Exploring the Impact of Efavirenz on Aflatoxin B1 Metabolism: Insights from a Physiologically Based Pharmacokinetic Model and a Human Liver Microsome Study
Abstract
:1. Introduction
2. Results
2.1. SimCYP Simulations
2.2. Co-Incubation of Efavirenz and Aflatoxin B1 in Pooled Human Liver Microsomes
3. Discussion
3.1. SimCYP Simulations
3.1.1. Research Premise 1: Does Single Exposure to EFV Impact the PK of AFB1 When Acutely Exposed?
3.1.2. Research Premise 2: Does Daily Exposure to EFV Impact the PK of AFB1 When Daily Exposed for 30 Days?
3.1.3. Research Premise 3: Does Daily Exposure to EFV Impact the PK of AFB1 When Acutely Exposed?
3.1.4. Research Premise 4: Does Daily Exposure to EFV/LAM/TFV Impact the PK of AFB1 When Exposed Daily?
3.2. Co-Incubation of Efavirenz and Aflatoxin B1 in Pooled Human Liver Microsomes
4. Conclusions
5. Materials and Methods
5.1. SimCYP Simulations
5.2. Co-Incubation of Efavirenz and Aflatoxin B1 in Pooled Human Liver Microsomes
5.3. LC-MS/MS
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bandyopadhyay, R.; Ortega-Beltran, A.; Akande, A.; Mutegi, C.; Atehnkeng, J.; Kaptoge, L.; Senghor, A.L.; Adhikari, B.N.; Cotty, P.J. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate change. World Mycotoxin J. 2016, 9, 771–789. [Google Scholar] [CrossRef]
- Hamid, A.S.; Tesfamariam, S.G.; Zhang, Y.; Zhang, Z.G. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention. Oncol. Lett. 2013, 5, 1087. [Google Scholar] [CrossRef] [PubMed]
- Zingales, V.; Taroncher, M.; Martino, P.A.; Ruiz, M.-J.; Caloni, F. Climate Change and Effects on Molds and Mycotoxins. Toxins 2022, 14, 445. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Q.; Wu, J.; Wu, W.; Jiang, J.; Yan, H.; Huang, J.; Sun, Y.; Deng, Y. The metabolism and biotransformation of AFB1: Key enzymes and pathways. Biochem. Pharmacol. 2022, 199, 115005. [Google Scholar] [CrossRef] [PubMed]
- Rushing, B.R.; Selim, M.I. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem. Toxicol. 2019, 124, 81–100. [Google Scholar] [CrossRef] [PubMed]
- Yourtee, D.M.; Bean, T.A.; Kirk-Yourtee, C.L. Human aflatoxin B1 metabolism: An investigation of the importance of aflatoxin Q1 as a metabolite of hepatic post-mitochondrial fraction. Toxicol. Lett. 1987, 38, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.S. MYCOTOXINS|Toxicology. Encycl. Food Sci. Nutr. 2003, 4096–4108. [Google Scholar] [CrossRef]
- Bbosa, G.S.; Kitya, D.; Odda, J.; Ogwal-Okeng, J. Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health 2013, 5, 14–34. [Google Scholar] [CrossRef]
- Tran, V.N.; Viktorová, J.; Ruml, T. Mycotoxins: Biotransformation and bioavailability assessment using caco-2 cell monolayer. Toxins 2020, 12, 628. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.G.; Rădulescu, A.L.; Georgescu, S.E.; Dinischiotu, A. Aflatoxins in Feed: Types, Metabolism, Health Consequences in Swine and Mitigation Strategies. Toxins 2022, 14, 853. [Google Scholar] [CrossRef]
- Omar, S.S. Aflatoxin M1 levels in raw milk, pasteurized milk and infant formula. Ital. J. Food Saf. 2016, 5, 5788. [Google Scholar] [CrossRef] [PubMed]
- Ueng, Y.F.; Guengerich, F.P.; Shimada, T.; Yamazaki, H. Oxidation of Aflatoxin B1 by Bacterial Recombinant Human Cytochrome P450 Enzymes. Chem. Res. Toxicol. 1995, 8, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Moyo, E.; Moyo, P.; Murewanhema, G.; Mhango, M.; Chitungo, I.; Dzinamarira, T. Key populations and Sub-Saharan Africa’s HIV response. Front. Public Health 2023, 11, 1079990. [Google Scholar] [CrossRef] [PubMed]
