; Kozlowsky-Suzuki, B. Cyanotoxins: Bioaccumulation and effects on aquatic animals. Mar. Drugs 2011, 9, 2729–2772. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A.; Kelly, L.T.; Bouma-Gregson, K.; Humbert, J.-F.; Lauginghouse IV, H.D.; Lazorchak, J.; McAllister, T.G.; McQueen, A.; Pokrzywinski, K.; Puddick, J.; et al. Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshw. Biol. 2020, 65, 1824–1842. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Fastner, J.; Welker, M. Cyanobacteria and cyanotoxins in a changing environment: Concepts, controversies, challenges. Water 2021, 13, 2463. [Google Scholar] [CrossRef]
- Waters, M.N.; Brenner, M.; Curtis, J.H.; Romero-Olivad, C.S.; Dixd, M.; Canoe, M. Harmful algal blooms and cyanotoxins in Lake Amatitlán, Guatemala, coincided with ancient Maya occupation in the watershed. Proc. Natl. Acad. Sci. USA 2021, 118, e2109919118. [Google Scholar] [CrossRef] [PubMed]
- Codd, G.A. Cyanobacterial toxins: Occurrence, properties, and biological significance. Water Sci. Technol. 1995, 32, 149–156. [Google Scholar] [CrossRef]
- Francis, G. Poisonous Australian Lake. Nature 1878, 18, 11–12. [Google Scholar] [CrossRef]
- Codd, G.A.; Plinski, M.; Surosz, W.; Hutson, J.; Fallowfield, H.J. Publication in 1672 of animal deaths at the Tuchomskie Lake, northern Poland and a likely role of cyanobacterial blooms. Toxicon 2015, 108, 285–286. [Google Scholar] [CrossRef] [PubMed]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Whitton, B.A. Ecology of Cyanobacteria II: Their Diversity in Space and Time; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Usher, K.M.; Bergman, B.; Raven, J.A. Exploring Cyanobacterial Mutualisms. Annu. Rev. Ecol. Evol. Syst. 2007, 38, 255–273. [Google Scholar] [CrossRef]
- Sabater, S.; Guasch, H.; Romaní, A.; Muñoz, I. Stromatolitic communities in Mediterranean streams: Adaptations to a changing environment. Biodivers. Conserv. 2000, 9, 379–392. [Google Scholar] [CrossRef]
- Waters, M.N. A 4700-year history of cyanobacteria toxin production in a shallow subtropical lake. Ecosystems 2016, 19, 426–436. [Google Scholar] [CrossRef]
- Murray, S.A.; Mihali, T.K.; Neilan, B.A. Extraordinary conservation, gene loss, and positive selection in the evolution of an ancient neurotoxin. Mol. Biol. Evol. 2011, 28, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Rantala, A.; Fewer, D.P.; Hisbergues, M.; Rouhiainen, L.; Vaitomaa, J.; Börner, T.; Sivonen, K. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad. Sci. USA 2004, 101, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Mez, K.; Beattie, K.; Codd, G.A.; Hanselmann, K.; Hauser, B.; Naegeli, H.; Preisig, H. Identification of a microcystin in benthic cyanobacteria linked to cattle deaths on alpine pastures in Switzerland. Eur. J. Phycol. 1997, 32, 111–117. [Google Scholar] [CrossRef]
- Aboal, M.; Puig, M.A.; Asencio, A.D. Production of microcystins in calcareous Mediterranean streams: The Alhárabe River, Segura River basin in South-East Spain. J. Appl. Phycol. 2005, 17, 231–243. [Google Scholar] [CrossRef]
- Aboal, M.; Puig, M.A. Intracellular and dissolved microcystin in reservoirs of the river Segura basin, Murcia, SE Spain. Toxicon 2005, 45, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Hurtado, I.; Aboal, M.; Zafra, E.; Campillo, D. Significance of microcystin production by benthic communities in water treatment systems of arid zones. Water Res. 2008, 42, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Filatova, D.; Picardo, M.; Núñez, O.; Farré, M. Analysis, levels and seasonal variation of cyanotoxins in freshwater ecosystems. Trends Environ. Anal. Chem. 2020, 26, e00091. [Google Scholar] [CrossRef]
- De la Cruz, A.A.; Hiskia, A.; Kaloudos, T.; Chernoff, N.; Hill, D.; Antoniou, M.G.; He, X.; Loftin, K.; O’Shea, K.; Zhao, C.; et al. A review on the cylindrospermopsin: The global occurrence, detection, toxicity and degradation of a potent cyanotoxin. Environ. Sci. Process. Impacts 2013, 15, 1979–2003. [Google Scholar] [CrossRef] [PubMed]
- Aráoz, R.; Molgó, J.; Tandeu de Marsac, N. Neurotoxic cyanobacterial toxins. Toxicon 2010, 56, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Christensen, V.G.; Khan, E. Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Sci. Total Environ. 2020, 736, 139515. [Google Scholar] [CrossRef] [PubMed]
- Koksharova, O.A.; Safronova, N.A. Non-proteinogenic amino acid ß-N-methylamino-L-alanine (BMAA): Bioactivity and Ecological significance. Toxins 2022, 14, 539. [Google Scholar] [CrossRef] [PubMed]
- Leao, P.N.; Pereira, A.R.; Liu, W.-T.; Ng, J.; Pevzner, P.A.; Dorrestein, P.C.; König, G.M.; Vasconcelos, V.M.; Gerwick, W.H. Synergistic allelochemicals from a freshwater cyanobacterium. Proc. Natl. Acad. Sci. USA 2010, 107, 11183–11188. [Google Scholar] [CrossRef] [PubMed]
- Juhel, G.; Davenport, J.; O’Halloran, J.; Culloty, S.C.; O’Riordan, R.M.; James, K.F.; Furey, A.; Allis, O. Impacts of microcystins on the feeding behavior and energy balance of zebra mussels, Dreissenia polymorpha: A bioenergetics approach. Aquat. Toxicol. 2006, 79, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Svircev, Z.; Chen, L.; Sántha, K.; Drobac Backovic, D.; Susak, S.; Vulin, A.; Palanacki Malesevic, T.; Codd, G.A.; Meriluoto, J. A review and assessment of cyanobacterial toxins as cardiovascular hazards. Arch. Toxicol. 2022, 96, 2829–2863. [Google Scholar] [CrossRef] [PubMed]
- Polyak, Y.M.; Polyak, M.S. The role of cyanotoxins in human and animal pathology (a review). J. Microbiol. Epidemiol. Immunol. 2022, 99, 231–243. [Google Scholar] [CrossRef]
- Ibelings, B.W.; Bruning, K.; Junge, J.; Wolfstein, K.; Dionisio, L.M.; Postma, J.; Burger, T. Distribution of microcystins in a lake food web: No evidence for biomagnification. Microb. Ecol. 2005, 49, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Kozlowsky-Suzuki, B.; Wilson, A.; Ferrão-Filho, A.S. Biomagnification or biodilution of microcystins in aquatic food webs? Meta-analyse of laboratory and field studies. Harmful Algae 2012, 18, 47–55. [Google Scholar] [CrossRef]
- Clearwater, S.J.; Wood, S.A.; Phillips, N.R.; Parkyn, S.M.; Van Ginkel, R.; Thompson, K.J. Toxicity Thresholds for Juvenile Freshwater Mussels Echyridella menziesii and Crayfish Paranephrops planifrons, after Acute or Chronic Exposure to Microcystis sp. Environ. Toxicol. 2012, 29, 487–502. [Google Scholar] [CrossRef]
- Cai, S.; Shu, Y.; Tian, C.; Wang, C.; Fang, T.; Xiao, B.; Wu, X. Effects of chronic exposure to microcystin-LR on life-history traits, intestinal microbiota and transcriptomic responses in Chironomus pallidivittatus. Sci. Total Environ. 2022, 823, 153624. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Kholodkevich, S.; Sharov, A.; Feng, Y.; Ren, N.; Sun, K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). Sci. Total Environ. 2020, 711, 134549. [Google Scholar] [CrossRef] [PubMed]
- Cantoral, E.A.; Asencio, A.D.; Aboal, M. Are we underestimating benthic cyanotoxins? Extensive sampling results from Spain. Toxins 2017, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Falfushynska, H.; Kasianchuk, N.; Siemens, E.; Hemao, E.; Rzymski, P. A Review of Common Cyanotoxins and Their Effects on Fish. Toxics 2023, 11, 118. [Google Scholar] [CrossRef] [PubMed]
- Australian Drinking Water. Guidelines Paper 6 National Water Quality Management Strategy; National Health and Medical Research Council, National Resource Management Ministerial Council, Commonwealth of Australia: Canberra, Australia, 2011. [Google Scholar]
- Guidelines for Canadian Drinking Water Quality: Guideline Technical Document-Cyanobacterial Toxins. Health Canada, Government Canada. Available online: https://www.canada.ca/en/health-canada/services/publications/healthy-living/guidelines-canadian-drinking-water-quality-guideline-technical-document-cyanobacterial-toxins-document.html (accessed on 28 February 2024).
