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Abstract: Cardiovascular disease (CVD) frequently occurs in patients with chronic kidney disease
(CKD), particularly those undergoing dialysis. The mechanisms behind this may be related to tradi-
tional risk factors and CKD-specific factors that accelerate atherosclerosis and vascular calcification
in CKD patients. The accumulation of uremic toxins is a significant factor in CKD-related systemic
disorders. Basic research suggests that indoxyl sulfate (IS), a small protein-bound uremic toxin,
is associated with macrophage dysfunctions, including increased oxidative stress, exacerbation of
chronic inflammation, and abnormalities in lipid metabolism. Strategies to mitigate the toxicity of
IS include optimizing gut microbiota, intervening against the abnormality of intracellular signal
transduction, and using blood purification therapy with higher efficiency. Further research is needed
to examine whether lowering protein-bound uremic toxins through intervention leads to a reduction
in CVD in patients with CKD.

Keywords: indoxyl sulfate; macrophage; atherosclerosis; uremic toxins; adsorption; chronic kidney
disease; uremia

Key Contribution: Indoxyl sulfate (IS), a protein-bound uremic toxin, induces macrophage inflamma-
tion and accelerates atherosclerosis. Reducing IS with activated charcoal or dialysis and inhibiting the
cascade in IS-induced macrophage inflammation will be critical for the prevention of uremia-induced
cardiovascular disease.

1. Introduction

Cardiovascular disease (CVD), which encompasses coronary artery disease, peripheral
artery disease, cerebrovascular disease, and aortic atherosclerosis, is the primary cause of
mortality in patients with end-stage kidney disease (ESKD) [1].

The major factors of CVD are atherosclerosis and vascular calcification. Atherosclerosis
is accelerated by the malfunction of macrophages, which is caused partially by uremic
toxins in cases of chronic kidney disease (CKD) patients, especially those undergoing
hemodialysis. In this article, we will review the mechanisms of atherosclerosis progression
caused by macrophages and indoxyl sulfate (IS), one of the major uremic toxins.

2. Cardiovascular Disease in CKD Patients

While lipid-lowering treatments contribute to the risk reduction of cardiovascular
events in the general population [2,3], large randomized controlled trials (RCTs) did not
reveal any effectiveness of lipid-lowering therapy in dialysis patients. The Die Deutsche
Diabetes Dialyse (4D) trial showed that atorvastatin had no significant effect on cardiovas-
cular death, nonfatal myocardial infarction, and stroke in patients with diabetes receiving
hemodialysis [4]. The Assessment of Survival and Cardiovascular Events (AURORA) trial
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showed that lowering the serum LDL cholesterol levels using rosuvastatin had no signifi-
cant effect on death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal
stroke in hemodialysis patients [5]. The Study of Heart And Renal Protection (SHARP) trial
showed that though the reduction in low-density lipoprotein (LDL) by the administration
of ezetimibe and simvastatin had a significant effect on atherosclerotic events, including
heart attacks, stroke, or operations, to unblock arteries in non-dialysis dependent patients
with CKD stages 3–5, the differences were not significant in dialysis patients [6]. These
findings suggest that lipid-lowering treatments are insufficient for CKD-induced CVD
prevention in ESKD patients.

The acceleration of CVD in CKD patients could not only be induced by traditional
risk factors, such as aging, male, diabetes, smoking, hypertension, lipid metabolism disor-
der, hyperhomocysteinemia, inflammation, oxidative stress, and family history, but also
by CKD-specific factors, such as anemia, clotting disorder, mineral metabolism disorder,
sympathetic hyperactivity, and accumulation of uremic toxins [7–9]. Previous research
about chronic kidney disease–mineral and bone disorder (CKD-MBD) showed that hyper-
phosphatemia, hypercalcemia, or high PTH levels are associated with CVD events [10].
The Evaluate the New Phosphate Iron-Based Binder Sucroferric Oxyhydroxide in Dialysis
Patients with the Goal of Advancing the Practice of EBM (EPISODE) trial, which was
an open-label multicenter, randomized controlled trial comparing lanthanum carbonate
versus sucroferric oxyhydroxide, or a standard phosphate control (5.0–6.0 mg/dL) versus a
strict control (3.5–4.5 mg/dL) in dialysis patients, showed that strict management of serum
phosphorus suppressed the coronary artery calcification scores during the 12 months of
treatment [11]. In the Dialysis Outcomes and Practice Pattern Study (DOPPS), patients with
serum phosphorus levels between 3.6 and 5.0 mg/dL had lower cardiovascular mortality
than those managed with levels above 6.0 mg/dL [12]. Also, in the post hoc analysis of
the AURORA trial, dialysis patients who were managed with lower serum phosphorus
levels exhibited a significantly greater suppression of cardiovascular events and all-cause
mortality, which could be attributed to statin use, compared to those with serum phospho-
rus levels exceeding 5 mg/dL [13]. As mentioned, the management of serum phosphorus
is crucial for reducing cardiovascular events in CKD and dialysis patients. With the re-
cent introduction of new phosphate-lowering agents and calcimimetics, achieving the
appropriate management of calcium, phosphorus, and PTH has become more feasible. A
meta-analysis of 15 large-scale double-blind placebo-controlled trials showed that sodium
glucose co-transporter 2 (SGLT2) inhibitors suppress cardiovascular events and improve
the prognosis in CKD patients, reducing the risk of cardiovascular death or hospitalization
for heart failure [14].