- Michaud, V.; Ogburn, E.; Thong, N.; Aregbe, A.O.; Quigg, T.C.; Flockhart, D.A.; Desta, Z. Induction of CYP2C19 and CYP3A Activity Following Repeated Administration of Efavirenz in Healthy Volunteers. Clin. Pharmacol. Ther. 2012, 91, 475. [Google Scholar] [CrossRef] [PubMed]
- Lootens, O.; De Boevre, M.; Ning, J.; Gasthuys, E.; Van Bocxlaer, J.; De Saeger, S.; Vermeulen, A. Building a Human Physiologically Based Pharmacokinetic Model for Aflatoxin B1 to Simulate Interactions with Drugs. Pharmaceutics 2023, 15, 894. [Google Scholar] [CrossRef] [PubMed]
- ICH. Committee for Medicinal Products for Human Use ICH Guideline M12 on drug Interaction Studies. 2022. Available online: www.ema.europa.eu/contact (accessed on 28 May 2024).
- FDA. In Vitro Drug Interaction Studies-Cytochrome P450 Enzyme-and Transporter-Mediated Drug Interactions Guidance for Industry. 2020. Available online: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (accessed on 28 May 2024).
- Bettonte, S.; Berton, M.; Stader, F.; Battegay, M.; Marzolini, C. Management of Drug Interactions with Inducers: Onset and Disappearance of Induction on Cytochrome P450 3A4 and Uridine Diphosphate Glucuronosyltransferase 1A1 Substrates. Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Mouly, S.; Lown, K.S.; Kornhauser, D.; Joseph, J.L.; Fiske, W.D.; Benedek, I.H.; Watkins, P.B. Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans. Clin. Pharmacol. Ther. 2002, 72, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Southern African HIV Clinicians Society. Initial Antiretroviral Therapy Regimens for the Previously Untreated Patient. 2023. Available online: https://sahivsoc.org/Guidelines/Module11 (accessed on 8 March 2024).
- Kearney, B.P.; Flaherty, J.F.; Shah, J. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet. 2004, 43, 595–612. [Google Scholar] [CrossRef] [PubMed]
- Tornio, A.; Filppula, A.M.; Niemi, M.; Backman, J.T. Clinical Studies on Drug–Drug Interactions Involving Metabolism and Transport: Methodology, Pitfalls, and Interpretation. Clin. Pharmacol. Ther. 2019, 105, 1345. [Google Scholar] [CrossRef]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50-Year Odyssey of Mechanistic and Translational Toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef]
- Keubler, A.; Weiss, J.; Haefeli, W.E.; Mikus, G.; Burhenne, J. Drug Interaction of Efavirenz and Midazolam: Efavirenz Activates the CYP3A-Mediated Midazolam 1′-Hydroxylation In Vitro. Drug Metab. Dispos. 2012, 40, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Gerdemann, A.; Cramer, B.; Degen, G.H.; Veerkamp, J.; Günther, G.; Albrecht, W.; Behrens, M.; Esselen, M.; Ghallab, A.; Hengstler, J.G.; et al. Comparative metabolism of aflatoxin B1 in mouse, rat and human primary hepatocytes using HPLC-MS/MS. Arch. Toxicol. 2023, 97, 3179–3196. [Google Scholar] [CrossRef] [PubMed]
- Slobodchikova, I.; Sivakumar, R.; Rahman, M.S.; Vuckovic, D. Characterization of Phase I and Glucuronide Phase II Metabolites of 17 Mycotoxins Using Liquid Chromatography-High-Resolution Mass Spectrometry. Toxins 2019, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- BCFI|Efavirenz. Available online: https://www.bcfi.be/nl/chapters/12?frag=11007&trade_family=25288 (accessed on 14 February 2020).