- Oehrle, S.A.; Southwell, B.; Westrick, J. Detection of various freshwater cyanobacterial toxins using ultra-performance liquid chromatography tandem mass spectrometry. Toxicon 2010, 55, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Benthic Cyanobacteria and Cyanotoxin Monitoring in Northern California Rivers, 2016–2019; Freshwater Harmful Algal Bloom Monitoring and Monitoring and Response Program, North Coast Regional Water Quality Control Board: Santa Rosa, CA, USA, 2022.
- Bouma-Gregson, K. The Ecology of Benthic Toxigenic Anabaena and Phormidium (Cyanobacteria) in the Eal River, California. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2017. [Google Scholar]
- Bouma-Gregson, K.; Kudela, R.M.; Power, M.E. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network. PLoS ONE 2018, 13, e0197669. [Google Scholar] [CrossRef] [PubMed]
- Bouma-Gregson, K.; Power, M.E.; Bormans, M. Rise and fall of toxic benthic freshwater cyanobacteria (Anabaena spp.) in the Eel River: Buoyancy and dispersal. Harmful Algae 2017, 66, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, K. Benthic periphyton as a source of cyanotoxins in three Oregon rivers used for municipal drinking water supply. In Protecting Drinking Water from Cyano-HAB Impacts in the Willamette Basin, Willamette Basin Partners’ Workshop; U.S.G.S.: Washington, DC, USA, 2021. [Google Scholar]
- Kelly, L.T. Toxic Benthic Cyanobacteria (Microcoleus autumnalis): Genetic Structure and Ecological Effects. Ph.D. Thesis, Victoria University of Wellington, Wellington, New Zealand, 2019. [Google Scholar]
- Valdor, R.; Aboal, M. Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 2007, 49, 769–779. [Google Scholar] [CrossRef]
- Pietsch, C.; Wiegand, C.; Amé, M.V.; Nicklisch, A.; Wunderlin, D.; Pflugmacher, S. The effects of a cyanobacterial crude extract on different aquatic organisms: Evidence for cyanobacterial toxin modulating factors. Environ. Toxicol. 2001, 16, 535–542. [Google Scholar] [CrossRef]
- Kelly, L.T.; Bouma-Gregson, K.; Puddick, J.; Fadness, R.; Ryan, K.G.; Davis, T.W.; Wood, S.A. Multiple cyanotoxin congeners produced by sub-dominant cyanobacterial taxa in riverine cyanobacterial and algal mats. PLoS ONE 2019, 14, e0220422. [Google Scholar] [CrossRef] [PubMed]
- Aboal, M.; Puig, M.A.; Ríos, H.; López-Jiménez, E. Relationship between macroinvertebrate diversity and toxicity of cyanophyceae (Cyanobacteria) in some streams from Eastern Spain. Verh. Int. Ver. Limnol. 2000, 27, 555–559. [Google Scholar] [CrossRef]
- Efting, A.A.; Snow, D.D.; Fritz, S.C. Cyanobacteria and microcystin in the Nebraska (USA) Dand Hills Lakes before and after modern agriculture. J. Paleolimnol. 2011, 46, 17–27. [Google Scholar] [CrossRef]
- Erratt, K.; Creed, I.F.; Favot, E.J.; Todoran, I.; Tai, V.; Smol, J.P.; Trick, C.G. Paleolimnological evidence reveals climate-related preeminence of cyanobacteria in a temperate meromictic lake. Can. J. Fish. Aquat. Sci. 2021, 79, 558–565. [Google Scholar] [CrossRef]
- Zastepa, A.; Taranu, Z.E.; Kimpe, L.E.; Blais, J.M.; Gregory-Eaves, I.; Zurawell, R.W.; Pick, F.R. Reconstructing a long-term record of microcystins from the analysis of lake sediments. Sci. Total Environ. 2017, 579, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.A.; Heath, M.W.; Holland, P.T.; Munday, R.; McGregor, G.B.; Ryan, K.G. Identification of a benthic microcystin-producing filamentous cyanobacterium (Oscillatoriales) associated with a dog poisoning in New Zealand. Toxicon 2010, 55, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Stal, L.J.; Krumbein, W.E. Temporal separation of nitrogen fixation and photosynthesis in the filamentous, non-heterocystous cytanobacterium Oscillatoria sp. Arch. Microbiol. 1987, 149, 76–80. [Google Scholar] [CrossRef]
- Maryan, P.S.; Eady, R.R.; Chaplin, A.E.; Gallon, J.R. Nitrogen fixation by Gloeothece sp. PCC6909: Respiration and not photosynthesis supports nitrogenase activity in the light. Microbiology 1986, 132, 789–796. [Google Scholar] [CrossRef]
- Dolman, A.M.; Rücker, J.; Pick, F.R.; Fastner, J.; Rohrlack, T.; Mischke, U.; Wiedner, C. Cyanobacteria and Cyanotoxins: The influence of Nitrogen versus Phosphorus. PLoS ONE 2012, 7, e38757. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.M.; Pereira, P.; Franca, S.; Cameán, A. Toxic cyanobacteria strains isolated from blooms in the Guadiana River/southwestern Spain. Biol. Res. 2004, 37, 405–417. [Google Scholar] [CrossRef] [PubMed]
- Devlin, J.P.; Edwards, E.; Gorham, P.R.; Hunter, N.R.; Pike, R.K.; Stavric, B. Anatoxin-a, a toxic alkaloid from Anabaena flos-aquae NRC-44h. Can. J. Chem. 1977, 55, 1367–1371. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Jones, C.L.A.; Mahmood, N.A.; Theiss, W.C. Algal toxins and water-based diseases. Crit. Rev. Environ. Control. 1985, 15, 275–313. [Google Scholar] [CrossRef]
- Cox, P.A.; Banack, S.A.; Murch, S.J.; Rasmussen, U.; Tien, G.; Bidigare, R.R.; Metcalf, J.S.; Morrison, L.F.; Codd, G.A.; Bergman, B. Diverse taxa of cyanobacteria produce B-N-methylamino-L-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. USA 2005, 102, 5074–5078. [Google Scholar] [CrossRef] [PubMed]
- Ibelings, B.W.; Kurmayer, R.; Azevedo, S.M.F.O.; Wood, S.A.; Chorus, I.; Welker, M. Understanding the occurrence of cyanobacteria and cyanotoxins (Chapter 4). In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 2nd ed.; Chorus, I., Welker, M., Eds.; RC Press: Boca Raton, FL, USA; World Health Organization: Geneva, Switzerland, 2021; pp. 213–294. [Google Scholar] [CrossRef]
- Kotak, B.G.; Zurawell, R.W. Cyanobacterial toxins in Canadian freshwaters: A review. Lake Reserv. Manag. 2007, 23, 109–122. [Google Scholar] [CrossRef]
- Young, F.M.; Morrison, L.F.; James, J.; Codd, G.A. Quantification and localization of microcystins in colonies of a laboratory strains of Microcystis (Cyanobacteria) using immunological methods. Eur. J. Phycol. 2008, 43, 217–225. [Google Scholar] [CrossRef]
- Marco, S.; Aboal, M.; Chaves-Pozo, E.; Mulero, I.; García-Ayala, A. Immunolocalization of microcystins in colonies of the cyanobacterium Rivularia in calcareous streams. Mar. Freshw. Res. 2011, 63, 160–165. [Google Scholar] [CrossRef]
- Giussani, V.; Sbrana, F.; Asnaghi, V.; Vassalli, M.; Faimali, M.; Casabianca, S.; Penna, A.; Ciminiello, P.; Dell’Aversano, C.; Tartaglione, L.; et al. Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata. Harmful Algae 2015, 44, 46–53. [Google Scholar] [CrossRef]
- Whitton, B.A.; Grainger, S.L.J.; Hawley, G.R.W.; Simon, J.W. Cell-bound and extracellular phosphatase activities of cyanobacterial isolates. Microb. Ecol. 1991, 21, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Aboal, M.; García-Fernández, M.E.; Roldán, M.; Whitton, B.A. Ecology, morphology, and physiology of Chroothece richteriana (Rhodophyta, Stylonemataceae) in the highly calcareous Río Chícamo, south-east Spain. Eur. J. Phycol. 2014, 49, 83–96. [Google Scholar] [CrossRef]
- Komarek, J. A Polyphasic approach for the taxonomy of cyanobacteria: Principles and applications. Eur. J. Phycol. 2016, 51, 346–353. [Google Scholar] [CrossRef]
- Guiry, M.D.; Guiry, G.M. Algaebase. World-Wide Electronic Publication; National University of Ireland: Galway, Ireland, 2023; Available online: http://www.algaebase.org (accessed on 26 May 2023).
