Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins
Abstract
:1. Introduction
2. CT Structure and Biological Effects
3. Place of CTs in the TFT Family
Type IA | Q02454, P60307, AAB35381.1 2, Q98965, CAA90962.1 2, AAB25732.1 2, Q9PS33, P01447, P86382, P24780, P01445, P01446, P0CH80, P83345, P60306, Q98961, P07525, P01442, P24779, P01440, P01451, P60304, Q98959, Q98958, Q98962, Q9PST3, P79810, Q91135, O73856, Q98960, Q98957, Q91136, Q91124, O93473, Q9DGH9, O93471, Q98956, P01458, P01452, P01461, P01457, Q9PS34, P01459, P80245, P01460, P01455, P01441, P01463, P01456, P01464, P49123, P01462, P60309, P60308, P01465, P25517, P01468, P01469, P01466, Q9W6W6, P01467, P01470, P01448, P01454, P01453, P01443, Q9W6W9, O73858, O73859, P60311, E2ITZ7, P86541, P86540, A0A0U5AL91, A0A8C6XG05, P86538, A0A0U4W6K7, A0A8C6XQ33, A0A8C6XFH6, A0A8C6XFM5, A0A0U5ARS4, A0A0U5AR60, A0A0U4W6H0, P0DSN1, O93472 |
Type IB | P01471, P24776, P24777, B3EWH9 |
4. Conformational Equilibria of CTs in Membrane Environment and the Role of Special Amino Acid Residues
Amino Acid Sequence | Name | Snake | Abbreviation | Database Identifier | Group 2 | ID No in Table S1 |
---|---|---|---|---|---|---|
LKCHKLVPPVWKTCPEGKNLCYKMFMVSTSTVPVKRGCIDVCPKNSALVKYVCCSTDKCN | Cytotoxin 1 | N. annulifera | CT1Nan | P01455 | 1 | 6 |
LKCHKLVPPFWKTCPEGKNLCYKMYMVATPMLPVKRGCIDVCPKDSALVKYMCCNTDKCN | Cytotoxin 2 | N. annulifera | CT2Nan | P01462 | 3 | 10 |
LKCNKLIPIASKTCPAGKNLCYKMFMMSDLTIPVKRGCIDVCPKNSLLVKYVCCNTDRCN | Cytotoxin 1 | N. atra | CT1Na | P60304 | 5 | 36 |
LKCNKLVPLFYKTCPAGKNLCYKMFMVSNLTVPVKRGCIDVCPKNSALVKYVCCNTDRCN | Cytotoxin 2 | N. atra | CT2Na | P01442 | 5 | 34 |
RKCNKLVPLFYKTCPAGKNLCYKMFMVSNLTVPVKRGCIDVCPKNSALVKYVCCNTDRCN | Cytotoxin 4 | N. atra | CT4Na | P01443 | 5 | 45 |
LKCNQLIPPFYKTCAAGKNLCYKMFMVAAQRFPVKRGCIDVCPKSSLLVKYVCCNTDRCNN | Cytotoxin 6 | N. atra | CT6Na | Q98965 | 4 | 13 |
LKCNQLIPPFYKTCAAGKNLCYKMFMVAAPKVPVKRGCIDVCPKSSLLVKYVCCNTDRCN | Cytotoxin A6 | N. atra | CTA6 | P80245 | 4 | 14 |
LKCNKLIPLAYKTCPAGKNLCYKMFMVSNKTVPVKRGCIDVCPKNSLLVKYVCCNTDRCN | Cytotoxin 2 | N. kaouthia | CT2Nk | P01445 | 5 | 29 |
LKCNKLIPLAYKTCPAGKNLCYKMFMVSNKTVPVKRGCIDACPKNSLLVKYVCCNTDRCN | Cytotoxin 3 | N. kaouthia | CT3Nk | P01446 | 5 | 30 |
LKCNQLIPPFWKTCPKGKNLCYKMTMRAAPMVPVKRGCIDVCPKSSLLIKYMCCNTNKCN | Cytotoxin 1 | N. mossambica | CT1Nm | P01467 | 4 | 19 |
LKCNQLIPPFWKTCPKGKNLCYKMTMRGASKVPVKRGCIDVCPKSSLLIKYMCCNTDKCN | Cytotoxin 2 | N. mossambica | CT2Nm | P01469 | 4 | 17 |
LKCNRLIPPFWKTCPEGKNLCYKMTMRLAPKVPVKRGCIDVCPKSSLLIKYMCCNTNKCN | Cytotoxin 3 | N. mossambica | CT3Nm | P01470 | 4 | 20 |
LKCNKLIPIAYKTCPEGKNLCYKMMLASKKMVPVKRGCINVCPKNSALVKYVCCSTDRCN | Cytotoxin 4 | N. mossambica | CT4Nm | P01452 | 5 | 42 |
LKCKKLIPLFSKTCPEGKNLCYKMTMRLAPKVPVKRGCIDVCPKSSFLVKYECCDTDRCN | Cytotoxin 5 | N. mossambica | CT5Nm | P25517 | 8 | 83 |
LKCNKLVPLFYKTCPKGKNLCYKMYMVAAPTVPVKRGCINVCPKNSLVLKYECCNTNKCN | Cytotoxin | N. naja | newCT | - | 7 | 69 |
LKCNKLIPLAYKTCPAGKNLCYKMYMVSNKTVPVKRGCIDVCPKNSLVLKYECCNTDRCN | Cytotoxin 1 | N. naja | CT1Nn | P01447 | 5 | 26 |
LKCNKLVPLFYKTCPAGKNLCYKMYMVATPKVPVKRGCIDVCPKSSLVLKYVCCNTDRCN | Cytotoxin 2 | N. naja | CT2Nn | P01440 | 8 | 73 |
LKCNKLIPLAYKTCPAGKDLCYKMYMVSNKTVPVKRGCIDVCPKNSLLVKYECCNTDRCN | Cytotoxin 7 | N. naja | CT7Nn | P86382 | 5 | 27 |
LKCNKLVPLAYKTCPAGKNLCYKMYMVANKKVPVKRGCIDVCPKKSLLVKYECCNTDRCN | Sagitoxin | N. sagittifera | CTSNs | P83345 | 8 | 72 |
LKCNKLVPLFYKTCPAGKNLCYKMYMVATPKVPVKRGCIDVCPKSSLLVKYVCCNTDRCN | Cytotoxin 2b | N. sputatrix | CT2bNsp | O73856 | 8 | 75 |
5. Classification of CTs, According to Their Membrane Activity
Special Amino Acid 2/Loop Number | CTs’ Groups (Abbreviation 3) | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Pro9/Loop-1 | P | P | P | P | O | O | O | O |
Ser28/Loop-2 | S | S | O | O | S | S | O | O |
Asn/Asp45/Loop-3 | X | O | X | O | X | O | X | O |
Group Number | Identification Codes of CTs | Number of the Members in the Groups |
---|---|---|
1 | P01458, P01461, P01457, P01459, P01460, P01455, P01456 | 7 |
2 | This group is empty | 0 |
3 | P01463, P01464, P01462, P01465, P01466 | 5 |
4 | P80245, P49123, P01468, Q9W6W6, P01467, P01470, P0DSN1, Q98965, P01469 | 9 |
5 | AAB35381.1, CAA90962.1, AAB25732.1, Q9PS33, P01447, P86382, P24780, P01445, P01446, P0CH80, P60306, Q98961, P01442, P01451, P60304, Q98958, P79810, Q91135, Q98957, Q91136, P01452, P01454, P01453, P01443, O73858, O73859, P60311, P86540, A0A0U5AL91, A0A8C6XG05, P86538, A0A0U4W6K7, A0A8C6XQ33, A0A0U5ARS4, A0A0U5AR60, A0A0U4W6H0 | 36 |
6 | P07525, Q98956, P01448, Q9W6W9, P83345, A0A8C6XFH6, A0A8C6XFM5 | 7 |
7 | P24779, Q98959, Q98962, Q98960, Q9DGH9, newCT | 6 |
8 | Q02454, P60307, P01440, Q9PST3, O73856, Q91124, O93473, O93471, Q9PS34, P01441, P60309, P60308, P25517, E2ITZ7, P01471, B3EWH9, P24777, P24776, P86541, O93472 | 20 |