The removal efficiency of uremic toxins, ranging from small-sized molecules to low
molecular weight proteins, has improved in the maintenance dialysis patients due to the
widespread use of high-performance membranes and hemodiafiltration (HDF) methods.
The CONVINCE study reported that high-dose HDF demonstrated a lower risk of overall
mortality compared with high-flux hemodialysis [15]. However, the overall removal
effectiveness of uremic toxins may still need to be considered because the survival in
dialysis patients is still worse than that in the general population [16]. At this point, the
increase in serum levels of protein-bound uremic toxins, such as IS and p-cresyl sulfate
(PCS), is particularly associated with an increased risk of the progression of renal failure,
cardiovascular events, and mortality [17].

3. Uremic Toxins and Cardiovascular Disorders in CKD Patients

Accumulating uremic toxins is a major factor in CKD-related systemic disorders.
Uremic toxins are defined as follows: (1) Such a compound should be chemically identified,
and accurate quantitative analysis in biological fluids should be possible; (2) the total
body and plasma levels should be higher in uremic than in nonuremic subjects; (3) high
concentrations should be related to specific uremic dysfunctions and/or symptoms that
decrease or disappear when the concentration is reduced; (4) biological activity, conforming
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to clinical changes observed in conjunction with the uremic syndrome, should be proven
in vivo, ex vivo, or in vitro; and (5) concentrations in these studies should conform to those
found in body fluids or tissue of uremic patients [18,19]. The conventional classification
of uremic toxins is based on the report by Vanholder et al. as follows: small water-
soluble compounds (non-protein-bound, molecular weight <500 daltons), protein-bound
compounds, and middle molecules (>500 daltons) [19]. However, Rosner et al. updated the
definition and classification based on their physicochemical characteristics, dialysis removal
patterns, and clinical symptoms [20]. The suggested updates are as follows: (1) Solute
identification and accurate quantitative analysis in plasma, serum, or blood should be
possible; (2) plasma, serum, or blood levels should be higher in CKD than in subjects with
normal kidney function; (3) negative effects, conforming with or contributing to biological
or clinical changes in CKD, should be proven in vivo, ex vivo, or in vitro, and (4) biologically
active concentrations in these studies should conform to those found in plasma, serum,
or blood of CKD patients. Among them, small protein-bound molecules (SPBMs) have
been shown to exhibit significant toxicity in the arteries and to accelerate atherosclerosis
and vascular calcification in basic studies [21,22]. Many SPBMs are produced through the
metabolism of dietary proteins by gut microbiota and undergo conjugation reactions in the
liver. Due to their binding to essential proteins such as albumin in the bloodstream, SPBMs
have low removal efficiency through hemodialysis and tend to accumulate in the body.
The accumulation of SPBMs is associated with systemic disorders accompanying CKD,
including all-cause mortality, infectious events, cognitive disorders, and pruritus [23–27].

IS, one of the major SPBMs, has a binding rate of 97.7% in the blood of hemodialysis
patients, and the reduction rate with conventional dialysis is only 31.8% [26]. Vanholder
et al. ranked IS toxicity with the second highest evidence score in SPBMs, such as in-
flammation, CVD, CKD–MBD, fibrosis metabolic function, and thrombogenicity [28]. IS
acts widely across various organs, tissues, and cells such as bones [29–33], skeletal mus-
cles [34–44], and myocardium [45–51], causing dysfunction in their functions. A clinical
study has shown that the serum levels of IS increased with CKD progression, and high
levels of serum IS are independently associated with an increased all-cause mortality and
cardiovascular mortality in CKD patients [25] and a trend towards increased cardiovascular
events in hemodialysis patients [23]. Therefore, understanding the physiological effect of
IS on vascular toxicity and the therapeutic strategies for detoxifying IS will be critical for
improving mortality, as well as the activity of daily living (ADL) and quality of life (QOL)
in CKD patients.