- Kaštovský, J. Welcome to the jungle!: An overview of modern taxonomy of cyanobacteria. Hydrobiologia 2024, 851, 1063–1071. [Google Scholar] [CrossRef]
- Trout-Haney, J.V.; Ritger, A.; Cottingham, K.L. Benthic cyanobacteria of the genus Nostoc are a source of microcystins in Greenlandic lakes and ponds. Freshw. Biol. 2021, 66, 266–277. [Google Scholar] [CrossRef]
- Aboal, M.; Puig, M.A.; Mateo, P.; Perona, E. Implications of cyanophyte toxicity on biological monitoring of calcareous streams in North-East Spain. J. Appl. Phycol. 2002, 17, 231–243. [Google Scholar] [CrossRef]
- Bownik, A. Harmful algae: Effects of cyanobacterial cyclic peptides on aquatic invertebrates—A short review. Toxicon 2016, 124, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Fadel, A.; Guerrieri, F.; Pincebourde, S. The functional relationship between aquatic insects and cyanobacteria: A systematic literature review reveals major knowledge gaps. Total Environ. Res. Themes 2023, 8, 100078. [Google Scholar] [CrossRef]
- Dudley, T.L.; Cooper, S.D.; Hemphill, N. Effects of Macroalgae on a Stream Invertebrate Community. J. N. Am. Benthol. Soc. 1986, 5, 93–106. [Google Scholar] [CrossRef]
- Ferrão-Filho, A.S. Bioacumulación de cianotoxinas y sus efectos en organismos acuáticos (Bioacumulaçao de cianotoxinas e seus efeitos em organismos aquáticos). Oecol. Bras. 2009, 13, 272–312. [Google Scholar] [CrossRef]
- Abdallah, M.F.; Rajkovic, A. Cyanotoxins and Food Contamination in Developing Countries: Review of Their Types, Toxicity, Analysis, Occurrence and Mitigation Strategies. Toxins 2021, 13, 786. [Google Scholar] [CrossRef]
- Briland, R.D.; Stone, J.P.; Manubolu, M.; Leeb, J.; Ludsin, S.A. Cyanobacterial blooms modify food web structure and interactions in western Lake Erie. Harmful Algae 2020, 92, 101586. [Google Scholar] [CrossRef] [PubMed]
- Aboal, M.; Belando, M.D.; Ubero, N.; González-Silvera, D.; López-Jiménez, J.A. Photoautotrophs and macroinvertebrate trophic relations in calcareous semiarid streams: The role of Cyanobacteria. Sci. Total Environ. 2022, 838, 156206. [Google Scholar] [CrossRef] [PubMed]
- Gérard, C.; Lance, E. Decline of freshwater gastropods exposed to recurrent interacting stressors implying cyanobacterial proliferations and droughts. Aquat. Ecol. 2019, 53, 79–96. [Google Scholar] [CrossRef]
- Hart, D.D. Grazing insects mediate algal interactions in a stream benthic community. Oikos 1985, 44, 40–46. [Google Scholar] [CrossRef]
- Scott, J.T.; Marcarelli, A.M. Cyanobacteria in Freshwater Benthic Environments. In Ecology of Cyanobacteria II: Their Diversity in Space and Time; Whitton, B.A., Ed.; Springer: Dordrech, The Netherlands, 2012; pp. 271–289. [Google Scholar] [CrossRef]
- Berezina, N.A.; Tiunov, A.V.; Tsurikov, S.M.; Kurbatova, S.A.; Korneva, L.G.; Makarova, O.S.; Bykova, S.N. Cyanobacteria as a food source for invertebrates: Results of a model experiment. Russ. J. Ecol. 2021, 52, 247–252. [Google Scholar] [CrossRef]
- Chen, L.; Giesy, J.P.; Adamovsky, O.; Svirčev, Z.; Meriluoto, J.; Codd, G.A.; Mijovic, B.; Shi, T.; Tuo, X.; Li, S.-C.; et al. Challenges of using blooms of Microcystis spp. in animal feeds: A comprehensive review of nutritional, toxicological and microbial health evaluation. Sci. Total Environ. 2021, 764, 142319. [Google Scholar] [CrossRef] [PubMed]
- Krivosheina, M. On insect feeding on cyanobacteria. Paleontol. J. 2008, 42, 596–599. [Google Scholar] [CrossRef]
- Hädicke, C.W.; Rédei, D.; Kment, P. The diversity of feeding habits recorded for water boatmen (Heteroptera: Corixoidea) world-wide with implications for evaluating information on the diet of aquatic insects. Eur. J. Entomol. 2017, 114, 147–159. [Google Scholar] [CrossRef]
- Ashe, P.; Murray, D.A. Nostococladius, a new subgenus of Cricotopus (Diptera: Chironomidae). In Chironomidae; Murray, D.A., Ed.; Pergamon Press: Oxford, UK, 1980; pp. 105–111. [Google Scholar]
- Foote, B.A. Biology of Hyadina albovenosa (Diptera, Ephydridae), a consumer of cyanobacteria. Proc. Entomol. Soc. Wash. 1993, 95, 377–382. [Google Scholar]
- Hollows, J.W.; Townsend, C.R.; Collier, K.J. Diet of the crayfish Paranephrops zealandicus in bush and pasture streams: Insights from stable isotopes and stomach analysis. N. Z. J. Mar. Freshw. Res. 2002, 36, 129–142. [Google Scholar] [CrossRef]
- Frouz, J.; Ali, A.; Lobinske, R.J. Algal food selection and digestion by larvae of the pestiferous chironomid Chironomus crassicaudatus under laboratory conditions. J. Am. Mosq. Control Assoc. 2004, 20, 458–461. [Google Scholar] [PubMed]
- Frouz, J.; Ali, A.; Lobinske, R.J. Laboratory Evaluation of Six Algal Species for Larval Nutritional Suitability of the Pestiferous Midge Glyptotendipes paripes (Diptera: Chironomidae). J. Econ. Entomol. 2004, 97, 1884–1890. [Google Scholar] [CrossRef]
- Toporowska, M.; Pawlik-Skowronska, B.; Kalinowska, R. Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus spp. (Diptera: Chironomidae). Eur. J. Entomol. 2014, 111, 83–90. [Google Scholar] [CrossRef]
- Tierno de Figueroa, J.M.; López-Rodríguez, M.J. Trophic ecology of Plecoptera (Insecta): A review. Eur. Zool. J. 2019, 86, 79–102. [Google Scholar] [CrossRef]
- Aydin, G.B.; Öterler, B.; Çamur Elipek, B.; Güher, H. The Comparative Gut Content Analysis of Some Chironomidae Larvae Living in the Freshwaters at Northern Thrace Region of Turkey. J. Limnol. Freshw. Fisheries Res. 2021, 7, 14–23. [Google Scholar] [CrossRef]
- Brock, E.M. Mutualism between the midge Cricotopus and the alga Nostoc. Ecology 1960, 41, 474–483. [Google Scholar] [CrossRef]
- Quiblier, C.; Wood, S.; Echenique-Subiabre, I.; Heath, M.; Villeneuve, A.; Humbert, J.-F. A review of current knowledge on toxic benthic freshwater cyanobacteria-Ecology, toxin production and risk management. Water Res. 2013, 47, 5464–5479. [Google Scholar] [CrossRef]
- Dionne, K.; Dufresne, F.; Nozais, C. Variation in δ13C and δ15N trophic enrichment factors among Hyalella azteca amphipods from different lakes. Hydrobiologia 2016, 781, 217–230. [Google Scholar] [CrossRef]
- Ward, A.K.; Dahm, C.N.; Cummins, K.W. Nostoc (Cyanophyta) productivity in Oregon stream ecosystems: Invertebrate influences and differences between morphologycal types. J. Phycol. 1985, 21, 223–227. [Google Scholar] [CrossRef]
- Xue, Q.; Su, X.; Steinman, A.D.; Cai, Y.; Zhao, Y.; Xie, L. Accumulation of microcystins in a dominant Chironomid Larvae (Tanypus chinensis) of a large, shallow and eutrophic Chinese lake, Lake Taihu. Sci. Rep. 2016, 6, 31097. [Google Scholar] [CrossRef] [PubMed]
- Salas, M.; Dudgeon, D. Stable-isotope determination of mayfly (Insecta: Ephemeroptera) food sources in three tropical Asian streams. Arch. Hydrobiol. 2001, 151, 7–32. [Google Scholar] [CrossRef]
- Chen, J.; Xie, P. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon 2005, 45, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Goedkoop, W.; Kerblom, N.A.; Demandt, M.H. Trophic fractionation of carbon and nitrogen stable isotopes in Chironomus riparius reared on food of aquatic and terrestrial origin. Freshw. Biol. 2006, 51, 878–886. [Google Scholar] [CrossRef]
- Liu, L.P.; Su, X.M.; Chen, T.Y.; Li, K.; Zhan, J.; Egna, H.; Diana, J. Evidence of rapid transfer and bioaccumulation of Microcystin-LR poses potential risk to freshwater prawn Macrobrachium rosenbergii (de Man). Aquac. Res. 2016, 47, 3088–3097. [Google Scholar] [CrossRef]
