Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS
Abstract
:1. Introduction
- Develop an automated sample preparation workflow using a robotic sample preparation system to replace manual procedures and compare the method performance for each platform.
- Establish the metrological traceability of the patulin measurements generated by the automated sample preparation and LC-APCI-MS/MS method using certified reference materials (CRMs) as calibrants to provide systematic estimates of accuracy and uncertainty for data quality assessments [33].
2. Results and Discussion
2.1. Comparison of APCI and ESI
2.2. Comparison of Extraction Solvents
2.3. Assessing the Robotic Sample Preparation System
2.4. Identification, Confirmation, and Metrological Traceability of Patulin Measurements
3. Conclusions
4. Experimental Section
4.1. Chemicals and Materials
4.2. Robotic Sample Preparation System
4.3. Workflow for Preparing the Calibration Standards
4.4. Workflow for Sample Preparation
4.5. Manual Sample Preparation
4.6. Recovery Studies
4.7. LC-APCI-MS-MS Analysis
4.8. LC-MS Information Dependent Analysis (IDA) and Enhanced Product Ion (EPI) Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Chemical ionization | (CI) |
Certified reference material | (CRM) |
Dichloromethane | (DCM) |
Electrospray ionization | (ESI) |
Gravimetric dispensing unit | (GDU) |
Information-dependent acquisition-enhanced product ion | (IDA-EPI) |
Liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry | (LC-APCI-MS/MS) |
Limit of quantitation | (LOQ) |
Method detection limit | (MDL) |
Quadruple linear ion trap | (QTRAP) |
Quick Easy Cheap Effective Rugged Safe | (QuEChERS) |
Relative standard deviations | (RSD) |
Scheduled multiple reaction monitoring scanning | (sMRM) |
Solid-phase extraction | (SPE) |
Standard deviation | (SD) |
References
- USDA/ERS: Oranges and Apples Are America’s Top Fruit and Fruit Juice Choices. Available online: www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=85485 (accessed on 17 May 2024).
- USDA/ERS: Apples and Oranges Squeeze Out Others As Top Fruit Choices. Available online: www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=106474 (accessed on 17 May 2024).
- de Souza Sant’Ana, A.; Rosenthal, A.; de Massaguer, P.R. The fate of patulin in apple juice processing: A review. Food Res. Int. 2008, 41, 441–453. [Google Scholar] [CrossRef]
- FDA (2005) CPG Sec 510.150 Apple Juice, Apple Juice Concentrates, and Apple Juice Products—Adulteration with Patulin. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-510150-apple-juice-apple-juice-concentrates-and-apple-juice-products-adulteration-patulin (accessed on 17 May 2024).
- Trucksess, M.W. Chapter 49. Natural Toxins. Subchapter 7. Patulin. In Official Methods of Analysis of AOAC INTERNATIONAL, 22nd ed.; Latimer, G.W., Jr., Ed.; Oxford University Press: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- FDA Compliance Program Guidance Manual. Chapter 07–Molecular Biology and Natural Toxins–Mycotoxins in Domestic and Imported Foods FY 15/16. 2015. Available online: https://www.fda.gov/media/140749/download (accessed on 17 May 2024).