- Bujons, J.; Messeguer, A.; Hsieh, D.P.H.; Kado, N.Y. Aflatoxin M1 8,9-epoxide: Preparation and mutagenic activity. Chem. Res. Toxicol. 1995, 8, 328–332. [Google Scholar] [CrossRef]
- Wang, X.; He, B.; Shi, J.; Li, Q.; Zhu, H.-J. Comparative proteomics analysis of human liver microsomes and S9 fractions. Drug Metab. Dispos. 2020, 48, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Kodama, M.; Inoue, F.; Akao, M. Enzymatic and non-enzymatic formation of free radicals from aflatoxin b1. Free Radic. Res. 1990, 10, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Lootens, O.; De Boevre, M.; Gasthuys, E.; Van Bocxlaer, J.; Vermeulen, A.; De Saeger, S. Unravelling the pharmacokinetics of aflatoxin B1: In vitro determination of Michaelis–Menten constants, intrinsic clearance and the metabolic contribution of CYP1A2 and CYP3A4 in pooled human liver microsomes. Front. Microbiol. 2022, 13, 3258. [Google Scholar] [CrossRef]
- Gallagher, E.P.; Wienkers, L.C.; Stapleton, P.L.; Kunze, K.L.; Eaton, D.L. Role of Human Microsomal and Human Complementary DNA-expressed Cytochromes P4501A2 and P4503A4 in the Bioactivation of Aflatoxin B1. Cancer Res. 1994, 54, 101–108. [Google Scholar]
- Eaton, D.L.; Gallagher, E.P.; Bammlet, T.K.; Kunze, K.L. Role of cytochrome P4501A2 in chemical carcinogenesis: Implications for human variability in expression and enzyme activity. Pharmacogenetics 1995, 5, 259–274. [Google Scholar] [CrossRef]
- Raney, K.D.; Meyer, D.J.; Ketterer, B.; Harris, T.M.; Guengerich, F.P. Glutathione conjugation of aflatoxin B1 exo- and endo-epoxides by rat and human glutathione S-transferases. Chem. Res. Toxicol. 1992, 5, 470–478. [Google Scholar] [CrossRef]
- Wang, H.; Dick, R.; Yin, H.; Licad-Coles, E.; Kroetz, D.L.; Szklarz, G.; Harlow, G.; Halpert, J.R.; Correia, M.A. Structure-function relationships of human liver cytochromes P450 3A: Aflatoxin B1 metabolism as a probe. Biochemistry 1998, 37, 12536–12545. [Google Scholar] [CrossRef]
- Wild, C.P.; Turner, P.C. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Lampe, J.W.; King, I.B.; Li, S.; Grate, M.T.; Barale, K.V.; Chen, C.; Feng, Z.; Potter, J.D. Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: Changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 2000, 21, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Jubert, C.; Mata, J.; Bench, G.; Dashwood, R.; Pereira, C.; Tracewell, W.; Turteltaub, K.; Williams, D.; Bailey, G. Effects of chlorophyll and chlorophyllin on low-dose aflatoxin B1 pharmacokinetics in human volunteers. Cancer Prev. Res. 2009, 2, 1015–1022. [Google Scholar] [CrossRef]
- NIH. Antiretroviral Medication Efavirenz (EFV, Sustiva)|NIH. 2023. Available online: https://clinicalinfo.hiv.gov/en/guidelines/pediatric-arv/efavirenz (accessed on 2 April 2024).