In total: 90 items |
6. Role of Membrane Activity and Net Electrical Charge of CTs in Cytotoxicity
7. What Are the Roles of Special Amino Acid Residues in the CT Activities?
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Fry, B.G.; Wüster, W.; Kini, R.M.; Brusic, V.; Khan, A.; Venkataraman, D.; Rooney, A.P. Molecular Evolution and Phylogeny of Elapid Snake Venom Three-Finger Toxins. J. Mol. Evol. 2003, 57, 110–129. [Google Scholar] [CrossRef]
- Galat, A.; Gross, G.; Drevet, P.; Sato, A.; Ménez, A. Conserved structural determinants in three-fingered protein domains. FEBS J. 2008, 275, 3207–3225. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, C.R.; Arrahman, A.; Xie, C.; Casewell, N.R.; Lewis, R.J.; Kool, J.; Cardoso, F.C. Multifunctional Toxins in Snake Venoms and Therapeutic Implications: From Pain to Hemorrhage and Necrosis. Front. Ecol. Evol. 2019, 7, 218. [Google Scholar] [CrossRef]
- Kini, R.M.; Koh, C.Y. Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem. Pharmacol. 2020, 181, 114105. [Google Scholar] [CrossRef] [PubMed]
- Tsetlin, V.I.; Kasheverov, I.E.; Utkin, Y.N. Three-finger proteins from snakes and humans acting on nicotinic receptors: Old and new. J. Neurochem. 2021, 158, 1223–1235. [Google Scholar] [CrossRef]
- Bekbossynova, A.; Zharylgap, A.; Filchakova, O. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors. Molecules 2021, 26, 3373. [Google Scholar] [CrossRef]
- Hiremath, K.; Dodakallanavar, J.; Sampat, G.H.; Patil, V.S.; Harish, D.R.; Chavan, R.; Hegde, H.V.; Roy, S. Three finger toxins of elapids: Structure, function, clinical applications and its inhibitors. Mol. Divers. 2023, 1–18. [Google Scholar] [CrossRef]
- Osipov, A.; Utkin, Y. What Are the Neurotoxins in Hemotoxic Snake Venoms? Int. J. Mol. Sci. 2023, 24, 2919. [Google Scholar] [CrossRef]
- Tsetlin, V.; Shelukhina, I.; Kozlov, S.; Kasheverov, I. Fifty Years of Animal Toxin Research at the Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS. Int. J. Mol. Sci. 2023, 24, 13884. [Google Scholar] [CrossRef]
- Kazandjian, T.D.; Petras, D.; Robinson, S.D.; van Thiel, J.; Greene, H.W.; Arbuckle, K.; Barlow, A.; Carter, D.A.; Wouters, R.M.; Whiteley, G.; et al. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 2021, 371, 386–390. [Google Scholar] [CrossRef]
- Kalita, B.; Utkin, Y.N.; Mukherjee, A.K. Current Insights in the Mechanisms of Cobra Venom Cytotoxins and Their Complexes in Inducing Toxicity: Implications in Antivenom Therapy. Toxins 2022, 14, 839. [Google Scholar] [CrossRef] [PubMed]
- Bittenbinder, M.A.; van Thiel, J.; Cardoso, F.C.; Casewell, N.R.; Gutiérrez, J.-M.; Kool, J.; Vonk, F.J. Tissue damaging toxins in snake venoms: Mechanisms of action, pathophysiology and treatment strategies. Commun. Biol. 2024, 7, 358. [Google Scholar] [CrossRef] [PubMed]
- Leszczynski, J.F.; Rose, G.D. Loops in Globular Proteins: A Novel Category of Secondary Structure. Science 1986, 234, 849–855. [Google Scholar] [CrossRef] [PubMed]
- Fetrow, J.S. Omega loops; nonregular secondary structures significant in protein function and stability. FASEB J. 1995, 9, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Gatineau, E.; Toma, F.; Montenay-Garestier, T.; Takechi, M.; Fromageot, P.; Menez, A. Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry 1987, 26, 8046–8055. [Google Scholar] [CrossRef] [PubMed]
- Gatineau, E.; Takechi, M.; Bouet, F.; Mansuelle, P.; Rochat, H.; Harvey, A.L.; Montenay-Garestier, T.; Menez, A. Delineation of the functional site of a snake venom cardiotoxin: Preparation, structure, and function of monoacetylated derivatives. Biochemistry 1990, 29, 6480–6489. [Google Scholar] [CrossRef] [PubMed]
- Roumestand, C.; Gilquin, B.; Trémeau, O.; Gatineau, E.; Mouawad, L.; Ménez, A.; Toma, F. Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin Relation of the structure of the putative binding site and the cytolitic activity of the toxin. J. Mol. Biol. 1994, 243, 719–735. [Google Scholar] [CrossRef]
- Chiang, C.-M.; Chang, S.-L.; Lin, H.-J.; Wu, W.-G. The Role of Acidic Amino Acid Residues in the Structural Stability of Snake Cardiotoxins. Biochemistry 1996, 35, 9177–9186. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Chena, W.C.; Hoa, C.L.; Chena, S.T.; Wangab, K.T. The Role of the N-Terminal Leucine Residue in Snake Venom Cardiotoxin II (Naja naja atra). Biochem. Biophys. Res. Commun. 1997, 233, 713–716. [Google Scholar] [CrossRef]
- Lee, C.-S.; Kumar, T.K.S.; Lian, L.-Y.; Cheng, J.-W.; Yu, C. Main-Chain Dynamics of Cardiotoxin II from Taiwan Cobra (Naja naja atra) as Studied by Carbon-13 NMR at Natural Abundance: Delineation of the Role of Functionally Important Residues. Biochemistry 1998, 37, 155–164. [Google Scholar] [CrossRef]
- Chen, T.S.; Chung, F.Y.; Tjong, S.C.; Goh, K.S.; Huang, W.N.; Chien, K.Y.; Wu, P.L.; Lin, H.C.; Chen, C.J.; Wu, W.G.; et al. K.Y.; Wu, P.L.; Lin, H.C.; Chen, C.J.; Wu, W.G.; et al. Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry 2005, 44, 7414–7426. [Google Scholar] [CrossRef] [PubMed]