- Zhang, K. Evaluation of Automated Sample Preparation for Mycotoxin Analysis in Foods. J. AOAC Int. 2020, 103, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Sadok, I.; Stachniuk, A.; Staniszewska, M. Developments in the Monitoring of Patulin in Fruits Using Liquid Chromatography: An Overview. Food Anal. Methods 2019, 12, 76–93. [Google Scholar] [CrossRef]
- Takino, M.; Daishima, S.; Nakahara, T. Liquid chromatography/mass spectrometric determination of patulin in apple juice using atmospheric pressure photoionization. Rapid Commun. Mass Spectrom. 2003, 17, 1965–1972. [Google Scholar] [CrossRef] [PubMed]
- Sewram, V.; Nair, J.J.; Nieuwoudt, T.W.; Leggott, N.L.; Shephard, G.S. Determination of patulin in apple juice by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2000, 897, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jon, W.; Wong, J.W.; Mai, H.; Trucksess, M.W. Dopant-Assisted Atmospheric Pressure Photoionization of Patulin in Apple Juice and Apple-Based Food with Liquid Chromatography–Tandem Mass Spectrometry. J. Agric. Food Chem. 2014, 62, 4112–4118. [Google Scholar] [CrossRef]
- Carroll, D.I.; Dzidic, I.; Stillwell, R.N.; Horning, M.G.; Horning, E.C. Subpicogram detection system for gas phase analysis based upon atmospheric pressure ionization (API) mass spectrometry. Anal. Chem. 1974, 46, 706–710. [Google Scholar] [CrossRef]
- Thomson, B.A. Atmospheric pressure ionization and liquid chromatography/mass spectrometry—Together at last. J. Am. Soc. Mass Spectrom. 1998, 9, 187–193. [Google Scholar] [CrossRef]
- Beltrán, E.; Ibáñez, M.; Sancho, J.V.; Hernández, F. Determination of patulin in apple and derived products by UHPLC-MS/MS. Study of matrix effects with atmospheric pressure ionisation sources. Food Chem. 2014, 142, 400–407. [Google Scholar] [CrossRef]
- Song, W.L.; Li, C.; Moezzi, B. Simultaneous determination of bisphenol A, aflatoxin B1, ochratoxin A, and patulin in food matrices by liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 671–680. [Google Scholar] [CrossRef]
- Regal, P.; Díaz-Bao, M.; Barreiro, R.; Fente, C.; Cepeda, A. Design of a Molecularly Imprinted Stir-Bar for Isolation of Patulin in Apple and LC-MS/MS Detection. Separations 2017, 4, 11. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P. Quantification of the mycotoxin patulin by a stable isotope dilution assay. J. Agric. Food Chem. 1999, 47, 3749–3755. [Google Scholar] [CrossRef]
- Vaclavikova, M.; Dzuman, Z.; Lacina, O.; Fenclova, M.; Veprikova, Z.; Zachariasova, M.; Hajslova, J. Monitoring survey of patulin in a variety of fruit-based products using a sensitive UHPLC–MS/MS analytical procedure. Food Control. 2015, 47, 577–584. [Google Scholar] [CrossRef]
- Desmarchelier, A.; Mujahid, C.; Racault, L.; Perring, L.; Lancova, K. Analysis of Patulin in Pear- and Apple-Based Foodstuffs by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. J. Agric. Food Chem. 2011, 59, 7659–7665. [Google Scholar] [CrossRef]
- Sadok, I.; Szmagara, A.; Krzyszczak, A. Validated QuEChERS-based UHPLC-ESI-MS/MS method for the postharvest control of patulin (mycotoxin) contamination in red-pigmented fruits. Food Chem. 2023, 400, 34066. [Google Scholar] [CrossRef]
- Zhao, M.J.; Shao, H.; He, Y.H.; Li, H.; Yan, M.M.; Jiang, Z.J.; Wang, J.; Ahmet Hacımüftüoğlu, A.M.A.; Yan, F.Y.; Wang, Y.L.; et al. The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. J. Chromatogr. B 2019, 1125, 121714. [Google Scholar] [CrossRef]
- Duncan, H.; Juan, C.; Mañes, J.; Mercader, J.V.; Abad-Somovilla, A.; Abad-Fuentes, A. Green derivatization strategy coupled to high-resolution mass spectrometry (QTOF-MS) for patulin monitoring in fruit products. Talanta 2023, 253, 124061. [Google Scholar] [CrossRef]
- Sulyok, M.; Stadler, D.; Steiner, D.; Krska, R. Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: Challenges and solutions. Anal. Bioanal. Chem. 2020, 412, 2607–2620. [Google Scholar] [CrossRef]
- Seo, M.; Kim, B.; Baek, S.Y. An optimized method for the accurate determination of patulin in apple products by isotope dilution-liquid chromatography/mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 5433–5442. [Google Scholar] [CrossRef]
- da Silva, C.R.; Simões, C.T.; Vidal, J.K.; Reghelin, M.A.; de Almeida, C.A.A.; Mallmann, C.A. Development and validation of an extraction method using liquid chromatography-tandem mass spectrometry to determine patulin in apple juice. Food Chem. 2022, 366, 130654. [Google Scholar] [CrossRef]
- Campone, L.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Rastrelli, L. Rapid and automated analysis of aflatoxin M1 in milk and dairy products by online solid phase extraction coupled to ultra-high-pressure-liquid-chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1428, 212–219. [Google Scholar] [CrossRef]
- Nathanail, A.V.; Sarikaya, E.; Jestoi, M.; Godula, M.; Peltonen, K. Determination of deoxynivalenol and deoxynivalenol-3-glucoside in wheat and barley using liquid chromatography coupled to mass spectrometry: On-line clean-up versus conventional sample preparation techniques. J. Chromatogr. A 2014, 1374, 31–39. [Google Scholar] [CrossRef]
- Vasconcelos Soares Maciel, E.; Mejía-Carmona, K.; Lanças, F.M. Evaluation of Two Fully Automated Setups for Mycotoxin Analysis Based on Online Extraction-Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2020, 25, 2756. [Google Scholar] [CrossRef]
- Zhou, W.; Wieczorek, M.N.; Pawliszyn, J. High throughput and automated solid-phase microextraction and determination by liquid chromatography-mass spectrometry for the analysis of mycotoxins in beer. Food Chem. 2023, 426, 136557. [Google Scholar] [CrossRef]
- Medina, D.A.V.; Maciel, E.V.S.; Lancas, F.M. Modern automated sample preparation for the determination of organic compounds: A review on robotic and on-flow systems. TrAC Trends Anal. Chem. 2023, 166, 117171. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Guidelines for the Validation of Chemical Methods for the FDA Foods Program, 3rd Edition. Available online: https://www.fda.gov/science-research/field-science-and-laboratories/method-validation-guidelines (accessed on 17 May 2024).