- Stanković, N.; Kostić, I.; Jovanović, B.; Savić-Zdravković, D.; Matić, S.; Bašić, J.; Cvetković, T.; Simeunović, J.; Milošević, D. Can phytoplankton blooming be harmful to benthic organisms? The toxic influence of Anabaena sp. and Chlorella sp. on Chironomus riparius larvae. Sci. Total Environ. 2020, 729, 138666. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Boyer, G.L.; Mills, E.; Schulz, K.L. Toxicity of Microcystin-LR, a Cyanobacterial Toxin, to Multiple Life Stages of the Burrowing Mayfly, Hexagenia, and Possible Implications for Recruitment. Environ. Toxicol. 2008, 23, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Gaget, V.; Almuhtaram, H.; Kibuye, F.; Hobson, P.; Zamyadi, A.; Wert, E.; Brookes, J.D. Benthic cyanobacteria: A utility-centred field study. Harmful Algae 2022, 113, 102185. [Google Scholar] [CrossRef] [PubMed]
- Babica, P.; Kohoutek, J.; Bláha, L.; Adamovsky, O.; Maršálek, B. Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Anal. Bioanal. Chem. 2006, 385, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Preece, E.P.; Hobbs, W.; Hardy, F.J.; O’Garro, L.; Frame, E.; Sweeney, F. Prevalence and persistence of microcystin in shoreline lake sediments and porewater, and associated potential for human health risk. Chemosphere 2021, 272, 129581. [Google Scholar] [CrossRef] [PubMed]
- Woller-Skar, M.M.; Russell, A.L.; Gaskill, J.A.; Luttenton, M.R. Microcystin in multiple life stages of Hexagenia limbata, with implications for toxin transfer. J. Gt. Lakes Res. 2020, 46, 666–671. [Google Scholar] [CrossRef]
- Stepanian, P.M.; Entrekin, S.A.; Wainwright, C.E.; Mirkovic, D.; Tank, J.L.; Kelly, J.F. Declines in an abundant aquatic insect, the burrowing mayfly, across major North American waterways. Proc. Natl. Acad. Sci. USA 2020, 117, 2987–2992. [Google Scholar] [CrossRef]
- He, Q.; Wang, W.; Xu, Q.; Liu, Z.; Teng, J.; Yan, H.; Liu, X. Microcystins in Water: Detection, Microbial Degradation Strategies, and Mechanisms. Int. J. Environ. Res. Public Health 2022, 19, 13175. [Google Scholar] [CrossRef] [PubMed]
- Salter, C.; Westrick, J.A.; Chaganti, S.R.; Birbeck, J.A.; Peraino, N.J.; Weisener, C.G. Elucidating microbial mechanisms of microcystin-LR degradation in Lake Erie beach sand through metabolomics and metatranscriptomics. Water Res. 2023, 247, 120816. [Google Scholar] [CrossRef] [PubMed]
- Dziga, D.; Wasylewski, M.; Wladyka, B.; Nybom, S.; Meriluoto, J. Microbial Degradation of Microcystins. Chem. Res. Toxicol. 2013, 26, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Massey, I.Y.; Yang, F. A Mini Review on Microcystins and Bacterial Degradation. Toxins 2020, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Jacobus, L.M.; McCafferty, W.P. Contribution to the morphology and descriptive biology of Caurinella idahoensis (Ephemeroptera, Ephemerellidae). West. N. Am. Nat. 2004, 64, 101–108. [Google Scholar]
- Tachibana, S. A new species, Cricotopus cataractaenostocicola, living in a cyanobacterial colony on vertical rocky substrates with trickling water film in Japan (Diptera: Chironomidae). Zootaxa 2022, 5178, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Dodds, W.; Marra, J. Behaviors of the midge, Cricotopus (Diptera: Chironomidae) related to mutualism with Nostoc parmelioides (Cyanobacteria). Aquat. Insects 1989, 11, 201–208. [Google Scholar] [CrossRef]
- Langton, P.H.; Casas, J. Changes in chironomid assemblage composition in two Mediterranean mountain streams over a period of extreme hydrological conditions. Hydrobiologia 1999, 390, 37–49. [Google Scholar] [CrossRef]
- Sabater, S.; Muñoz, I. Nostoc verrucosum (Cyanobacteria) colonized by a chironomid larva in a Mediterranean stream. J. Phycol. 2000, 36, 59–61. [Google Scholar] [CrossRef]
- Sanz-Montero, M.E.; Calvo, J.P.; García del Cura, M.A.; Ornosa, C.; Outerelo, R.; Rodríguez-Aranda, J.P. The rise of the diptera-microbial mat interactions during the Cenozoic: Consequences for the sedimentary record of saline lakes. Terra Nova 2013, 25, 465–471. [Google Scholar] [CrossRef]
- Hägele, D.; Leinfelder, R.; Grau, J.; Burmeister, E.-G.; Struck, U. Oncoids from the river Alz (southern Germany): Tiny ecosystems in a phosphorus-limited environment. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 237, 378–395. [Google Scholar] [CrossRef]
- Liarte, S.; Ubero-Pascal, N.; García-Ayala, A.; Puig, M.A. Histological effects and localization of dissolved microcystins LR and LW in the mayfly Ecdyonurus angelieri Thomas (Insecta, Ephemeroptera). Toxicon 2014, 92, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhuang, H.; Yang, H.; Xue, W.; Wang, L.; Wei, W. Microcystin-LR disturbs testicular development of giant freshwater prawn Macrobrachium rosenbergii. Chemosphere 2019, 222, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Saker, M.L.; Eaglesham, G.K. The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the Redclaw crayfish Cherax quadricarinatus. Toxicon 1999, 37, 1065–1077. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, V.; Oliveira, S.; Teles, F.O. Impact of a toxic and a non-toxic strain of Microcystis aeruginosa on the crayfish Procambarus clarkii. Toxicon 2001, 39, 1461–1470. [Google Scholar] [CrossRef]
- Chen, J.; Xie, P. Accumulation of hepatotoxic microcystins in freshwater mussels, aquatic insect larvae and oligochaetes in a large, shallow eutrophic lake (Lake Chaohu) of subtropical China. Fresenius Environ. Bull. 2008, 17, 849–854. [Google Scholar]
- Lance, E.; Lepoutre, A.; Savar, V.; Robert, E.; Bormans, M.; Amzil, Z. In situ use of bivalves and passive samplers to reveal water contamination by microcystins along a freshwater-marine continuum in France. Water Res. 2021, 204, 117620. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Snokhousová, J.; Saraf, A.; Suradkar, A.; Elster, J. Phylogenetic evaluation of the genus Nostoc and description of Nostoc neudorfense sp. nov., from the Czech Republic. Int. J. Syst. Evol. Microbiol. 2020, 70, 2740–2749. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.M.; Wilkins, R.M. Toxicity of microcystin-LR, isolated from Microcystis aeruginosa, against various insect species. Toxicon 1995, 33, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Galanti, L.N.; Amé, M.V.; Wunderlin, D.A. Accumulation and detoxification dynamic of cyanotoxins in the freshwater shrimp Palaemonetes argentinus. Harmful Algae 2013, 27, 88–97. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Zheng, L.; Nguyen, H.; Ni, L.; Song, S.; Sui, Y. Antioxidant responses of triangle sail mussel Hyriopsis cumingii exposed to toxic Microcystis aeruginosa and thermal stress. Sci. Total Environ. 2020, 743, 140754. [Google Scholar] [CrossRef] [PubMed]
- Mills, D.H.; Wyatt, J.T. Ostracod Reactions to Non-Toxic and Toxic Algae. Oecologia 1974, 17, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Krosch, M.N.; Bryant, L.M.; Vink, S. Differential gene expression of Australian Cricotopus draysoni (Diptera: Chironomidae) populations reveals seasonal association in detoxification gene regulation. Sci. Rep. 2017, 7, 14263. [Google Scholar] [CrossRef] [PubMed]
- Plugmacher, S.; Wiegand, C.; Oberemm, A.; Beattie, K.A.; Krause, E.; Codd, G.A.; Steinberg, C.E.V. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: The first step of detoxication. Biochim. Biophys. Acta 1998, 1425, 527–533. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Zhang, Y.; Sun, L. Effects of Dietary Astaxanthin Supplementation on Energy Budget and Bioaccumulation in Procambarus clarkii (Girard, 1852) Crayfish under Microcystin-LR Stress. Toxins 2018, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Woller-Skar, M.M.; Jones, D.N.; Luttenton, M.R.; Russell, A.L. Microcystin Detected in Little Brown Bats (Myotis lucifugus). Am. Midi. Nat. 2015, 174, 331–334. [Google Scholar] [CrossRef]
- Pokrzywinski, K.; Volk, K.; Wood, S.; Davis, T.; Lazorchak, J. Aligning Research and Monitoring Priorities for Benthic Cyanobacteria and Cyanotoxins: A Workshop Summary. In Great Lakes Restoration Initiative; ERD/EL SR-21-3; Engineer Research & Development Center: Vicksburg, MS, USA, 2021. [Google Scholar]