- Chiou, Y.-L.; Kao, P.-H.; Liu, W.-H.; Lin, S.-R.; Chang, L.-S. Roles of lysine residues and N-terminal α-amino group in membrane-damaging activity of Taiwan cobra cardiotoxin 3 toward anionic and zwitterionic phospholipid vesicles. Toxicon 2010, 55, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-L.; Shi, Y.-J.; Huang, C.-H.; Lee, Y.-C.; Wang, L.-J.; Chiou, J.-T.; Lu, C.-Y.; Chang, L.-S. Status of Asp29 and Asp40 in the Interaction of Naja atra Cardiotoxins with Lipid Bilayers. Toxins 2020, 12, 262. [Google Scholar] [CrossRef] [PubMed]
- Rees, B.; Bilwes, A.; Samama, J.P.; Moras, D. Cardiotoxin VII4 from Naja mossambica mossambica. The refined crystal structure. J. Mol. Biol. 1990, 214, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D. Crystal structure of a snake venom cardiotoxin. Proc. Natl. Acad. Sci. USA 1987, 84, 3132–3136. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Dubova, K.M.; Bourenkov, G.; Starkov, V.G.; Konshina, A.G.; Efremov, R.G.; Utkin, Y.N.; Samygina, V.R. Variability in the Spatial Structure of the Central Loop in Cobra Cytotoxins Revealed by X-ray Analysis and Molecular Modeling. Toxins 2022, 14, 149. [Google Scholar] [CrossRef] [PubMed]
- Dementieva, D.V.; Bocharov, E.V.; Arseniev, A.S. Two forms of cytotoxin II (cardiotoxin) from Naja naja oxiana in aqueous solution: Spatial structures with tightly bound water molecules. Eur. J. Biochem. 1999, 263, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Sue, S.-C.; Jarrell, H.C.; Brisson, J.-R.; Wu, W.-G. Dynamic Characterization of the Water Binding Loop in the P-Type Cardiotoxin: Implication for the Role of the Bound Water Molecule. Biochemistry 2001, 40, 12782–12794. [Google Scholar] [CrossRef] [PubMed]
- Shulepko, M.A.; Lyukmanova, E.N.; Shenkarev, Z.O.; Dubovskii, P.V.; Astapova, M.V.; Feofanov, A.V.; Arseniev, A.S.; Utkin, Y.N.; Kirpichnikov, M.P.; Dolgikh, D.A. Towards universal approach for bacterial production of three-finger Ly6/uPAR proteins: Case study of cytotoxin I from cobra N. oxiana. Protein Expr. Purif. 2017, 130, 13–20. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Dubinnyi, M.A.; Konshina, A.G.; Kazakova, E.D.; Sorokoumova, G.M.; Ilyasova, T.M.; Shulepko, M.A.; Chertkova, R.V.; Lyukmanova, E.N.; Dolgikh, D.A.; et al. Structural and Dynamic “Portraits” of Recombinant and Native Cytotoxin I from Naja oxiana: How Close Are They? Biochemistry 2017, 56, 4468–4477. [Google Scholar] [CrossRef]
- Dubinnyi, M.A.; Dubovskii, P.V.; Starkov, V.G.; Utkin, Y.N. The omega-loop of cobra cytotoxins tolerates multiple amino acid substitutions. Biochem. Biophys. Res. Commun. 2021, 558, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Laustsen, A.H.; Gutiérrez, J.M.; Lohse, B.; Rasmussen, A.R.; Fernández, J.; Milbo, C.; Lomonte, B. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon 2015, 99, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Fung, S.Y.; Yap, M.K.K.; Leong, P.K.; Liew, J.L.; Tan, N.H. Unveiling the elusive and exotic: Venomics of the Malayan blue coral snake (Calliophis bivirgata flaviceps). J. Proteom. 2016, 132, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.Y.; Liew, J.L.; Tan, N.H.; Quah, E.S.; Ismail, A.K.; Tan, C.H. Unlocking the secrets of banded coral snake (Calliophis intestinalis, Malaysia): A venom with proteome novelty, low toxicity and distinct antigenicity. J. Proteom. 2019, 192, 246–257. [Google Scholar] [CrossRef] [PubMed]
- Suryamohan, K.; Krishnankutty, S.P.; Guillory, J.; Jevit, M.; Schröder, M.S.; Wu, M.; Kuriakose, B.; Mathew, O.K.; Perumal, R.C.; Koludarov, I.; et al. The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat. Genet. 2020, 52, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Wong, K.Y.; Huang, L.-K.; Tan, K.Y.; Tan, N.H.; Wu, W.-G. Snake Venomics and Antivenomics of Cape Cobra (Naja nivea) from South Africa: Insights into Venom Toxicity and Cross-Neutralization Activity. Toxins 2022, 14, 860. [Google Scholar] [CrossRef] [PubMed]
- Palasuberniam, P.; Chan, Y.W.; Tan, K.Y.; Tan, C.H. Snake Venom Proteomics of Samar Cobra (Naja samarensis) from the Southern Philippines: Short Alpha-Neurotoxins as the Dominant Lethal Component Weakly Cross-Neutralized by the Philippine Cobra Antivenom. Front. Pharmacol. 2021, 12, 727756. [Google Scholar] [CrossRef] [PubMed]
- Hiu, J.J.; Yap, M.K.K. The myth of cobra venom cytotoxin: More than just direct cytolytic actions. Toxicon X 2022, 14, 100123. [Google Scholar] [CrossRef]
- Kumar, T.K.S.; Jayaraman, G.; Lee, C.S.; Arunkumar, A.I.; Sivaraman, T.; Samuel, D.; Yu, C. Snake Venom Cardiotoxins-Structure, Dynamics, Function and Folding. J. Biomol. Struct. Dyn. 1997, 15, 431–463. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Konshina, A.G.; Efremov, R.G. Cobra Cardiotoxins: Membrane Interactions and Pharmacological Potential. Curr. Med. Chem. 2014, 21, 270–287. [Google Scholar] [CrossRef]
- Gasanov, S.E. Snake Venom Cytotoxins, Phospholipase A2s, and Zn2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. J. Clin. Toxicol. 2014, 4, 1000181. [Google Scholar] [CrossRef]
- Munawar, A.; Akrem, A.; Hussain, A.; Spencer, P.; Betzel, C. Molecular model of Cytotoxin-1 from Naja mossambica mossambica venom in complex with chymotrypsin. Theor. Biol. Forum. 2015, 108, 89–99. [Google Scholar]
- Misuan, N.; Mohamad, S.; Tubiana, T.; Yap, M.K.K. Ensemble-based molecular docking and spectrofluorometric analysis of interaction between cytotoxin and tumor necrosis factor receptor 1. J. Biomol. Struct. Dyn. 2023, 41, 15339–15353. [Google Scholar] [CrossRef]