- U.S. Food and Drug Administration (FDA). CVM GFI #118 Mass Spectrometry for Confirmation of Identity of Animal Drug Residues. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-118-mass-spectrometry-confirmation-identity-animal-drug-residues (accessed on 17 May 2024).
- ISO IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- Gökmen, V.; Acar, J. Rapid reversed-phase liquid chromatographic determination of patulin in apple juice. J. Chromatogr. A 1996, 730, 53–58. [Google Scholar] [CrossRef]
- Zhang, K.; Flannery, B.M.; Zhang, L. Challenges and Future State for Mycotoxin Analysis: A Review from a Regulatory Perspective. J. Agric. Food Chem. 2024, 72, 8380–8388. [Google Scholar] [CrossRef]
- Rychlik, M.; Asam, S. Stable isotope dilution assays in mycotoxin analysis. Anal. Bioanal. Chem. 2008, 390, 617–628. [Google Scholar] [CrossRef]
- King, R.; Bonfiglio, R.; Fernandez-Metzler, C.; Miller-Stein, C.; Olah, T. Mechanistic investigation of ionization suppression in electrospray ionization. J. Am. Soc. Spectrom. 2000, 11, 942–950. [Google Scholar] [CrossRef]
- Hanold, K.A.; Fischer, S.M.; Cormia, P.H.; Miller, C.E.; Syage, J.A. Atmospheric pressure photoionization. 1. General properties for LC/MS. Anal. Chem. 2004, 76, 2842–2851. [Google Scholar] [CrossRef]
- Notardonato, I.; Gianfagna, S.; Castoria, R.; Ianiri, G.; De Curtis, F.; Russo, M.; Avino, P. Critical review of the analytical methods for determining the mycotoxin patulin in food matrices. Rev. Anal. Chem. 2021, 40, 144–160. [Google Scholar] [CrossRef]
- Zhang, K.; Tan, S.; Xu, D. Determination of Mycotoxins in Dried Fruits Using LC-MS/MS—A Sample Homogeneity, Troubleshooting and Confirmation of Identity Study. Foods 2022, 11, 894. [Google Scholar] [CrossRef] [PubMed]
- Layne, J.; Farcas, T.; Rustamov, I.; Ahmed, F. Volume-load capacity in fast-gradient liquid chromatography effect of sample solvent composition and injection volume on chromatographic performance. J. Chromatogr. A 2001, 913, 233–242. [Google Scholar] [CrossRef] [PubMed]
- ISO 5725-2:2019; Accuracy (Trueness and Precision) of Measurement Methods and Results. Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/69419.html (accessed on 17 May 2024).
- U.S. Environmental Protection Agency. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2 (821-R-16-006). 2016. Available online: https://www.epa.gov/cwa-methods/procedures-detection-and-quantitation-documents (accessed on 17 May 2024).
- Joint Committee for Guides in Metrology (JCGM). Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. JCGM Standard No. 100:2008. Joint Committee for Guides in Metrology. 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (accessed on 17 May 2024).