- Veldkamp, A.; Harris, M.; Montaner, J.S.G.; Moyle, G.; Gazzard, B.; Mike, Y.; Johnson, M.; Kwakkelstein, M.O.; Carlier, H.; van Leeuwen, R.; et al. The Steady-State Pharmacokinetics of Efavirenz and Nevirapine When Used in Combination in Human Immunodeficiency Virus Type 1-Infected Persons. J. Infect. Dis. 2001, 184, 37–42. [Google Scholar] [CrossRef]
- Almond, L.M.; Hoggard, P.G.; Edirisinghe, D.; Khoo, S.H.; Back, D.J. Intracellular and plasma pharmacokinetics of efavirenz in HIV-infected individuals. J. Antimicrob. Chemother. 2005, 56, 738–744. [Google Scholar] [CrossRef]
| |||||
---|---|---|---|---|---|
AFB1 (30 ng) Alone | [90% CI] | AFB1 (30 ng) + EFV (600 mg) | [90% CI] | Ratio | |
BSA | |||||
Cmax (pg/mL) | 0.706 | [0.700–0.712] | 0.703 | [0.697–0.710] | 1 |
Tmax (h) | 1.55 | [1.54–1.57] | 1.54 | [1.53–1.55] | 0.99 |
AUC (pg/mL.h) | 4.68 | [4.59–4.76] | 4.42 | [4.34–4.50] | 0.94 |
CL (L/h) | 6.42 | [6.30–6.53] | 6.79 | [6.67–6.91] | 1.06 |
NEC | |||||
Cmax (pg/mL) | 0.709 | [0.704–0.714] | 0.706 | [0.701–0.711] | 1 |
Tmax (h) | 1.59 | [1.58–1.60] | 1.58 | [1.57–1.59] | 0.99 |
AUC (pg/mL.h) | 5.66 | [5.58–5.74] | 5.37 | [5.30–5.45] | 0.95 |
CL (L/h) | 5.30 | [5.22–5.38] | 5.58 | [5.50–5.66] | 1.05 |
| |||||
---|---|---|---|---|---|
AFB1 (30 ng) Alone | [90% CI] | AFB1 (30 ng) + EFV (600 mg) | [90% CI] | Ratio | |
BSA | |||||
Cmax (pg/mL) | 0.956 | [0.882–1.03] | 0.624 | [0.578–0.673] | 0.65 |
Tmax (h) | 1.72 | [1.65–1.81] | 1.39 | [1.33–1.46] | 0.81 |
AUC (pg/mL.h) | 8.34 | [7.15–9.73] | 3.23 | [2.79–3.74] | 0.39 |
CL (L/h) | 3.60 | [3.08–4.20] | 9.29 | [8.02–10.8] | 2.58 |
NEC | |||||
Cmax (pg/mL) | 0.955 | [0.891–1.02] | 0.691 | [0.651–0.734] | 0.72 |
Tmax (h) | 1.63 | [1.55–1.71] | 1.42 | [1.36–1.49] | 0.87 |
AUC (pg/mL.h) | 9.71 | [8.54–11.0] | 4.72 | [4.17–5.33] | 0.49 |
CL (L/h) | 3.09 | [2.72–3.51] | 6.36 | [5.63–7.19] | 2.06 |
| |||||
---|---|---|---|---|---|
AFB1 (30 ng) Alone | [90% CI] | AFB1 (30 ng) + EFV (600 mg) | [90% CI] | Ratio | |
BSA | |||||
Cmax (pg/mL) | 0.756 | [0.708–0.808] | 0.573 | [0.533–0.616] | 0.76 |
Tmax (h) | 1.63 | [1.55–1.72] | 1.35 | [1.29–1.42] | 0.83 |
AUC (pg/mL.h) | 5.45 | [4.76–6.25] | 2.72 | [2.38–3.11] | 0.50 |
CL (L/h) | 5.50 | [4.80–6.30] | 11.03 | [9.63–12.6] | 2.01 |
NEC | |||||
Cmax (pg/mL) | 0.911 | [0.879–0.946] | 0.797 | [0.766–0.828] | 0.87 |
Tmax (h) | 0.94 | [0.89–0.99] | 0.85 | [0.81–0.89] | 0.90 |
AUC (pg/mL.h) | 5.82 | [5.26–6.44] | 3.62 | [3.28–4.00] | 0.62 |
CL (L/h) | 5.15 | [4.66–5.71] | 8.28 | [7.50–9.14] | 1.61 |
| |||||
---|---|---|---|---|---|
AFB1 (30 ng) Alone | [90% CI] | AFB1 (30 ng) + EFV/LAM/TFV (600/300/300 mg) | [90% CI] | Ratio | |
BSA | |||||
Cmax (pg/mL) | 0.946 | [0.875–1.02] | 0.635 | [0.586–0.689] | 0.67 |