- Bauer, F.; Wolfschlagr, I.; Gesit, J.; Fastner, J.; Wiena Schmalz, C.; Raeder, U. Occurrence, Distribution and Toxins of Benthic Cyanobacteria in German Lakes. Toxics 2023, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Borges, H.L.F.; Branco, L.H.Z.; Martins, M.D.; Lima, C.S.; Barbosa, P.T.; Lira, G.A.S.T.; Bittencourt-Oliveira, M.C.; Molica, R.J.R. Cyanotoxins production and phylogeny of benthic cyanobacterial strains isolated from northeast of Brazil. Harmful Algae 2015, 43, 46–57. [Google Scholar] [CrossRef]
- Laurén-Määttä, C.; Hietala, J.; Reinikainen, M.; Walls, M. Do Microcystis aeruginosa toxins accumulate in the food web: A laboratory study. Hydrobiologia 1995, 304, 23–27. [Google Scholar] [CrossRef]
- Kawecka, B.; Kownacki, A.; Kownacka, M. Food relations between algae and bottom fauna communities in glacial streams. Verh. Int. Ver. Theor. Angew. Limnol. 1978, 20, 1527–1530. [Google Scholar] [CrossRef]
- Foote, B.A. Biology and immature stages of Nostima approximata (Diptera, Ephydridae), a grazer of the blue-green algal genus Oscillatoria. Proc. Entomol. Soc. Wash. 1983, 84, 472–484. [Google Scholar]
- Kaczorowska, A.; Kornijów, R. Palaeoecological evidence for changes over the past 200 years in chironomid communities of a shallow lake exposed to cyanobacterial toxins. Aquat. Ecol. 2012, 46, 465–473. [Google Scholar] [CrossRef]
- Kajac, Z.; Warda, J. Feeding of benthic non-predatory Chironomidae in lakes. Ann. Zool. Fenn. 1968, 5, 57–64. [Google Scholar]
- Oberholster, P.J.; Botha, A.M.; Ashton, P.J. The influence of a toxic cyanobacterial bloom and water hydrology on algal populations and macroinvertebrate abundance in the upper littoral zone of Lake Krugersdrift, South Africa. Ecotoxicology 2009, 18, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Imada, Y. A novel leaf-rolling chironomid, Eukiefferiella endobryonia sp. nov. (Diptera, Chironomidae, Orthocladiinae), highlights the diversity of underwater chironomid tube structures. ZooKeys 2020, 906, 73–111. [Google Scholar] [CrossRef] [PubMed]
- Tourville Poirier, A.M.; Cattaneo, A.; Hudon, C. Benthic cyanobacteria and filamentous chlorophytes affect macroinvertebrate assemblages in a large fluvial lake. J. N. Am. Benthol. Soc. 2010, 29, 737–774. [Google Scholar] [CrossRef]
- Kornijów, R.; Markiyanova, M.; Lange, E. Feeding by two closely related species of Chironomus (Diptera: Chironomidae) in south Baltic lagoons, with implications for competitive interactions and resource partitioning. Aquat. Ecol. 2019, 53, 315–324. [Google Scholar] [CrossRef]
- Ali, A. Seasonal changes of larval food and feeding of Chironomus crassicaudatus (Diptera: Chironomidae) in a subtropical lake. J. Am. Mosq. Control Assoc. 1990, 6, 84–88. [Google Scholar] [PubMed]
- Ali, A.; Frouz, J.; Lobinske, R.J. Spatio-temporal effects of selected physico-chemical variables of water, algae and sediment chemistry on the larval community of nuisance Chironomidae (Diptera) in a natural and a man-made lake in central Florida. Hydrobiologia 2022, 470, 181–193. [Google Scholar] [CrossRef]
- Provost, M.W.; Branch, N. Food of Chironomid Larvae in Polk County Lakes. Fla. Entomol. 1959, 42, 49–62. [Google Scholar] [CrossRef]
- Anderson, B.; Voorhees, J.; Phillips, B.; Fadness, R.; Stancheva, R.; Nichols, J.; Orr, D.; Wood, S.A. Extracts from benthic anatoxin-producing Phormidium are toxic to 3 macroinvertebrate taxa at environmentally relevant concentrations. Environ. Toxicol. Chem. 2018, 37, 2851–2859. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Jia, Y.; Donde, O.O.; Wang, Z.; Zhang, J.; Fang, T.; Xiao, B.; Wu, X. Effects of microcystin-producing and non-microcystin-producing Microcystis on the behavior and life history traits of Chironomus pallidivittatus. Environ. Pollut. 2021, 287, 117613. [Google Scholar] [CrossRef] [PubMed]
- Stanković, N.; Jovanović, B.; Kostić Kokić, I.; Stojković Piperac, M.; Simeunovć, J.; Jakimov, D.; Dimkić, I.; Milošević, D. Toxic effects of a cyanobacterial strain on Chironomus riparius larvae in a multistress environment. Aquat. Toxicol. 2022, 253, 106321. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Wu, M. Effects of Microcystis aeruginosa on New Jersey Aquatic Benthic Macroinvertebrates. Adv. Microbiol. 2021, 11, 165–180. [Google Scholar] [CrossRef]
- Szczerkowska-Majchrzak, E.; Jarosiewicz, M. A comparative study of the oxidative system in Chironomidae larvae with contrasting feeding strategies. Eur. Zool. J. 2020, 87, 463–474. [Google Scholar] [CrossRef]
- Wirth, W.W. The species of Cricotopus midges living in the blue-green alga Nostoc in California. Pan.-Pac. Entomol. 1957, 232, 121–126. [Google Scholar]
- Boesel, M.V. A review of the genus Cricotopus in Ohio, with a key to adults of species of the Northeastern United States (Diptera, Chironomidae). Ohio J. Sci. 1983, 83, 74–90. [Google Scholar]
- Tarkowska-Kukuryk, M. Periphytic algae as food source for grazing chironomids in a shallow phytoplankton-dominated lake. Limnologica 2013, 43, 254–264. [Google Scholar] [CrossRef]
- Cai, S.; Wu, H.; Hong, P.; Donde, O.O.; Wang, C.; Fang, T.; Xiao, B.; Wu, X. Bioflocculation effect of Glyptotendipes tokunagai on different Microcystis species: Interactions between secreted silk and extracellular polymeric substances. Chemosphere 2021, 277, 130321. [Google Scholar] [CrossRef] [PubMed]
- Henriques-Oliveira, A.L.; Nessimian, J.L.; Dorvillé, L.F.M. Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Braz. J. Biol. 2023, 63, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Komulaynen, S.F. Diets of Periphytonic Invertebrates in a Small River. Russ. J. Ecol. 2006, 37, 337–343. [Google Scholar] [CrossRef]
- Monroe, J.B.; LeRoy Poff, N.; Thorp, R.A. Natural history of a retreat-building midge, Pagastia partica, in a regulated reach of the upper Colorado River. West. N. Am. Nat. 2005, 65, 451–461. [Google Scholar]
- Yeh, C.C.; Chuang, Y.Y. Colonization and bionomics of Forcipomyia taiwana (Diptera: Ceratopogonidae) in the laboratory. J. Med. Entomol. 1996, 33, 445–448. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.L.; Leroux, E.J. Nine new species of Forcipomyia (diptera: Ceratopogonidae) described in all stages. Can. Entomol. 1971, 103, 729–762. [Google Scholar] [CrossRef]
- Foote, B.A. Utilization of blue-green algae by larvae of shore flies. Environ. Entomol. 1977, 6, 812–814. [Google Scholar] [CrossRef]
- Foote, B.A. Biology and immature stages of Coenia curvicauda (Diptera, Ephydridae), a grazer of the blue-green algal genus Oscillatoria. Proc. Entomol. Soc. Wash. 1990, 84, 93–102. [Google Scholar]
- Scheiring, J.F.; Foote, B.A. Habitat distribution of the shore-flies of Northeastern Ohio (Diptera: Ephydridae). Ohio J. Sci. 1973, 73, 152–166. [Google Scholar]
- Brock, M.L.; Wiegert, R.G.; Brock, T.D. Feeding by Paracoenia and Ephydra (Diptera: Ephydridae) on the Microorganisms of Hot Springs. Ecology 1969, 50, 192–200. [Google Scholar] [CrossRef]
- Collins, N. Population ecology of Ephydra cinerea Jones (Diptera: Ephydridae), the only benthic metazoan of the Great Salt Lake, USA. Hydrobiologia 1980, 68, 99–112. [Google Scholar] [CrossRef]
- Thier, R.W.; Foote, B.A. Biology of mude-shore Ephydridae (Diptera). Proc. Entomol. Soc. Wash. 1980, 82, 517–535. [Google Scholar]
- Collins, N.C. Population Biology of a Brine Fly (Diptera: Ephydridae) in the Presence of Abundant Algal Food. Ecology 1975, 56, 1139–1148. [Google Scholar] [CrossRef]
- Foote, B.A. Biology and immature stages of Lytogaster excavata, a grazer of blue-green algae (Diptera, Ephydridae). Proc. Entomol. Soc. Wash. 1981, 83, 304–315. [Google Scholar]