4. Uptake of IS into Macrophages

Dysfunction of macrophages within atherosclerotic lesions is a significant feature of
atherogenesis. Bone-marrow-derived monocytes in peripheral circulation are recruited
into injured vascular endothelium or vascular smooth muscle. These monocytes differ-
entiate into macrophages, proliferating and absorbing oxidized LDL in atherosclerotic
lesions [52,53]. Lipid-loaded macrophages, also known as macrophage foam cells, con-
tribute to the development of atherosclerotic lesions by inducing focal inflammation, intimal
hyperplasia, or plaque, making it more susceptible to rupture [54,55]. As CKD accelerates
the progression of atherosclerosis, we opted to focus on the reaction of macrophages to IS
to understand its mechanism and identify therapeutic strategies for uremic atherosclerosis.

With atherosclerotic reactions occurring in the uremic state, IS can lead to the dys-
function of macrophages. IS is a byproduct of tryptophan, an essential aromatic amino
acid found in food. After being taken up by small intestinal epithelial cells, tryptophan
synthesizes various biological substances, including serotonin, melatonin, niacin, and
nicotinamide adenine dinucleotide [56]. A part of the remaining tryptophan is metab-
olized into indole by gut microbiota in the colon. The gut microbiota composition in
ESKD patients significantly differs from healthy controls, as represented by decreases in
the Lactobacillaceae and Prevotellaceae families [57]. A previous study revealed that IS
levels are controlled by manipulating gut microbiota with diet and genetically modified
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bacteria [58]. Indole is transported into the liver via the portal vein, where it is converted to
IS by hepatic sulfate conjugation. Because the kidney is primarily responsible for removing
IS, insufficient elimination of IS in CKD patients leads to increased IS levels in the plasma,
which can cause toxicity in various organs and tissues.

IS has been shown to stimulate monocytes, leading to vascular endothelial inflam-
mation [59]. Exposure of monocytes to IS and p-cresol promotes adhesion, invasion,
and migration of monocyte/macrophage through activating the integrin-linked kinase
(ILK)/AKT signaling pathway and podosome formation [60]. These biological reactions to
IS can lead to the accumulation of macrophages in vascular lesions.

In humans, organic anion transporters (OATs) and organic anion transporter polypep-
tides (OATPs) play crucial roles in the uptake of endogenous substances, including IS.
OATs transport a variety of molecules, such as cyclic nucleotides, conjugated sex steroids,
odorants, uric acid, prostaglandins, and/or metabolites. On the other hand, OATPs pri-
marily transport amphipathic organic anions with a molecular weight of over 300 Da [61].
OATs may be involved in interorgan communication [62]. Organic anion transporter 1
(OAT1) and organic anion transporter 3 (OAT3) are known to be transporters that take up
IS in vascular smooth muscle cells, endothelial cells, and proximal tubular cells [63–65].
However, there is no evidence of OAT1 or OAT3 expression in macrophages. According
to several reports, organic anion transporter polypeptide 2B1 (OATP2B1), a member of
the OATP family, may be involved in the uptake of IS into macrophages [66,67]. Knock-
down of OATP2B1 in human macrophages reduced the production of pro-inflammatory
cytokines [66], and an OATP2B1 inhibitor suppressed IS-induced oxidation and caused
a decline in phagocytosis [67]. Therefore, OATP2B1 is the primary transporter of IS in
macrophages.

5. IS-Induced Macrophage Inflammatory Reaction (Figure 1)

Monocytes circulating in the blood are a heterogeneous population that can be divided
into the following three subsets: CD14++CD16− (classical monocytes; cMo), CD14++CD16+
(intermediate monocytes; intMo), and CD14+CD16++ (non-classical monocytes; ncMo) [68].
cMo primarily perform phagocytosis and produce ROS in response to bacterial infections,
and under non-inflammatory conditions, they mature into ncMo. ncMo secrete inflamma-
tory cytokines and respond during viral infections. intMo has been implicated in CVD, and
an increased proportion of intMo is a predictor of CVD and acute heart failure [69]. In CKD
patients, intMo is an independent risk factor for cardiovascular events [70]. The proportion
of intMo also increases in chronic dialysis patients, and its extent may serve as a predictor
for the complications of CVD [71]. The plasma concentration of IS has been shown to
positively correlate with the proportion of CD14+CD16+ monocytes in circulation [72].