Tmax (h) | 1.72 | [1.64–1.80] | 1.40 | [1.33–1.47] | 0.81 |
AUC (pg/mL.h) | 8.17 | [7.02–9.50] | 3.33 | [2.86–3.88] | 0.41 |
CL (L/h) | 3.67 | [3.16–4.27] | 9.01 | [7.74–10.5] | 2.46 |
NEC | |||||
Cmax (pg/mL) | 0.945 | [0.883–1.01] | 0.702 | [0.659–0.747] | 0.74 |
Tmax (h) | 1.62 | [1.55–1.70] | 1.43 | [1.37–1.50] | 0.88 |
AUC (pg/mL.h) | 9.51 | [8.38–10.8] | 4.83 | [4.26–5.47] | 0.51 |
CL (L/h) | 3.16 | [2.78–3.58] | 6.21 | [5.49–7.04] | 1.97 |
Black South African | North European Caucasian | |||||||
---|---|---|---|---|---|---|---|---|
SD | MD | SD | MD | |||||
AFB1 | AFB1 + EFV | AFB1 | AFB1 + EFV | AFB1 | AFB1 + EFV | AFB1 | AFB1 + EFV | |
fm CYP1A2 (%) | 63.7 (15.0) | 26.9 (14.4) | 63.1 (14.7) | 25.9 (14.9) | 63.7 (15.2) | 31.3 (15.9) | 63.9 (15.1) | 32.0 (17.4) |
fm CYP3A4 (%) | 36.2 (14.9) | 73.1 (14.4) | 36.8 (14.6) | 74.0 (14.9) | 36.2 (15.2) | 68.6 (15.9) | 36.1 (15.1) | 67.9 (17.4) |
renal (%) | 0.12 (0.03) | 0.09 (0.02) | 0.12 (0.03) | 0.09 (0.02) | 0.12 (0.04) | 0.10 (0.02) | 0.13 (0.04) | 0.10 (0.03) |
AFL (pmol) | AFM1 (pmol) | AFQ1 (pmol) | Sum of AFL, AFM1 and AFQ1 (pmol) | Decrease in AFB1 (pmol) | AFL, AFM1 and AFQ1 to Total Metabolite Formation (%) | |
---|---|---|---|---|---|---|
AFB1 (1 µM) | 1.78 (0.267) | 4.33 (0.349) | 6.37 (0.510) | 12.48 (1.03) | 79.14 (20.9) | 16 (5.0) |
AFB1 (1 µM) + EFV (5 µM) | 1.84 (0.0875) | 3.48 (0.654) | 5.61 (0.887) | 10.93 (1.61) | 98.75 (12.5) | 11 (3.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lootens, O.; De Boevre, M.; Gasthuys, E.; De Saeger, S.; Van Bocxlaer, J.; Vermeulen, A. Exploring the Impact of Efavirenz on Aflatoxin B1 Metabolism: Insights from a Physiologically Based Pharmacokinetic Model and a Human Liver Microsome Study. Toxins 2024, 16, 259. https://doi.org/10.3390/toxins16060259
Lootens O, De Boevre M, Gasthuys E, De Saeger S, Van Bocxlaer J, Vermeulen A. Exploring the Impact of Efavirenz on Aflatoxin B1 Metabolism: Insights from a Physiologically Based Pharmacokinetic Model and a Human Liver Microsome Study. Toxins. 2024; 16(6):259. https://doi.org/10.3390/toxins16060259
Chicago/Turabian StyleLootens, Orphélie, Marthe De Boevre, Elke Gasthuys, Sarah De Saeger, Jan Van Bocxlaer, and An Vermeulen. 2024. "Exploring the Impact of Efavirenz on Aflatoxin B1 Metabolism: Insights from a Physiologically Based Pharmacokinetic Model and a Human Liver Microsome Study" Toxins 16, no. 6: 259. https://doi.org/10.3390/toxins16060259
APA StyleLootens, O., De Boevre, M., Gasthuys, E., De Saeger, S., Van Bocxlaer, J., & Vermeulen, A. (2024). Exploring the Impact of Efavirenz on Aflatoxin B1 Metabolism: Insights from a Physiologically Based Pharmacokinetic Model and a Human Liver Microsome Study. Toxins, 16(6), 259. https://doi.org/10.3390/toxins16060259