- Hiu, J.J.; Fung, J.K.Y.; Tan, H.S.; Yap, M.K.K. Unveiling the functional epitopes of cobra venom cytotoxin by immunoinformatics and epitope-omic analyses. Sci. Rep. 2023, 13, 12271. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Vassilevski, A.A.; Kozlov, S.A.; Feofanov, A.V.; Grishin, E.V.; Efremov, R.G. Latarcins: Versatile spider venom peptides. Cell. Mol. Life Sci. 2015, 72, 4501–4522. [Google Scholar] [CrossRef]
- Dempsey, C.E. The actions of melittin on membranes. Biochim. et Biophys. Acta (BBA)—Rev. Biomembr. 1990, 1031, 143–161. [Google Scholar] [CrossRef]
- Bernheimer, A.W.; Rudy, B. Interactions between membranes and cytolytic peptides. Biochim. et Biophys. Acta (BBA)—Rev. Biomembr. 1986, 864, 123–141. [Google Scholar] [CrossRef]
- Pluzhnikov, K.A.; Kozlov, S.A.; Vassilevski, A.A.; Vorontsova, O.V.; Feofanov, A.V.; Grishin, E.V. Linear antimicrobial peptides from Ectatomma quadridens ant venom. Biochimie 2014, 107, 211–215. [Google Scholar] [CrossRef]
- Aili, S.R.; Touchard, A.; Escoubas, P.; Padula, M.P.; Orivel, J.; Dejean, A.; Nicholson, G.M. Diversity of peptide toxins from stinging ant venoms. Toxicon 2014, 92, 166–178. [Google Scholar] [CrossRef]
- Touchard, A.; Aili, S.R.; Fox, E.G.P.; Escoubas, P.; Orivel, J.; Nicholson, G.M.; Dejean, A. The Biochemical Toxin Arsenal from Ant Venoms. Toxins 2016, 8, 30. [Google Scholar] [CrossRef]
- Corzo, G.; Villegas, E.; Gómez-Lagunas, F.; Possani, L.D.; Belokoneva, O.S.; Nakajima, T. Oxyopinins, Large Amphipathic Peptides Isolated from the Venom of the Wolf Spider Oxyopes kitabensis with Cytolytic Properties and Positive Insecticidal Cooperativity with Spider Neurotoxins. J. Biol. Chem. 2002, 277, 23627–23637. [Google Scholar] [CrossRef]
- Vassilevski, A.A.; Kozlov, S.A.; Samsonova, O.V.; Egorova, N.S.; Karpunin, D.V.; Pluzhnikov, K.A.; Feofanov, A.V.; Grishin, E.V. Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem. J. 2008, 411, 687–696. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Efremov, R.G. The role of hydrophobic /hydrophilic balance in the activity of structurally flexible vs. rigid cytolytic polypeptides and analogs developed on their basis. Expert Rev. Proteom. 2018, 15, 873–886. [Google Scholar] [CrossRef]
- Dubinnyi, M.A.; Lesovoy, D.M.; Dubovskii, P.V.; Chupin, V.V.; Arseniev, A.S. Modeling of 31P-NMR spectra of magnetically oriented phospholipid liposomes: A new analytical solution. Solid State Nucl. Magn. Reson. 2006, 29, 305–311. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Volynsky, P.E.; Polyansky, A.A.; Chupin, V.V.; Efremov, R.G.; Arseniev, A.S. Spatial Structure and Activity Mechanism of a Novel Spider Antimicrobial Peptide. Biochemistry 2006, 45, 10759–10767. [Google Scholar] [CrossRef]
- Raynor, R.L.; Zheng, B.; Kuo, J.F. Membrane interactions of amphiphilic polypeptides mastoparan, melittin, polymyxin B, and cardiotoxin. Differential inhibition of protein kinase C, Ca2+/calmodulin-dependent protein kinase II and synaptosomal membrane Na,K-ATPase, and Na+ pump and differentiation of HL60 cells. J. Biol. Chem. 1991, 266, 2753–2758. [Google Scholar]
- Dubovskii, P.V.; Lesovoy, D.M.; Dubinnyi, M.A.; Utkin, Y.N.; Arseniev, A.S. Interaction of the P-type cardiotoxin with phospholipid membranes. Eur. J. Biochem. 2003, 270, 2038–2046. [Google Scholar] [CrossRef]
- Narita, K.; Lee, C. The amino acid sequence of cardiotoxin from formosan cobra (Naja naja atra) venom. Biochem. Biophys. Res. Commun. 1970, 41, 339–343. [Google Scholar] [CrossRef]
- Condrea, E. Membrane-active polypeptides from snake venom: Cardiotoxins and haemocytotoxins. Experientia 1974, 30, 121–129. [Google Scholar] [CrossRef]
- Dufton, M.; Hider, R.C. Structure and pharmacology of elapid cytotoxins. Pharmacol. Ther. 1988, 36, 1–40. [Google Scholar] [CrossRef]
- Gorai, B.; Karthikeyan, M.; Sivaraman, T. Putative membrane lytic sites of P-type and S-type cardiotoxins from snake venoms as probed by all-atom molecular dynamics simulations. J. Mol. Model. 2016, 22, 238. [Google Scholar] [CrossRef]
- Girish, V.M.; Kumar, S.; Joseph, L.; Jobichen, C.; Kini, R.M.; Sivaraman, J. Identification and Structural Characterization of a New Three-Finger Toxin Hemachatoxin from Hemachatus haemachatus Venom. PLoS ONE 2012, 7, e48112. [Google Scholar] [CrossRef]
- Chiang, C.-M.; Chien, K.-Y.; Lin, H.-J.; Lin, J.-F.; Yeh, H.-C.; Ho, P.-L.; Wu, W.-G. Conformational Change and Inactivation of Membrane Phospholipid-Related Activity of Cardiotoxin V from Taiwan Cobra Venom at Acidic pH. Biochemistry 1996, 35, 9167–9176. [Google Scholar] [CrossRef]
- Sivaraman, T.; Kumar, T.; Yang, P.; Yu, C. Cardiotoxin-like basic protein (CLBP) from Naja naja atra is not a cardiotoxin. Toxicon 1997, 35, 1367–1371. [Google Scholar] [CrossRef]
- Kao, P.-H.; Chen, Y.-J.; Yang, S.-Y.; Lin, S.-R.; Hu, W.-P.; Chang, L.-S. Fusogenicity of Naja naja atra cardiotoxin-like basic protein on sphingomyelin vesicles containing oxidized phosphatidylcholine and cholesterol. J. Biochem. 2013, 153, 523–533. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Tatematsu, Y.; Tabata, A.; Nagamune, H.; Ohkura, K. Cytolytic Activity and Molecular Feature of Cardiotoxin and Cardiotoxin-like Basic Protein: The Electrostatic Potential Field Is an Important Factor for Cell Lytic Activity. Anticancer Res. 2015, 35, 4515–4519. [Google Scholar]