Macrophages are classified into two phenotypes based on function, namely the classi-
cally activated M1 phenotype and the alternatively activated M2 phenotype. In general,
M1 macrophages function in the recruitment of Th1 cells, resistance against microbial
pathogens, and regulation of tumor cell metabolism through innate and adaptive immune
responses by producing proinflammatory cytokines, such as interleukin-6 (IL-6), monocyte
chemoattractant protein-1 (MCP-1), and cyclooxygenase-2 (COX-2) [73]. M2 macrophages
function in the clearance of pathogens, anti-inflammatory response, tissue repair, and tumor
progression through producing inflammation regulators and tissue-proliferation activators,
such as interleukin-10 (IL-10), peroxisome proliferator-activated receptor gamma (PPARγ),
transforming growth factor-beta (TGF-β), and tissue inhibitor of metalloproteinases-1
(TIMP-1) [74,75]. Exposure of cells to uremic IS concentrations (100–2000 µM) results
in various cellular dysfunctions and the expression of inflammatory cytokines [76,77],
gives rise to nuclear factor (erythroid-2-related factor)-2 (Nrf2) downregulation [78], and
promotes the differentiation of macrophages towards the M1 phenotype by suppressing
delta-like ligand 4 (Dll4) degradation through the inhibition of the ubiquitin-proteasome
pathway [66]. The proliferation of M1 macrophages induced by IS is also because of the
downregulation of β-catenin, which induces M2 polarization of macrophages [79]. Recently,
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Klotho, a regulator of oxidative stress and senescence, has been reported to mediate one
of the critical molecular mechanisms that may alleviate the toxic inflammatory response
caused by IS, by promoting M2 macrophage polarization [80,81]. As kidney function
deteriorates, Klotho production decreases [82], which may enhance the IS-induced inflam-
matory response in macrophages [83]. Another study revealed that a moderate increase
in IS promotes monocyte transition into profibrotic macrophages, representing the M2
phenotype [72]. Moderate IS concentrations simulating CKD 1-3 (10 µM or 20 µM) results
in the upregulation of AhR and an anti-inflammatory immune response characterized
by reduced matrix metalloproteinase-9 (MMP-9) activity and overexpression of PPAR-γ,
TIMP-1, TGF-β, IL-10. Additionally, IS stimulation triggers a classical immune response,
increasing the production of inflammatory cytokines such as IL-6, C–C motif chemokine
ligand 2 (CCL2), and COX-2. Thus, stimulation by moderate IS concentrations induces
monocytes to undergo low-inflammatory, profibrotic macrophage polarization, similar to
that observed in M2 macrophages [72]. These results suggest that IS primarily induces
macrophage differentiation towards the pro-inflammatory M1 phenotype; however, IS may
also induce macrophage M2 differentiation. In other words, the composition of M1/M2 phe-
notype in macrophages may vary depending on the concentration of IS. This dual effect of
IS on macrophages may result in the progression of vascular remodeling in atherosclerotic
lesions in CKD patients.

IS increases oxidative stress, which plays a crucial role in the development of CVD in
CKD patients [84]. IS promotes the production of reactive oxygen species (ROS) partially
by stimulating the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)
pathway in cultured macrophages [67,76,85]. The aryl hydrocarbon receptor (AhR), one of
the intracellular receptors of dioxins and dioxin-like compounds, is considered the receptor
for IS [86]. AhR stimulation increases p47phox expression, activating NOX and producing
ROS [87].

Nrf2 is believed to promote the gene expression of phase II detoxifying enzymes and
antioxidant enzymes, and the Nrf2–Kelch-like ECH associating protein-1 (Keap1) system is
thought to play a role in suppressing oxidative stress and cellular protection [88]. Pedruzzi
et al. demonstrated that an impairment of the activation of the Nrf2-Keap1 system could
worsen oxidative stress and inflammation in CKD [89]. Furthermore, decreased expression
of Nrf2 in peripheral blood mononuclear cells of 20 hemodialysis patients compared to
11 healthy subjects was confirmed [90]. Recently, it was found that IS downregulates Nrf2
expression in HK-2 cells, which is mitigated by NF-κB inhibitors [78]. Therefore, IS, which
increases in CKD patients, may contribute to a dysfunction of the Nrf2/Keap1 system.
Activation of the antioxidant nuclear factor 2 (Nrf2)–Keap1 pathway, which is known as one
of the suppressors of the progression of the inflammatory state [91], may be impaired by IS-
induced AhR dysfunction, resulting in the induction of low inflammatory and profibrotic
macrophage polarization [92]. This reaction may contribute to maladaptive vascular
remodeling and aneurysm formation [72]. IS-induced AhR dysfunction may also partially
cause the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor-kappa
B (NF-κB) signaling pathway without activating the nucleotide-binding oligomerization
domain-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome [85,93–95].