- Wiegert, R.G.; Mitchell, R. Ecology of Yellowstone thermal effluent systems intersects of blue-green algae, grazing flies (Paracoenia, Ephydridae) and water mites (Partnuniella, Hydrachnellae). Hydrobiologia 1973, 41, 251–271. [Google Scholar] [CrossRef]
- Collins, N.C.; Mitchell, R.; Wiegert, R.G. Functional Analysis of a Thermal Spring Ecosystem, with an Evaluation of the Role of Consumers. Ecology 1976, 57, 1221–1232. [Google Scholar] [CrossRef]
- Foote, B.A. Biology and immature stages of Pelina trunctatula, a consumer of blue-green algae (Diptera, Ephydridae). Proc. Entomol. Soc. Wash. 1981, 83, 607–619. [Google Scholar]
- Connell, T.D.; Scheiring, J.F. The feeding ecology of the larvae of the shore fly Scatella picea (Walker) (Diptera: Ephydridae). Can. J. Zool. 1981, 599, 1831–1835. [Google Scholar] [CrossRef]
- Zack, R.S.; Foote, B.A. Utilization of algal monocultures by larvae of Scatella stagnalis. Environ. Entomol. 1978, 7, 509–511. [Google Scholar] [CrossRef]
- Foote, B.A. Biology and immature stages of Setacera atrovirens, a grazer of floating algal mats (Diptera, Ephydridae). Proc. Entomol. Soc. Wash. 1982, 84, 828–844. [Google Scholar]
- Berezina, N.A.; Verbitsky, V.B.; Sharov, A.N.; Chernova, E.N.; Meteleva, N.Y.; Malysheva, O.A. Biomarkers in bivalve mollusks and amphipods for assessment of effects linked to cyanobacteria and elodea: Mesocosm study. Ecotoxicol. Environ. Saf. 2020, 203, 110994. [Google Scholar] [CrossRef] [PubMed]
- López-Rodríguez, M.J.; Tierno de Figueroa, J.M.; Alba-Tercedor, J. Life history of two burrowing aquatic insects in southern Europe: Leuctra geniculata (Insecta: Plecoptera) and Ephemera danica (Insecta: Ephemeroptera). Aquat. Insects 2009, 31, 99–110. [Google Scholar] [CrossRef]
- Shahmohamadloo, R.S.; Poirier, D.G.; Ortiz Almirall, X.; Bhavsar, S.P.; Sibley, P.K. Assessing the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates. Ecotoxicol. Environ. Saf. 2020, 188, 109945. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.N.; Boyer, G.L.; Lankton, J.S.; Woller-Skar, M.M.; Russell, A.L. Are little brown bats (Myotis lucifugus) impacted by dietary exposure to microcystin? Harmful Algae 2022, 114, 102221. [Google Scholar] [CrossRef] [PubMed]
- Kelly, L.T.; Puddick, J.; Ryan, K.G.; Champeau, O.; Wood, S.A. An ecotoxicological assessment of the acute toxicity of anatoxin congeners on New Zealand Deleatidium species (mayflies). Inland Waters 2020, 10, 101–108. [Google Scholar] [CrossRef]
- Frison, T.H. Fall and Winter Stoneflies, or Plecoptera, of Illinois. Bull. Ill. Nat. Hist. Surv. 1929, 18, 345–409. [Google Scholar] [CrossRef]
- Frison, T.H. The Stoneflies, or Plecoptera, of Illinois. Bull. Ill. Nat. Hist. Surv. 1935, 20, 281–471. [Google Scholar] [CrossRef]
- Tierno de Figueroa, J.M.; Sánchez-Ortega, A. Imaginal feeding of twelve nemouroidean stonefly species (Insecta, Plecoptera). Ann. Entomol. Soc. Am. 2000, 93, 251–253. [Google Scholar] [CrossRef]
- Tierno de Figueroa, J.M.; Sezzi, E.; Fochetti, R. Feeding in the genus Tyrrhenoleuctra (Plecoptera; Leuctridae). Boll. Soc. Entomol. Ital. 2003, 134, 207–210. [Google Scholar]
- Tierno de Figueroa, J.M.; Sánchez-Ortega, A. Imaginal Feeding of Certain Systellognathan Stonefly Species (Insecta: Plecoptera). Ann. Entomol. Soc. Am. 1999, 92, 218–221. [Google Scholar] [CrossRef]
- Derka, T.; Tierno de Figueroa, J.M.; Krno, I. Life Cycle, Feeding and production of Isoptena serricornis (PICTET, 1841) (Plecoptera, Chloroperlidae). Internat. Rev. Hydrobiol. 2004, 89, 165–174. [Google Scholar] [CrossRef]
- Tierno de Figueroa, J.M.; Luzón-Ortega, J.M.; Sánchez-Ortega, A. Imaginal biology of the stonefly Hemimelaena flaviventris (Pictet, 1841) (Plecoptera: Perlodidae). Ann. Zool. Fenn. 1998, 35, 225–230. [Google Scholar]
- Graça, M.A.S.; Callisto, M.; Barbosa, J.E.L.; Firmiano, K.R.; França, J.; Gonçalves, J.F. Top-down and bottom-up control of epilithic periphyton in a tropical stream. Freshw. Sci. 2018, 37, 857–869. [Google Scholar] [CrossRef]
- Hart, D.D.; Biggs, B.J.F.; Nikora, V.I.; Flinders, C.A. Flow effects on periphyton patches and their ecological consequences in a New Zealand river. Freshw. Biol. 2013, 58, 1588–1602. [Google Scholar] [CrossRef]
- Reynolds, J.D. Feeding in corixids (Heteroptera) of small alkaline lakes in central BC. Int. Ver. Theor. Angew. Limnol. 1975, 19, 3073–3078. [Google Scholar] [CrossRef]
- Hungerford, H.B. Food Habits of Corixids. J. N. Y. Entomol. Soc. 1917, 25, 1–5. [Google Scholar]
- Griffith, M.E. The environment, life history and structure of the waterman boatman, Ramphocorixa acuminata (Uhler) (Hemiptera, corixidae). Univ. Kans. Sci. Bull. 1945, 30, 241–365. [Google Scholar]
- Sutton, M.F. On the food, feeding mechanism and alimentary canal of Corixidae (Hemiptera, Heteroptera). Proc. Zool. Soc. Lond. 1951, 121, 465–499. [Google Scholar] [CrossRef]
- Camacho, F.A.; Thacker, R.W. Predator cues alter habitat use by the amphipod Hyalella azteca (Saussure). Freshw. Sci. 2013, 32, 1148–1154. [Google Scholar] [CrossRef]
- Kim, M.S.; Kwon, J.T.; Lee, Y.; Ha, S.Y.; Hong, S.; Yoon, S.H.; Shin, K.H. Biocontrol of Microcystis aeruginosa bloom using various aquatic organisms by dual stable isotope (13C and 15N) tracers. Appl. Ecol. Environ. Res. 2018, 16, 931–953. [Google Scholar] [CrossRef]
- Miles, C.O.; Sandvik, M.; Haande, S.; Nonga, H.; Ballot, A. LC-MS analysis with thiol derivatization to differentiate [Dhb(7)]- from [Mdha(7)]-microcystins: Analysis of cyanobacterial blooms, Planktothrix cultures and European crayfish from Lake Steinsfjorden, Norway. Environ. Sci. Technol. 2013, 47, 4080–4087. [Google Scholar] [CrossRef] [PubMed]
- Lirås, V.; Lindberg, M.; Nyström, P.; Annadotter, H.; Lawton, L.A.; Graf, B. Can ingested cyanobacteria be harmful to the signal crayfish (Pacifastacus leniusculus)? Freshw. Biol. 1998, 39, 233–242. [Google Scholar] [CrossRef]
- Wood, S.A.; Phillips, N.R.; de Winton, M.; Gibbs, M. Consumption of benthic cyanobacterial mats and nodularin-R accumulation in freshwater crayfish (Paranephrops planifrons) in Lake Tikitapu (Rotorua, New Zealand). Harmful Algae 2012, 20, 175–179. [Google Scholar] [CrossRef]
- Ríos, V.; Moreno, I.; Prieto, A.I.; Puerto, M.; Gutiérrez-Praena, D.; Soria-Díaz, M.E.; Cameán, A.M. Analysis of MC-LR and MC-RR in tissue from freshwater fish (Tinca tinca) and crayfish (Procambarus clarkii) in tench ponds (Cáceres, Spain) by liquid chromatography-mass spectrometry (LC-MS). Food Chem. Toxicol. 2013, 57, 170–178. [Google Scholar] [CrossRef]
- Monakov, A.V. Review of Studies on Feeding of Aquatic Invertebrates Conducted at the Institute of Biology of Inland Waters, Academy of Science USSR. J. Fish. Res. Board Can. 1972, 29, 363–383. [Google Scholar] [CrossRef]
- Freitas, M.; Azevedo, J.; Carvalho, A.P.; Campos, A.; Vasconcelos, V. Effects of storage, processing and proteolytic digestion on microcystin-LR concentration in edible clams. Food Chem. Toxicol. 2014, 66, 217223. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Anselmo, A.; Macário, I.P.E.; de Figueiredo, D.; Gonçalves, F.J.M.; Pereira, J. The bad against the villain: Suitability of Corbicula fluminea as a bioremediation agent towards cyanobacterial blooms. Ecol. Eng. 2020, 152, 105881. [Google Scholar] [CrossRef]
- Downing, S.; Contardo-Jara, V.; Pflugmacher, S.; Downing, T.G. The fate of the cyanobacterial toxin β-N-methylamino-L-alanine in freshwater mussels. Ecotoxicol. Environ. Saf. 2014, 101, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.L.; Shimizu, K.; Kanazawa, A.; Gao, Y.; Dao, T.S.; Utsumi, M. Microcystin accumulation and biochemical responses in the edible clam Corbicula leana P. exposed to cyanobacterial crude extract. J. Environ. Sci. 2016, 44, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, K.; Yokoyama, A.; Ishikawa, K.; Kumagai, M.; Watanabe, M.F.; Park, H.D. Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail. Limnology 2003, 4, 131–138. [Google Scholar] [CrossRef]