- Wu, P.L.; Lee, S.C.; Chuang, C.C.; Mori, S.; Akakura, N.; Wu, W.G.; Takada, Y. Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J. Biol. Chem. 2006, 281, 7937–7945. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Ignatova, A.A.; Alekseeva, A.S.; Starkov, V.G.; Boldyrev, I.A.; Feofanov, A.V.; Utkin, Y.N. Membrane-Disrupting Activity of Cobra Cytotoxins Is Determined by Configuration of the N-Terminal Loop. Toxins 2022, 15, 6. [Google Scholar] [CrossRef]
- Slagboom, J.; Derks, R.J.E.; Sadighi, R.; Somsen, G.W.; Ulens, C.; Casewell, N.R.; Kool, J. High-Throughput Venomics. J. Proteome Res. 2023, 22, 1734–1746. [Google Scholar] [CrossRef]
- Margres, M.J.; Rautsaw, R.M.; Strickland, J.L.; Mason, A.J.; Schramer, T.D.; Hofmann, E.P.; Stiers, E.; Ellsworth, S.A.; Nystrom, G.S.; Hogan, M.P.; et al. The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype. Proc. Natl. Acad. Sci. USA 2021, 118, e2014634118. [Google Scholar] [CrossRef]
- Almeida, D.D.; Viala, V.L.; Nachtigall, P.G.; Broe, M.; Gibbs, H.L.; Serrano, S.M.d.T.; Moura-Da-Silva, A.M.; Ho, P.L.; Nishiyama-Jr, M.Y.; Junqueira-De-Azevedo, I.L.M. Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Bothrops jararaca genome. Proc. Natl. Acad. Sci. USA 2021, 118, e2015159118. [Google Scholar] [CrossRef]
- Peng, C.; Wu, D.; Ren, J.; Peng, Z.; Ma, Z.; Wu, W.; Lv, Y.; Wang, Z.; Deng, C.; Jiang, K.; et al. Large-scale snake genome analyses provide insights into vertebrate development. Cell 2023, 186, 2959–2976.e22. [Google Scholar] [CrossRef]
- Rajagopalan, N.; Pung, Y.F.; Zhu, Y.Z.; Wong, P.; Tsun, H.; Kumar, P.P.; Kini, R.m. Beta-cardiotoxin: A new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J. 2007, 21, 3685–3695. [Google Scholar] [CrossRef]
- Konshina, A.G.; Dubovskii, P.V.; Efremov, R.G. Structure and Dynamics of Cardiotoxins. Curr. Protein Pept. Sci. 2012, 13, 570–584. [Google Scholar] [CrossRef]
- Golovanov, A.P.; Efremov, R.G.; Jaravine, V.A.; Vergoten, G.; Arseniev, A.S. Amino acid residue: Is it structural or functional? FEBS Lett. 1995, 375, 162–166. [Google Scholar] [CrossRef]
- Vincent, J.P.; Schweitz, H.; Chicheportiche, R.; Fosset, M.; Balerna, M.; Lenoir, M.C.; Lazdunski, M. Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry 1976, 15, 3171–3175. [Google Scholar] [CrossRef]
- Dufton, M.J.; Hider, R.C. Conformational Properties of the Neurotoxins and Cytotoxins Isolated from Elapid Snake Venoms. Crit. Rev. Biochem. 1983, 14, 113–171. [Google Scholar] [CrossRef]
- Osthoff, G.; Louw, A.I.; Reinecke, C.J. Correlation between the surface hydrophobicities and elution orders of Elapid neurotoxins and cardiotoxins on hydrophobic-interaction high-performance liquid chromatography. Toxicon 1988, 26, 475–483. [Google Scholar] [CrossRef]
- Tan, N.-H.; Armugam, A. In vivo interactions between neurotoxin, cardiotoxin and phospholipases A2 isolated from Malayan cobra (Naja Naja Sputatrix) venom. Toxicon 1990, 28, 1193–1198. [Google Scholar] [CrossRef]
- Sivaraman, T.; Kumar, T.; Tu, Y.; Peng, H.; Yu, C. Structurally Homologous Toxins Isolated from the Taiwan Cobra (Naja naja atra) Differ Significantly in Their Structural Stability. Arch. Biochem. Biophys. 1999, 363, 107–115. [Google Scholar] [CrossRef]
- Utkin, Y.N. Three-finger toxins, a deadly weapon of elapid venom--milestones of discovery. Toxicon 2013, 62, 50–55. [Google Scholar] [CrossRef]
- Shi, Y.-J.; Chiou, J.-T.; Wang, L.-J.; Huang, C.-H.; Lee, Y.-C.; Chen, Y.-J.; Chang, L.-S. Blocking of negative charged carboxyl groups converts Naja atra neurotoxin to cardiotoxin-like protein. Int. J. Biol. Macromol. 2020, 164, 2953–2963. [Google Scholar] [CrossRef]
- Panagides, N.; Jackson, T.N.W.; Ikonomopoulou, M.P.; Arbuckle, K.; Pretzler, R.; Yang, D.C.; Ali, S.A.; Koludarov, I.; Dobson, J.; Sanker, B.; et al. How the Cobra Got Its Flesh-Eating Venom: Cytotoxicity as a Defensive Innovation and Its Co-Evolution with Hooding, Aposematic Marking, and Spitting. Toxins 2017, 9, 103. [Google Scholar] [CrossRef]
- Yap, M.K.K.; Tan, N.H.; Sim, S.M.; Fung, S.Y.; Tan, C.H. Pharmacokinetics of Naja sumatrana (Equatorial Spitting Cobra) Venom and Its Major Toxins in Experimentally Envenomed Rabbits. PLoS Neglected Trop. Dis. 2014, 8, e2890. [Google Scholar] [CrossRef]
- Tan, N.H.; Wong, K.Y.; Tan, C.H. Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization. J. Proteom. 2017, 157, 18–32. [Google Scholar] [CrossRef]
- Lin, J.-H.; Sung, W.-C.; Mu, H.-W.; Hung, D.-Z. Local Cytotoxic Effects in Cobra Envenoming: A Pilot Study. Toxins 2022, 14, 122. [Google Scholar] [CrossRef]
- Kini, R.M.; Evans, H.J. A common cytolytic region in myotoxins, hemolysins, cardiotoxins and antibacterial peptides. Int. J. Pept. Protein Res. 1989, 34, 277–286. [Google Scholar] [CrossRef]
- Sunagar, K.; Jackson, T.N.W.; Undheim, E.A.B.; Ali, S.A.; Antunes, A.; Fry, B.G. Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins. Toxins 2013, 5, 2172–2208. [Google Scholar] [CrossRef]