The NLRP3 inflammasome is a significant component that mediates the activation of
caspase-1 and secretion of the mature proinflammatory cytokines, interleukin-1beta (IL-1β)
and interleukin-18 (IL-18), in response to stimulation by pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns (DAMPs) [96–98]. Inflamma-
tion induced by IS is partially associated with pro-matured-IL-1β proliferation combined
with MAPK/NF-κB signaling pathway activation and NLRP3 inflammasome inactivation,
resulting in insufficient maturation of IL-1β [93]. This response may cause low-grade
inflammation and the promotion of atherosclerosis.
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Figure 1. In advanced CKD, high IS levels promote the polarization and proliferation of M1
macrophages. IS is taken up into monocyte via OATP2B1 and binds to the intracellular recep-
tor AhR. This interaction leads to a decrease in the activity of the Wnt/β-catenin pathway and
Klotho, while increasing the activity of the Notch/DII4 pathway, inducing polarization towards M1
macrophages. In the M1 macrophages, the reaction between IS and AhR increases ROS production
through the NOX pathway, activating NF-κB/MAPK and promoting the production and secretion of
inflammatory cytokines (IL-1β, IL-6, TNF-α). However, in this process, the NLRP3 inflammasome,
which is responsible for maturing pro-IL-1β into IL-1β, is not activated strongly. On the other hand,
in mild to moderate CKD, IS increases the expression of AhR, activating the Nrf2/HO1/PPARγ
pathway and promoting M2 macrophage polarization. M2 macrophages primarily enhance the
production and secretion of regulators of inflammation (IL-10, TGF-β) and induce anti-inflammatory
activity. These reactions may indicate the exacerbation of inflammation, vascular remodeling, and
atherosclerosis associated with CKD progression. Abbreviations: AhR, aryl hydrocarbon receptor;
CKD, chronic kidney disease; Dll4, Delta-like ligand 4; HO1, heme oxygenase-1; IL-1β, interleukin-
1beta; IL-6, interleukin-6; IL-10, interleukin-10; IS, indoxyl sulfate; IS-AhR, indoxyl sulfate-bound aryl
hydrocarbon receptor; NF-kB, nuclear factor-kappa B; NLRP3, nucleotide-binding oligomerization
domain (NOD)-like receptor containing pyrin domain 3; NOX, NADPH oxidase; Nrf2, Nuclear
factor erythroid 2-related factor 2; OATP2B1, organic anion transporter polypeptide 2B1; PPARγ,
peroxisome proliferator-activated receptor gamma; Pro-IL-1β, pro-interleukin-1beta; ROS, reactive
oxygen species; TGF-β, transforming growth factor-beta; TNF-α, tumor necrosis factor-alpha.

6. Malfunction of Lipid Metabolism Associated with Foam Cell Formation Induced by
IS in Atherosclerotic Lesions

Impaired lipid metabolism in macrophages is one of the hallmarks of atherosclerosis
acceleration, and CKD is a major risk factor in addition to inflammation. Macrophages
internalize oxidized low-density lipoprotein (ox-LDL) through scavenger receptor type 1
(SR-A1), type 2 (SR-A2), CD36, and LDL receptor-1 (LOX-1) [99]. Intracellular deposition
of cholesterol esters via excessive ox-LDL metabolism results in the formation of foam
cells [100]. Foam cells accumulate and undergo the secretion of proinflammatory cytokines
and necrosis on the arterial wall, establishing atherosclerotic plaque. THP-1 macrophages
stimulated by IS increase CD36 expression and ox-LDL uptake, partly through activation
of the MAPK pathway [101]. Ox-LDL is considered one of the inducers of NLRP3 inflam-
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masome activation in macrophages [102,103]. Therefore, in CKD patients, an excessive
accumulation of ox-LDL associated with the exposure to IS might enhance macrophage
inflammasome activation, leading to increased production of proinflammatory cytokine
IL-1β. Serum high-density lipoprotein (HDL) level also decreases with the progression
of kidney disease [104,105]. In the early stages of CKD, HDL cholesterol level is asso-
ciated with increased IS levels [106]. Indole-3-acetic acid positively correlates with the
monocyte-to-HDL ratio in CKD patients [107]. Low HDL and non-HDL cholesterol levels
are associated with CVD in CKD patients, especially those undergoing dialysis [108,109].