- Gaskill, J.A.; Woller-Skar, M.M. Do invasive dreissenid mussels influence spatial and temporal patterns of toxic Microcystis aeruginosa in a low-nutrient Michigan lake? Lake Reserv. Manag. 2018, 34, 244–257. [Google Scholar] [CrossRef]
- Babcock-Jackson, L.; Carmichael, W.W.; Culver, D.A. Dreissenid mussels increase exposure of benthic and pelagic organisms to toxic microcystins. Int. Ver. Theor. Angew. Limnol. 2002, 28, 1082–1085. [Google Scholar] [CrossRef]
- Boegehold, A.G.; Johnson, N.S.; Kashiana, D.R. Dreissenid (quagga and zebra mussel) veligers are adversely affected by bloom forming cyanobacteria. Ecotoxicol. Environ. Saf. 2019, 182, 109426. [Google Scholar] [CrossRef] [PubMed]
- Burmester, V.; Nimptsch, J.; Wiegand, C. Adaptation of freshwater mussels to cyanobacterial toxins: Response of the biotransformation and antioxidant enzymes. Ecotoxicol. Environ. Saf. 2012, 78, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Juhel, G.; Davenport, J.; O’Halloran, J.; Culloty, S.C.; Ramsay, R.; James, K.F.; Furey, A.; Allis, O. Pseudodiarrhoea in zebra mussels Dreissena polymorpha (Pallas) exposed to microcystins. J. Exp. Biol. 2006, 209, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Juhel, G.; O’Halloran, J.; Culloty, S.C.; O’riordan, R.M.; Davenport, J.; O’Brien, N.M.; James, K.F.; Furey, A.; Allis, O. In vivo exposure to microcystins induces DNA damage in the haemocytes of the zebra mussel, Dreissena polymorpha, as measured with the comet assay. Environ. Mol. Mutagen. 2007, 48, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Juhel, G.; Ramsay, R.M.; Davenport, J.; O’Halloran, J.; Culloty, S.C. Effect of the Microcystin-Producing Cyanobacterium, Microcystis aeruginosa, on Immune Functions of the Zebra Mussel Dreissena polymorpha. J. Shellfish Res. 2015, 34, 433–442. [Google Scholar] [CrossRef]
- Makhutova, O.N.; Protasov, A.A.; Gladyshev, M.I.; Sylaieva, A.A.; Sushchik, N.N.; Morozovskaya, I.A.; Kalachova, G.S. Feeding spectra of bivalve mollusks Unio and Dreissena from Kanevskoe Reservoir, Ukraine: Are they food competitors or not? Zool. Stud. 2013, 52, 56. [Google Scholar] [CrossRef]
- Paldavičienė, A.; Zaiko, A.; Mazur-Marzec, H.; Razinkovas-Baziukas, A. Bioaccumulation of microcystins in invasive bivalves: A case study from the boreal lagoon ecosystem. Oceanologia 2015, 57, 93–101. [Google Scholar] [CrossRef]
- Pires, L.M.; Karlsson, K.M.; Meriluoto, J.A.; Kardinaal, E.; Visser, P.M.; Siewertsen, K.; Donk, E.V.; Ibelings, B.W. Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha. Aquat. Toxicol. 2004, 69, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Poste, A.E.; Ozersky, T. Invasive dreissenid mussels and round gobies: A benthic pathway for the trophic transfer of microcystin. Environ. Toxicol. Chem. 2013, 32, 2159–2164. [Google Scholar] [CrossRef]
- Sipiä, V.O.; Kankaanpää, H.T.; Pflugmacher, S.; Flinkman, J.; Furey, A.; James, K.J. Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea. Ecotoxicol. Environ. Saf. 2002, 53, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Boltovskoy, D.; Correa, N.; Bordet, F.; Leites, V.; Cataldo, D. Toxic Microcystis (cyanobacteria) inhibit recruitment of the bloom-enhancing invasive bivalve Limnoperna fortunei. Freshw. Biol. 2013, 58, 1968–1981. [Google Scholar] [CrossRef]
- Gérard, C.; Poullain, V.; Lance, E.; Acou, A.; Brient, L.; Carpentier, A. Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater molluscs. Environ. Pollut. 2009, 157, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Saker, M.L.; Metcalf, J.S.; Codd, G.A.; Vasconcelos, V.M. Accumulation and depuration of the cyanobacterial toxin cylindrospermopsin in the freshwater mussel Anodonta cygnea. Toxicon 2004, 43, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Dias, E.; Franca, S.; Pereira, E.; Carolino, M.; Vasconcelos, V. Accumulation and depuration of cyanobacterial paralytic shellfish toxins by the freshwater mussel Anodonta cygnea. Aquat. Toxicol. 2004, 68, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.E.; Meriluoto, J.A.O.; Lindholm, T. Accumulation of a peptide toxin from the cyanobacterium Oscillatoria agardhii in the freshwater mussel Anadonta cygnea. Hydrobiologia 1989, 183, 211–216. [Google Scholar] [CrossRef]
- Lindholm, T.; Eriksson, J.E.; Meriluoto, J.A.O. Toxic cyanobacteria and water quality problems-Examples from a eutrophic lake on Åland, South West Finland. Water Res. 1989, 23, 481–486. [Google Scholar] [CrossRef]
- Prepas, E.E.; Kotak, B.G.; Campbell, L.M.; Evans, J.C.; Hrudey, S.E.; Holmes, C.F.B. Accumulation and elimination of cyanobacterial hepatotoxins by the freshwater clam Anodonta grandis simpsoniana. Can. J. Fish. Aquat. Sci. 1997, 54, 41–46. [Google Scholar] [CrossRef]
- Chen, J.; Xie, P.; Guo, L.; Zheng, L.; Ni, L. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China. Environ. Pollut. 2005, 134, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.F.; Park, H.D.; Kondo, F.; Harada, K.; Hayashi, H.; Okino, T. Identification and estimation of microcystins in freshwater mussels. Nat. Toxins 1997, 5, 31–35. [Google Scholar] [CrossRef]
- Yokoyama, A.; Park, H.D. Mechanism and prediction for contamination of freshwater bivalves (Unionidae) with the cyanobacterial toxin microcystin in hypereutrophic Lake Suwa, Japan. Environ. Toxicol. 2002, 17, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.L.; Liu, W.X.; Wen, C.G.; Qian, G.M.; Hu, B.Q.; Jian, S.Q.; Yang, G.; Dong, J. Effect of microcystin on the expression of Nrf2 and its downstream antioxidant genes from Cristaria plicata. Aquat. Toxicol. 2020, 225, 105526. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, W.; Hou, S.; Wang, Y.; Fang, H.; Luo, S.; Yang, L.; Wen, C. Identification of Nrf2/Keap1 pathway and its transcriptional regulation of antioxidant genes after exposure to microcystins in freshwater mussel Cristaria plicata. Dev. Comp. Immunol. 2023, 141, 104629. [Google Scholar] [CrossRef] [PubMed]
- Travers, B.; Murby, A.; Haney, J.F. Bioaccumulation of Microcystins by Freshwater Mussels in Mystic Lake and Middle Pond, MA. UNH Cent. Freshw. Biol. Res. 2011, 13, 1–9. [Google Scholar]
- Chen, J.; Xie, P. Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic lake Taihu of subtropical China and the risk to human consumption. Environ. Toxicol. 2005, 20, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, A.; Park, H.D. Depuration kinetics and persistence of the cyanobacterial toxin microcystin-LR in the freshwater bivalve Unio douglasiae. Environ. Toxicol. 2003, 18, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Brient, L.; Carpentier, A.; Acou, A.; Marion, L.; Bormans, M.; Gérard, C. Impact of toxic cyanobacteria on gastropods and microcystin accumulation in a eutrophic lake (Grand-Lieu, France) with special reference to Physa (=Physella) acuta. Sci. Total Environ. 2010, 408, 3560–3568. [Google Scholar] [CrossRef] [PubMed]
- Kotak, B.G.; Zurawell, R.W.; Prepas, E.E.; Holmes, C.F.B. Microcystin-LR concentration in aquatic food web compartments from lakes of varying trophic status. Can. J. Fish. Aquat. Sci. 1996, 53, 1974–1985. [Google Scholar] [CrossRef]
- Zurawell, R.W.; Kotak, B.G.; Prepas, E.E. Influence of lake trophic status on the occurrence of microcystin-LR in the tissue of pulmonate snails. Freshw. Biol. 1999, 42, 707–718. [Google Scholar] [CrossRef]