- Koludarov, I.; Senoner, T.; Jackson, T.N.W.; Dashevsky, D.; Heinzinger, M.; Aird, S.D.; Rost, B. Domain loss enabled evolution of novel functions in the snake three-finger toxin gene superfamily. Nat. Commun. 2023, 14, 4861. [Google Scholar] [CrossRef]
- Mineev, K.S.; Kryukova, E.V.; Kasheverov, I.E.; Egorova, N.S.; Zhmak, M.N.; Ivanov, I.A.; Senko, D.A.; Feofanov, A.V.; Ignatova, A.A.; Arseniev, A.S.; et al. Spatial Structure and Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models. Biomolecules 2020, 11, 1. [Google Scholar] [CrossRef]
- Dubinnyi, M.A.; Dubovskii, P.V.; Utkin, Y.N.; Simonova, T.N.; Barsukov, L.I.; Arseniev, A.S. An ESR Study of the Cytotoxin II Interaction with Model Membranes. Russ. J. Bioorganic Chem. 2001, 27, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Lesovoy, D.M.; Dubinnyi, M.A.; Konshina, A.G.; Utkin, Y.N.; Efremov, R.G.; Arseniev, A.S. Interaction of three-finger toxins with phospholipid membranes: Comparison of S- and P-type cytotoxins. Biochem. J. 2005, 387, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Forouhar, F.; Schweitz, H.; Chicheportiche, R.; Fosset, M.; Balerna, M.; Lenoir, M.C.; Lazdunski, M. Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 2003, 278, 21980–21988. [Google Scholar] [CrossRef] [PubMed]
- Tjong, S.-C.; Wu, P.-L.; Wang, C.-M.; Huang, W.-N.; Ho, N.-L.; Wu, W.-G. Role of Glycosphingolipid Conformational Change in Membrane Pore Forming Activity of Cobra Cardiotoxin. Biochemistry 2007, 46, 12111–12123. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-L.; Chiu, C.-R.; Huang, W.-N.; Wu, W.-G. The role of sulfatide lipid domains in the membrane pore-forming activity of cobra cardiotoxin. Biochim. et Biophys. Acta (BBA)—Biomembr. 2012, 1818, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Konshina, A.G.; Boldyrev, I.A.; Utkin, Y.N.; Omel’Kov, A.V.; Efremov, R.G. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids. PLoS ONE 2011, 6, e19064. [Google Scholar] [CrossRef] [PubMed]
- Batenburg, A.M.; Bougis, P.E.; Rochat, H.; Verkleij, A.J.; De Kruijff, B. Penetration of a cardiotoxin into cardiolipin model membranes and its implications on lipid organization. Biochemistry 1985, 24, 7101–7110. [Google Scholar] [CrossRef] [PubMed]
- Picard, F.; Pézolet, M.; Bougis, P.; Auger, M. Model of interaction between a cardiotoxin and dimyristoylphosphatidic acid bilayers determined by solid-state 31P NMR spectroscopy. Biophys. J. 1996, 70, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Gasanov, S.E.; Kim, A.A.; Yaguzhinsky, L.S.; Dagda, R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. et Biophys. Acta (BBA)—Biomembr. 2018, 1860, 586–599. [Google Scholar] [CrossRef]
- Brown, L.; Braun, W.; Kumar, A.; Wüthrich, K. High resolution nuclear magnetic resonance studies of the conformation and orientation of melittin bound to a lipid-water interface. Biophys. J. 1982, 37, 319–328. [Google Scholar] [CrossRef]
- Stanczak, P.; Horst, R.; Serrano, P.; Wüthrich, K. NMR Characterization of Membrane Protein−Detergent Micelle Solutions by Use of Microcoil Equipment. J. Am. Chem. Soc. 2009, 131, 18450–18456. [Google Scholar] [CrossRef] [PubMed]
- Shenkarev, Z.O.; Balandin, S.V.; Trunov, K.I.; Paramonov, A.S.; Sukhanov, S.V.; Barsukov, L.I.; Arseniev, A.S.; Ovchinnikova, T.V. Molecular mechanism of action of beta-hairpin antimicrobial peptide arenicin: Oligomeric structure in dodecylphosphocholine micelles and pore formation in planar lipid bilayers. Biochemistry 2011, 50, 6255–6265. [Google Scholar] [CrossRef] [PubMed]
- Paramonov, A.S.; Lyukmanova, E.N.; Tonevitsky, A.G.; Arseniev, A.S.; Shenkarev, Z.O. Spatial structure and oligomerization of viscotoxin A3 in detergent micelles: Implication for mechanisms of ion channel formation and membrane lysis. Biochem. Biophys. Res. Commun. 2021, 585, 22–28. [Google Scholar] [CrossRef]
- Dauplais, M.; Neumann, J.M.; Pinkasfeld, S.; Menez, A.; Roumestand, C. An NMR Study of the Interaction of Cardiotoxin gamma from Naja nigricollis with Perdeuterated Dodecylphosphocholine Micelles. Eur. J. Biochem. 1995, 230, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Dementieva, D.V.; Bocharov, E.V.; Utkin, Y.N.; Arseniev, A.S. Membrane binding motif of the P-type cardiotoxin. J. Mol. Biol. 2001, 305, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Dubinnyi, M.A.; Volynsky, P.E.; Pustovalova, Y.E.; Konshina, A.G.; Utkin, Y.N.; Arseniev, A.S.; Efremov, R.G. Impact of membrane partitioning on the spatial structure of an S-type cobra cytotoxin. J. Biomol. Struct. Dyn. 2018, 36, 3463–3478. [Google Scholar] [CrossRef] [PubMed]
- Efremov, R.G.; Volynsky, P.E.; Nolde, D.E.; Dubovskii, P.V.; Arseniev, A.S. Interaction of Cardiotoxins with Membranes: A Molecular Modeling Study. Biophys. J. 2002, 83, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Konshina, A.G.; Dubovskii, P.V.; Efremov, R.G. Stepwise Insertion of Cobra Cardiotoxin CT2 into a Lipid Bilayer Occurs as an Interplay of Protein and Membrane “Dynamic Molecular Portraits”. J. Chem. Inf. Model. 2021, 61, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Dubova, K.M.; Dubovskii, P.V.; Utkin, Y.N.; Samygina, V.R. Effect of Microgravity on the Crystallization of Cardiotoxin from the Venom of Spectacled Cobra Naja naja. Crystallogr. Rep. 2024, 68, 900–904. [Google Scholar] [CrossRef]