- Miller, J.N. Basic statistical methods for analytical chemistry Part 2. Calibration and regression methods a review. Analyst 1991, 116, 3–14. [Google Scholar] [CrossRef]
- Zhang, K.; Wong, J.W.; Yang, P.; Hayward, D.G.; Sakuma, T.; Zou, Y.; Schreiber, A.; Borton, C.; Nguyen, T.V.; Kaushik, B.; et al. Protocol for an electrospray ionization tandem mass spectral product ion library: Development and application for identification of 240 pesticides in foods. Anal. Chem. 2012, 84, 5677–5684. [Google Scholar] [CrossRef]
Conc. (ppb) | Average Signal Ratio of Patulin/13C-Patulin | RSD (%), n = 8 * |
---|---|---|
2 | 0.004 | 19 |
5 | 0.020 | 4 |
10 | 0.046 | 8 |
20 | 0.100 | 6 |
50 | 0.333 | 5 |
100 | 0.509 | 5 |
200 | 1.228 | 8 |
500 | 2.964 | 4 |
1000 | 6.415 | 4 |
Concentration (ng/g) | Spike Matrix | Range | Within-Matrix Variability (RSDr %) | Within-Matrix Variability (RSDR %) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Apple Based Babyfood | Apple Juice | Apple Sauce | Apple Puree | Fruit Jam | Fruit Roll | Apple Cider | Recovery | RSD | |||
10 | 104 (4) | 91 (6) | 92 (8) | 89 (7) | 92 (8) | 104 (9) | 93 (11) | 89–104 | 4–11 | 8 | 9 |
50 | 109 (3) | 114 (7) | 106 (2) | 113 (4) | 111 (5) | 114 (4) | 105 (4) | 105–114 | 3–7 | 4 | 5 |
200 | 105 (1) | 110 (4) | 98 (0.4) | 106 (6) | 96 (3) | 103 (4) | 91 (7) | 91–110 | 0.4–7 | 5 | 7 |
1000 | 104 (1) | 107 (2) | 96 (1) | 106 (3) | 104 (5) | 107 (2) | 104 (4) | 96–107 | 1–5 | 3 | 4 |
Concentration (ng/g) | Spike Matrix | Range | Within-Matrix Variability (RSDr %) | Within-Matrix Variability (RSDR %) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Apple Based Babyfood | Apple Juice | Apple Sauce | Apple Puree | Fruit Jam | Fruit Roll | Apple Cider | Recovery | RSD | |||
10 | 91 (8) | 96 (5) | 119 (7) | 85 (7) | 100 (7) | 102 (2) | 125 (6) | 91–125 | 2–8 | 6 | 15 |
50 | 115 (5) | 107 (5) | 110 (4) | 106 (2) | 113 (5) | 103 (2) | 113 (1) | 103–115 | 2–5 | 4 | 5 |
200 | 96 (5) | 93 (2) | 92 (3) | 86 (2) | 90 (3) | 96 (4) | 105 (4) | 86–105 | 2–5 | 4 | 7 |
1000 | 109 (4) | 103 (2) | 100 (2) | 96 (6) | 104 (4) | 95 (7) | 106 (2) | 95–109 | 2–7 | 4 | 6 |
Analytes | Q1 Mass (Da) | Q3 Mass (Da) | Retention Time (min) | DP (eV) | EP (eV) | CE (eV) | CXP (eV) |
---|---|---|---|---|---|---|---|
Patulin | 153.0 | 108.9 | 2.9 | −5 | −10 | −12 | −29 |
153.0 | 81.1 | 2.9 | −5 | −10 | −12 | −5 | |
13C-Patulin | 160.0 | 115.0 | 2.9 | −20 | −10 | −12 | −11 |
160.0 | 86.0 | 2.9 | −20 | −10 | −12 | −11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhang, L. Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS. Toxins 2024, 16, 238. https://doi.org/10.3390/toxins16060238
Zhang K, Zhang L. Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS. Toxins. 2024; 16(6):238. https://doi.org/10.3390/toxins16060238
Chicago/Turabian StyleZhang, Kai, and Lauren Zhang. 2024. "Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS" Toxins 16, no. 6: 238. https://doi.org/10.3390/toxins16060238
APA StyleZhang, K., & Zhang, L. (2024). Determination of Patulin in Apple Juice and Apple-Derived Products Using a Robotic Sample Preparation System and LC-APCI-MS/MS. Toxins, 16(6), 238. https://doi.org/10.3390/toxins16060238