HDL is the smallest and densest lipoprotein that contains cholesterols, phospho-
lipids, apoproteins, cholesterol esters, and triglycerides [110]. Normal HDL promotes
lipid-anti-oxidation, anti-inflammation, and anti-apoptosis. HDL is biosynthesized when
apolipoprotein A1 (ApoA1) acquires cholesterols and phospholipids in the circulation via
the ATP-binding cassette transporter [111]. HDL in the uremic state fails these crucial
roles of lipid metabolism. A large cohort study in hemodialysis patients showed that all-
cause and CVD mortality formed the U curve, signifying the increasing risk with the HDL
cholesterol level of between <30 mg/dL and >60 mg/dL [108]. ApoA1, one of the major
components of HDL and which stimulates cholesterol efflux through ATP-binding cassette
(ABC) transporters, is carbamylated and significantly reduces the extent of cholesterol
efflux from macrophages in the uremic state [112]. Macrophages and their related choles-
terol efflux are crucial in atherosclerosis formation with HDL dysfunction. HDL isolated
from hemodialysis patients showed less cholesterol efflux in macrophages [113]. Uremic
HDL also enhances macrophage inflammatory reactions [113]. In addition, IS may induce
HDL dysfunction in CKD patients. A cross-sectional study investigating the relationship
between IS and HDL cholesterol levels in CKD stages 1–3 showed that increasing IS levels
were an independent risk factor of low HDL cholesterol levels. Dyslipidemia in early CKD
patients may be associated with IS accumulation [106]. When macrophages are reacted
with IS in vitro, uremic macrophages show impaired cholesterol efflux to HDL [85]. IS
inhibits the expression of ATP-binding cassette transporter G1 (ABCG1), and the activation
of the liver X receptor (LXR) with the LXR agonist, T0901317, improves the reaction [85].

Overall, lipid and macrophage dysfunctions and their resulting interactions promote
foam cell formation in CKD patients. Notably, IS is a critical factor in promoting lipid-
loaded macrophage accumulation.

7. Therapeutic Strategies for Atherosclerosis Caused by SPBMs
7.1. Diet and Gut Microbiota

As a dietary therapy for CKD, there is growing attention to the importance of using
plant-based ingredients with low-phosphorus protein. In a randomized crossover trial
targeting maintenance hemodialysis patients, intervention with the one-week therapeutic
diet promptly improved mineral metabolism abnormalities, leading to a decrease in total
indoxyl sulfate concentration [114]. Furthermore, in a post hoc analysis of a randomized
controlled crossover trial targeting CKD stage 3–4 patients, the therapeutic diet reduced
the excretion of acid, IS, and PCS in urine compared to the conventional diet after seven
days [115]. These results suggest that a plant-centered diet with reduced phosphorus
content may suppress the production of uremic toxins in the body and contribute to
mitigating metabolic acidosis and oxidative stress.

The gut microbiota composition changes with kidney disease progression due to
uremic toxin production [58,116]. A decrease in the Lactobacillus species was observed
in rats with kidney injury, but it was ameliorated by Lactobacillus supplementation [117].
Mishima et al. demonstrated the association between the gut microbiota and the pro-
duction of uremic toxins through basic research [118–120]. These results indicated that
the production of food-derived uremic toxins depends substantially on the microbiota.
Under germ-free renal failure conditions in mice, IS and other food-derived uremic toxins
(PCS, phenyl sulfate, cholate, and hippurate) and short-chain fatty acids were absent in the
plasma, urine, and feces [118]. The oral administration of lubiprostone, a ClC-2 chloride
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channel activator, and the optimized proliferation of bacteria, such as the Lactobacillaceae
family or Prevotella genus, decreased IS and suppressed tubular injury, kidney fibrosis,
and systemic inflammation [119]. Canagliflozin, a SGLT2 inhibitor, optimized gut micro-
biota composition via increased cecal short-chain fatty acids, reduced serum IS levels, and
suppressed systemic inflammation and kidney injury [120]. SGLT2 inhibitors have also
been shown to alter the gut microbiota and potentially reduce the production of uremic
toxins derived from amino acids, as revealed in proteomics analyses using mice [121].

According to some animal experiments, the administration of the oral charcoal adsor-
bent AST-120 contributes to the suppression of bacteria-producing uremic toxin precursors
or restoration of the Lactobacillus population and mitigation of systemic inflammation and
kidney injury [122–124]. Therefore, the reduction in uremic toxins by AST-120 may depend
on adsorptive properties and flora-restoration properties.