- Lance, E.; Brient, L.; Bormans, M.; Gérard, C. Interactions between cyanobacteria and gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification. Aquat. Toxicol. 2006, 79, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Paty, C.; Bormans, M.; Brient, L.; Gérard, C. Interactions between cyanobacteria and gastropods II. Impact of toxic Planktothrix agardhii on the life-history traits of Lymnaea stagnalis. Aquat. Toxicol. 2007, 81, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Josso, C.; Dietrich, D.; Ernst, B.; Paty, C.; Senger, F.; Bormans, M.; Gérard, C. Histopathology and microcystin distribution in Lymnaea stagnalis (Gastropoda) following toxic cyanobacterial or dissolved microcystin-LR exposure. Aquat. Toxicol. 2010, 98, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Neffling, M.R.; Gérard, C.; Meriluoto, J.; Bormans, M. Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. Environ. Pollut. 2010, 158, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Alonzo, F.; Tanguy, M.; Gérard, C.; Bormans, M. Impact of microcystin-producing cyanobacteria on reproductive success of Lymnaea stagnalis (Gastropoda, Pulmonata) and predicted consequences at the population level. Ecotoxicology 2011, 20, 719730. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Petit, A.; Sanchez, W.; Paty, C.; Gérard, C.; Bormans, M. Evidence of trophic transfer of microcystins from the gastropod Lymnaea stagnalis to the fish Gasterosteus aculeatus. Harmful Algae 2014, 31, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Desprat, J.; Holbech, B.F.; Gérard, C.; Bormans, M.; Lawton, L.A.; Edwards, C.; Wiegand, C. Accumulation and detoxication responses of the gastropod Lymnaea stagnalis to single and combined exposures to natural (cyanobacteria) and anthropogenic (the herbicide RoundUp® Flash) stressors. Aquat. Toxicol. 2016, 177, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Zurawell, R.W.; Holmes, C.F.; Prepas, E.E. Elimination of the cyanobacterial hepatotoxin microcystin from the freshwater pulmonate snail Lymnaea stagnalis jugularis (say). J. Toxicol. Environ. Health A 2006, 69, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Zurawell, R.W.; Goldberg, J.I.; Holmes, C.F.; Prepas, E.E. Tissue distribution and oral dose effects of microcystin in the freshwater pulmonate snail Lymnaea stagnalis jugularis (Say). J. Toxicol. Environ. Health A 2007, 70, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Song, Z.; Xie, Z.; Li, L.; Song, L. Bioaccumulation of microcystins in two freshwater gastropods from a cyanobacteria-bloom plateau lake, Lake Dianchi. Environ. Pollut. 2012, 164, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Sitnikova, T.; Kiyashko, S.I.; Maximova, N.; Pomazkina, G.V.; Roepstorf, P.; Wada, E.; Michel, E. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 2012, 682, 75–90. [Google Scholar] [CrossRef]
- He, Q.; Kang, L.; Sun, X.; Jia, R.; Zhang, Y.; Ma, J.; Li, H.; Ai, H. Spatiotemporal distribution and potential risk assessment of microcystins in the Yulin River, a tributary of the Three Gorges Reservoir, China. J. Hazard. Mater. 2018, 347, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Lance, E.; Bugajny, E.; Bormans, M.; Gerard, C. Consumption of toxic cyanobacteria by Potamopyrgus antipodarum (Gastropoda, Prosobranchia) and consequences on life traits and microcystin accumulation. Harmful Algae 2008, 7, 464–472. [Google Scholar] [CrossRef]
- White, S.H.; Duivenvoorden, L.J.; Fabbro, L.D.; Eaglesham, G.K. Influence of intracellular toxin concentrations on cylindrospermopsin bioaccumulation in a freshwater gastropod (Melanoides tuberculata). Toxicon 2006, 47, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Qiao, F.; Lei, K.; Han, X.; Wei, Z.; Zhao, X.; An, L.; LeBlanc, G.A. No impacts of microcystins on wild freshwater snail Bellamya Aeruginosa fecundity from a eutrophic lake. Environ. Toxicol. Pharmacol. 2018, 60, 165–168. [Google Scholar] [CrossRef]
- Zhang, D.; Xie, P.; Liu, Y.; Chen, J.; Liang, G. Bioaccumulation of the hepatotoxic microcystins in various organs of a freshwater snail from a subtropical Chinese lake, Taihu Lake, with dense toxic Microcystis blooms. Environ. Toxicol. Chem. 2007, 26, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xie, P.; Liu, Y.; Chen, J.; Wen, Z. Spatial and temporal variations of microcystins in hepatopancreas of a freshwater snail from Lake Taihu. Ecotoxicol. Environ. Saf. 2009, 72, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Yokoyama, A.; Nakamura, K.; Park, H. Accumulation of microcystins in various organs of the freshwater snail Sinotaia histrica and three fishes in a temperate lake, the eutrophic Lake Suwa, Japan. Toxicon 2007, 49, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Hanyu, T.; Futatsugi, N.; Komatsu, M.; Steinman, A.D.; Park, H.D. Inhibitory effect of naringin on microcystin-LR uptake in the freshwater snail Sinotaia histrica. Environ. Toxicol. Pharmacol. 2014, 38, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Czyżewska, W.; Piontek, M.; Łuszczyńska, K. The Occurrence of Potential Harmful Cyanobacteria and Cyanotoxins in the Obrzyca River (Poland), a Source of Drinking Water. Toxins 2020, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- White, S.; Duivenvoorden, L.; Fabbro, L. Impacts of a Toxic Microcystis Bloom on the Macroinvertebrate Fauna of Lake Elphinstone, Central Queensland, Australia. Hydrobiologia 2005, 548, 117–126. [Google Scholar] [CrossRef]
- Caro Borrero, A.; Carmona Jiménez, J.; Márquez Santamaría, K.; Elvira, P. Relationships between environmental conditions and macroalgae structure on the benthic macroinvertebrate establishment: Diversity and conservation in rivers of central Spain and Mexico. J. Insect Conserv. 2021, 25, 769–781. [Google Scholar] [CrossRef]
Taxa | MCs | ATX | STX | CYN | NODs |
---|---|---|---|---|---|
Anabaena | [2,19,38,40,41,43,46,135] | [19,22,40,41,43,135] | [1,2,22,38,135] | [19,38,135] | - |
Arthrospira | [135] | [135] | - | - | - |
Calothrix | [17] | - | - | - | [2] |
Cyanomargarita | [136] | - | - | - | - |
Cylindrospermum | [19] | [38,135] | [38,137] | - | - |
Dactylothamnos | - | - | [136] | - | - |
Fischerella | [2,19] | - | - | - | - |
Geitlerinema | [2,18,33,38,44,136] | [2,33,38] | [2,38,137] | - | - |
Gloeotrichia | [33,38,135] | - | - | - | - |
Hapalosiphon | [135] | - | - | - | - |
Kamptonema | - | [136] | - | - | - |
Leptolyngbya | [18,28,136] | - | - | - | [2] |
Lyngbya | [2,17,22] | - | [1,22,38,93,135] | [19,38,93] | - |
Microcoleus | [2,17,38,42,46] | [2,28,38,42,46,56,136] | [38,42] | [38,42] | [2] |
Microseira | [2] | - | [2] | [2] | - |
Nodularia | - | - | - | - | [19,135] |
Nostoc | [2,19,33,38,42,93,135] | [38,42] | [42] | [42] | [2,38,135] |
Oscillatoria | [1,2,17,18,33,38,42,44,89,93,135] | [19,22,38,42,135,136] | - | [38,42] | - |
Phormidium | [2,15,16,17,18,33,40,44,51,93,135] | [2,40,56] | [22] | [2] | [2] |
Plectonema | [2,135] | - | - | - | - |
Pseudanabaena | [33,53] | - | - | - | - |
Rivularia | [16,17,18,19,33,62,135] | - | - | - | - |
Schizothrix | [33] | - | - | - | - |
Scytonema | [2,33,38,44] | - | [2,22,38,93,136] | - | - |
Tolypothrix | [16,17,39] | - | - | - | - |
Trichormus | [38] | - | - | - | - |
Tychonema | - | [2,56,136] | - | - | - |
Westiellopsis | [2] | - | - | - | - |
Wollea | [42] | - | [42] | [42] | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ubero-Pascal, N.; Aboal, M. Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity. Toxins 2024, 16, 190. https://doi.org/10.3390/toxins16040190
Ubero-Pascal N, Aboal M. Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity. Toxins. 2024; 16(4):190. https://doi.org/10.3390/toxins16040190
Chicago/Turabian StyleUbero-Pascal, Nicolás, and Marina Aboal. 2024. "Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity" Toxins 16, no. 4: 190. https://doi.org/10.3390/toxins16040190
APA StyleUbero-Pascal, N., & Aboal, M. (2024). Cyanobacteria and Macroinvertebrate Relationships in Freshwater Benthic Communities beyond Cytotoxicity. Toxins, 16(4), 190. https://doi.org/10.3390/toxins16040190