- O’Connell, J.F.; Bougis, P.E.; Wüthrich, K. Determination of the nuclear-magnetic-resonance solution structure of cardiotoxin CTX IIb from Naja mossambica mossambica. Eur. J. Biochem. 1993, 213, 891–900. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.; Chiang, C.; Hseu, Y.; Vyas, A.; Rule, G.; Wu, W. Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. J. Biol. Chem. 1994, 269, 14473–14483. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Armugam, A.; Jeyaseelan, K. Cytotoxic potency of cardiotoxin from Naja sputatrix: Development of a new cytolytic assay. Biochem. J. 2002, 366, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Gasanov, S.E.; Shrivastava, I.H.; Israilov, F.S.; Kim, A.A.; Rylova, K.A.; Zhang, B.; Dagda, R.K. Naja naja oxiana Cobra Venom Cytotoxins CTI and CTII Disrupt Mitochondrial Membrane Integrity: Implications for Basic Three-Fingered Cytotoxins. PLoS ONE 2015, 10, e0129248. [Google Scholar] [CrossRef]
- Suzuki-Matsubara, M.; Athauda, S.B.; Suzuki, Y.; Matsubara, K.; Moriyama, A. Comparison of the primary structures, cytotoxicities, and affinities to phospholipids of five kinds of cytotoxins from the venom of Indian cobra, Naja naja. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016, 179, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Li, F.; Chen, Z.; Shrivastava, I.H.; Gasanoff, E.S.; Dagda, R.K. Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins 2019, 11, 152. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.P.; Tan, K.Y.; Liu, B.-S.; Sung, W.-C.; Tan, C.H. Cytotoxicity of Venoms and Cytotoxins from Asiatic Cobras (Naja kaouthia, Naja sumatrana, Naja atra) and Neutralization by Antivenoms from Thailand, Vietnam, and Taiwan. Toxins 2022, 14, 334. [Google Scholar] [CrossRef] [PubMed]
- Averin, A.S.; Goltyaev, M.V.; Andreeva, T.V.; Starkov, V.G.; Tsetlin, V.I.; Utkin, Y.N. S- and P-type cobra venom cardiotoxins differ in their action on isolated rat heart. J. Venom. Anim. Toxins Incl. Trop. Dis. 2022, 28, e20210110. [Google Scholar] [CrossRef] [PubMed]
- Averin, A.S.; Berezhnov, A.V.; Pimenov, O.Y.; Galimova, M.H.; Starkov, V.G.; Tsetlin, V.I.; Utkin, Y.N. Effects of Cobra Cardiotoxins on Intracellular Calcium and the Contracture of Rat Cardiomyocytes Depend on Their Structural Types. Int. J. Mol. Sci. 2023, 24, 9259. [Google Scholar] [CrossRef]
- Bougis, P.; Rochat, H.; Pieroni, G.; Verger, R. Penetration of phospholipid monolayers by cardiotoxins. Biochemistry 1981, 20, 4915–4920. [Google Scholar] [CrossRef]
- Carbone, M.A.; Macdonald, P.M. Cardiotoxin II Segregates Phosphatidylglycerol from Mixtures with Phosphatidylcholine: 31P and 2H NMR Spectroscopic Evidence. Biochemistry 1996, 35, 3368–3378. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.-N.; Sue, S.-C.; Wang, D.-S.; Wu, P.-L.; Wu, W.-G. Peripheral Binding Mode and Penetration Depth of Cobra Cardiotoxin on Phospholipid Membranes as Studied by a Combined FTIR and Computer Simulation Approach. Biochemistry 2003, 42, 7457–7466. [Google Scholar] [CrossRef] [PubMed]
- Feofanov, A.V.; Sharonov, G.V.; Dubinnyi, M.A.; Astapova, M.V.; Kudelina, I.A.; Dubovskii, P.V.; Rodionov, D.I.; Utkin, Y.N.; Arseniev, A.S. Comparative Study of Structure and Activity of Cytotoxins from Venom of the Cobras Naja oxiana, Naja kaouthia, and Naja haje. Biochemistry 2004, 69, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Utkin, Y.N. Cobra Cytotoxins: Structural Organization and Antibacterial Activity. Acta Naturae 2014, 6, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Dubovskii, P.V.; Vorontsova, O.V.; Utkin, Y.N.; Arseniev, A.S.; Efremov, R.G.; Feofanov, A.V. Cobra cytotoxins: Determinants of antibacterial activity. Mendeleev Commun. 2015, 25, 70–71. [Google Scholar] [CrossRef]
- Dubovskii, P.V.; Ignatova, A.A.; Feofanov, A.V.; Utkin, Y.N.; Efremov, R.G. Antibacterial activity of cardiotoxin-like basic polypeptide from cobra venom. Bioorganic Med. Chem. Lett. 2020, 30, 126890. [Google Scholar] [CrossRef] [PubMed]
- Kuleshina, O.N.; Kruykova, E.V.; Cheremnykh, E.G.; Kozlov, L.V.; Andreeva, T.V.; Starkov, V.G.; Osipov, A.V.; Ziganshin, R.H.; Tsetlin, V.I.; Utkin, Y.N. Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins. Toxins 2020, 12, 325. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, G.; Krishnaswamy, T.; Kumar, S.; Yu, C. Binding of Nucleotide Triphosphates to Cardiotoxin Analogue II from the Taiwan Cobra Venom (Naja naja atra). Elucidation of the structural interactions in the dATP-cardiotoxin analogue ii complex. J. Biol. Chem. 1999, 274, 17869–17875. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-C.; Guan, H.-H.; Wang, C.-H.; Huang, W.-N.; Tjong, S.-C.; Chen, C.-J.; Wu, W.-G. Structural Basis of Citrate-dependent and Heparan Sulfate-mediated Cell Surface Retention of Cobra Cardiotoxin A3. J. Biol. Chem. 2005, 280, 9567–9577. [Google Scholar] [CrossRef]
- Lim, E.Q.; Ahemad, N.; Yap, M.K.K. High-throughput virtual screening, pharmacophore modelling and antagonist effects of small molecule inhibitors against cytotoxin-induced cytotoxicity. J. Biomol. Struct. Dyn. 2023, 1–15. [Google Scholar] [CrossRef]