In humans, some therapeutic interventions could reduce the accumulation of ure-
mic toxins by optimizing gut microbiota [125]. For example, the intake of a very low
protein diet (0.3 g/kg/body weight/day) with keto analogs significantly reduced serum
IS levels compared to the intake of a low protein diet (0.6 g/kg body weight/day) by
CKD patients not yet on dialysis [126]. Based on various systematic reviews, prebiotics,
probiotics, or synbiotics decreased IS and microinflammatory markers without causing
adverse effects, partly because of the promotion of Bifidobacterium, Lactobacillus, and
Subdoligranulum proliferation [127–132]; however, other systematic reviews revealed that
these microbiota-derived therapies led to little or no significant change in the circulating
IS concentrations [133–135]. Although it is controversial whether prebiotics, probiotics, or
synbiotics effectively reduce uremic toxins, the effectiveness might be changed by factors
such as the duration of use or combination with other drugs.

Curcumin, the primary ingredient of turmeric, is a natural polyphenol with antioxidant
and anti-inflammatory effects [136,137]. In an RCT comparing the 12-week curcumin
intake group with the placebo group among peritoneal dialysis patients, curcumin tended
to decrease plasma PCS concentration, suggesting a potential mitigation of oxidative
stress [138]. In another RCT involving hemodialysis patients, curcumin intake was shown
to attenuate inflammatory cytokines compared to the control group [139]. While it did not
result in differences in plasma IS or IAA levels, it significantly reduced PCS levels [140]. A
clinical study observing changes in the gut microbiota following curcumin supplementation
in adult patients with CKD stage 3-4 showed a significant increase in Lactobacillus spp.
and a tendency of increase in the Prevotella group at 3 to 6 months [141]. Curcumin has
been demonstrated in multiple basic and clinical studies to possess anti-inflammatory,
anti-fibrotic, and albuminuria-reducing effects, suggesting multifaceted desirable effects
even in chronic kidney disease [142].

7.2. Inhibition of the Cellular Toxicity of SPBMs

Previous in vitro studies about IS and macrophages revealed that the inhibition of
NADPH, NF-κB, MAPK, OATs, OATPs, or AhR exerts anti-inflammatory effects, which
might be because of interference with the oxidative stress induced by IS. Resveratrol,
which is known to be a polyphenol with properties that attenuate oxidative stress and
inflammation, activated the Nrf2 pathway which was downregulated by IS, significantly
reduced the malondialdehyde (MDA) and ROS production, and inhibited the IS-induced
expression of NF-κB in macrophage-like RAW 264.7 macrophages [143].

Resveratrol or other antioxidants may reduce the cellular toxicity of SPBMs, but there
are few related studies and insufficient evidence regarding their use. Probenecid, as a
potent inhibitor of the OAT, may inhibit the intracellular uptake of IS and suppress the
induction of ROS. N-acetylcysteine (NAC), ascorbate (Vitamin C), or alpha-tocopherol
(Vitamin E) are well-known antioxidants. Sung CC et al. introduced several results of RCTs
regarding the clinical effects of anti-oxidants on clinical outcomes in dialysis patients in a
review article [144]. The use of tocopherol did not lead to a significant change in overall
mortality among dialysis patients; however, it was reported to reduce cardiovascular
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disease [145]. Additionally, the use of acetylcysteine reduced cardiovascular events by
30% and stroke by 36% over a two-year observation period in hemodialysis patients [146].
Furthermore, using Vitamin C significantly reduced the level of oxidative DNA products,
specifically 8-hydroxy-2′-deoxyguanosine, in the peripheral blood lymphocytes of chronic
hemodialysis patients [147]. In basic research, several antioxidants have been reported to
reduce oxidative stress caused by uremia. NAC inhibited IS-induced ROS production in
NRK-52E cells, a rat-derived renal cell line [148]. Additionally, ascorbate suppressed the
IS-induced ROS expression in the vascular endothelial tissues of the rat thoracic aorta [149].
Therefore, antioxidants may alleviate oxidative stress caused by IS and potentially lead to
favorable clinical outcomes.

7.3. Removal of SPBMs

The choice of appropriate renal replacement therapy (RRT) methods could be crucial
for effectively removing uremic solutes.

There are several negative studies as follows. A systematic analysis of representa-
tive uremic toxin removal with hemodialysis (HD), online post-dilution hemodiafiltration
(postHDF), and online predilution hemodiafiltration (preHDF) in a single-center crossover
prospective observational study showed that the mean protein-bound solutes reduction
ratio did not differ between the different treatments, except for PCS with a higher reduction
ratio during HDF treatments [150]. Hemodialysis with a medium cut-off dialyzer, capable
of removing larger middle molecules (molecular weight 25–60 kDa), was expected to effi-
ciently remove SPBMs but could not reduce IS or other SPBMs [151]. Longer hemodialysis
durations, which enable favorable control of the left ventricular mass, blood pressure, or
small molecule accumulation, did not significantly reduce plasma IS levels [152].

Some studies revealed the differences in the reduction rate of IS or suppression of
oxidative stress. Direct hemoperfusion (DHP) with a column containing activated carbon
markedly reduced SPBMs, such as IS, PCS, and indole-3-acetic acid (IAA), in the serum
samples of HD patients [153]. There are several concerns if we apply DHP in a clinical
setting. The column might remove crucial molecules for homeostatic control, or it might be
cost-ineffective if we use DHP to improve the prognosis of dialysis patients. Hexadecyl-
immobilized cellulose beads (HICB), known as β2-microglobulin adsorption column on
dialysis-related amyloidosis, also decreased the serum-free IS, IAA, phenyl sulfate (PS),
and PCS levels but did not effectively remove SPBMs in dialysis patients [154]. Ultrapure
dialysis fluid or vitamin E-coated dialyzers may be adequate to alleviate oxidative stress
in the uremic state [155,156]. A post hoc analysis from the previous randomized control
trial revealed that high-volume hemodiafiltration could decrease IS and other SPBMs more
effectively than high-flux hemodialysis [157]. These methods could indirectly suppress IS
toxicity.

Recently, some research showed that intervention to reduce the albumin-binding prop-
erties of IS may be effective for removing IS. Albumin-binding competitors, e.g., ibuprofen,
increase the dialytic removal of SPBMs, including IS, in blood [158]. Yamamoto et al. also
revealed that the acidic and alkaline pH conditions of human serum weakens the protein-
binding affinity of SPBMs, including IS, in vitro [159]. Clinical application of these systems
to dialysis fluid circuits may promote SPBMs to inhibit the binding of SPBMs with plasma
proteins and effectively remove SBPMs.

In summary, while DHP, HICB, and vitamin E-coated hemodialyzers are considered
effective for the further removal of SPBMs, their clinical use is not established due to insuf-
ficient consideration of clinical outcomes, cost-effectiveness, and potential adverse effects.

Another strategy for removing IS would be inhibiting adsorption and promoting
excretion through the intestine. In a single-center RCT involving maintenance hemodialysis
patients, oral administration of activated charcoal for eight weeks reduced the serum
urea and phosphate compared to the placebo but did not significantly change the serum
IS [160]. AST-120 is an orally administered spherical carbon adsorbent that can adsorb
uremic toxins, including the precursors of IS in the intestine. It is used to preserve kidney
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function and improve the symptoms of uremia in patients with progressive CKD [161].
Oral administration of AST-120 to dialysis patients for two weeks was associated with
a 45% reduction in serum IS and a simultaneous significant decrease in oxidative stress
markers, such as 8-isoprostane and oxidative albumin. AST-120 decreases necrotic areas,
reduces the deposition of IS, and inhibits pro-inflammatory cytokines, such as MCP-1,
tumor necrosis factor-alpha (TNF-α), and IL-1β, in the aorta of uremic mice. AST-120
is indicated to stabilize atherosclerotic plaque [162]. Post hoc analysis of the K-STAR
study (Kremezin study against renal progression in Korea), which was a prospective,
multicenter, randomized control study, with the AST-120 arm (n = 226) and the control
arm (n = 239) followed up for 36 months, revealed that AST-120 decreases the risk of
cardiovascular events in CKD. Moreover, a decrease in the serum IS concentration due to
AST-120 use during the study period of one year was associated with the suppression of
CKD progression [163]. Therefore, using AST-120 may be beneficial for preventing CVD
progression due to the reduction of IS accumulation in CKD patients [164].

8. Conclusions—Future Directions in Uremia Research

We reviewed the aggravation of atherosclerosis caused by the malfunction of macrophages
exposed to IS. Based on previous studies, we hypothesized that IS is transported into
macrophages through OATP2B1, then binds to AhR and produces ROS, which activates
several inflammatory pathways and simultaneously promotes foam cell formation by
increasing ox-LDL uptake and impairing cholesterol efflux. Further research is necessary to
develop strategies to minimize vascular injury caused by IS in CKD patients. Therapeutic
approaches that target the gut microbiota with medication or direct reduction by specialized
blood purification may be practical.
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