- Chen, Y.-J.; Tsai, C.-Y.; Hu, W.-P.; Chang, L.-S. DNA Aptamers against Taiwan Banded Krait α-Bungarotoxin Recognize Taiwan Cobra Cardiotoxins. Toxins 2016, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-J.; Wang, L.-J.; Lee, Y.-C.; Huang, C.-H.; Hu, W.-P.; Chang, L.-S. A Turn-on Fluorescence Sensor for Heparin Detection Based on a Release of Taiwan Cobra Cardiotoxin from a DNA Aptamer or Adenosine-Based Molecular Beacon. Molecules 2018, 23, 460. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.V.; Vyas, A.A.; Vyas, K.A.; Liu, Y.-S.; Chiang, C.-M.; Chi, L.-M.; Wu, W.-G. Heparin and heparan sulfate bind to snake cardiotoxin. Sulfated oligosaccharides as a potential target for cardiotoxin action. J. Biol. Chem. 1997, 272, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.A.; Pan, J.-J.; Patel, H.V.; Vyas, K.A.; Chiang, C.-M.; Sheu, Y.-C.; Hwang, J.-K.; Wu, W.-G. Analysis of binding of cobra cardiotoxins to heparin reveals a new beta-sheet heparin-binding structural motif. J. Biol. Chem. 1997, 272, 9661–9670. [Google Scholar] [CrossRef] [PubMed]
- Vyas, K.A.; Patel, H.V.; Vyas, A.A.; Wu, W.-G. Glycosaminoglycans Bind to Homologous Cardiotoxins with Different Specificity. Biochemistry 1998, 37, 4527–4534. [Google Scholar] [CrossRef] [PubMed]
- Kao, P.-H.; Lin, S.-R.; Chang, L.-S. Interaction of Naja naja atra cardiotoxin 3 with H-trisaccharide modulates its hemolytic activity and membrane-damaging activity. Toxicon 2010, 55, 1387–1395. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Lin, S.-R.; Wu, T.T.; Chang, L.-S. Evidence showing an intermolecular interaction between KChIP proteins and Taiwan cobra cardiotoxins. Biochem. Biophys. Res. Commun. 2004, 319, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-J.; Huang, C.-H.; Lee, Y.-C.; Wang, L.-J.; Chiou, J.-T.; Chang, L.-S. Naja atra cardiotoxins enhance the protease activity of chymotrypsin. Int. J. Biol. Macromol. 2019, 136, 512–520. [Google Scholar] [CrossRef]
- Pucca, M.B.; Ahmadi, S.; Cerni, F.A.; Ledsgaard, L.; Sørensen, C.V.; McGeoghan, F.T.; Stewart, T.; Schoof, E.; Lomonte, B.; Keller, U.A.D.; et al. Unity Makes Strength: Exploring Intraspecies and Interspecies Toxin Synergism between Phospholipases A2 and Cytotoxins. Front. Pharmacol. 2020, 11, 611. [Google Scholar] [CrossRef]
- Gunta, U.; Vadla, G.P.; Kadiyala, G.; Kandula, D.R.; Mastan, M. Identification of Potential Insulinotropic Cytotoxins from Indian Cobra Snake Venom Using High-Resolution Mass Spectrometry and Analyzing Their Possible Interactions with Potassium Channel Receptors by In Silico Studies. Appl. Biochem. Biotechnol. 2024, 196, 160–181. [Google Scholar] [CrossRef]
- Tjong, S.-C.; Chen, T.-S.; Huang, W.-N.; Wu, W.-G. Structures of Heparin-Derived Tetrasaccharide Bound to Cobra Cardiotoxins: Heparin Binding at a Single Protein Site With Diverse Side Chain Interactions. Biochemistry 2007, 46, 9941–9952. [Google Scholar] [CrossRef] [PubMed]
- Petras, D.; Sanz, L.; Segura, A.; Herrera, M.; Villalta, M.; Solano, D.; Vargas, M.; Leon, G.; Warrell, D.A.; Theakston, R.; et al. Snake venomics of African spitting cobras: Toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J. Proteome Res. 2011, 10, 1266–1280. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.-L.; Gao, J.-F.; Zhang, Y.-X.; Shen, S.-S.; He, Y.; Wang, J.; Ma, X.-M.; Ji, X. Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J. Proteom. 2016, 138, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Lauterwein, J.; Brown, L.R.; Wüthrich, K. High-resolution 1H-NMR studies of monomeric melittin in aqueous solution. Biochim. et Biophys. Acta (BBA)—Protein Struct. 1980, 622, 219–230. [Google Scholar] [CrossRef]
- Penela, P.; Ribas, C.; Sánchez-Madrid, F.; Mayor, F. G protein-coupled receptor kinase 2 (GRK2) as a multifunctional signaling hub. Cell. Mol. Life Sci. 2019, 76, 4423–4446. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. Protein intrinsic disorder and structure-function continuum. Prog. Mol. Biol. Transl. Sci. 2019, 166, 1–17. [Google Scholar] [PubMed]
- Gentili, P.L. The Conformational Contribution to Molecular Complexity and Its Implications for Information Processing in Living Beings and Chemical Artificial Intelligence. Biomimetics 2024, 9, 121. [Google Scholar] [CrossRef]
- Bittenbinder, M.A.; Zdenek, C.N.; Brouw, B.O.D.; Youngman, N.J.; Dobson, J.S.; Naude, A.; Vonk, F.J.; Fry, B.G. Coagulotoxic Cobras: Clinical Implications of Strong Anticoagulant Actions of African Spitting Naja Venoms That Are Not Neutralised by Antivenom but Are by LY315920 (Varespladib). Toxins 2018, 10, 516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubovskii, P.V.; Utkin, Y.N. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins 2024, 16, 262. https://doi.org/10.3390/toxins16060262
Dubovskii PV, Utkin YN. Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins. 2024; 16(6):262. https://doi.org/10.3390/toxins16060262
Chicago/Turabian StyleDubovskii, Peter V., and Yuri N. Utkin. 2024. "Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins" Toxins 16, no. 6: 262. https://doi.org/10.3390/toxins16060262
APA StyleDubovskii, P. V., & Utkin, Y. N. (2024). Specific Amino Acid Residues in the Three Loops of Snake Cytotoxins Determine Their Membrane Activity and Provide a Rationale for a New Classification of These Toxins. Toxins, 16(6), 262. https://doi.org/10.3390/toxins16060262