Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters
Abstract
:1. Introduction
2. Results and Discussion
2.1. Seasonal Variations of the Dissolved and Particulate T/O Compounds in the Eastern Drinking Water Source of Chaohu Lake
2.2. Factors Influencing the T/O Compound Variation in the Eastern Drinking Water Source of Chaohu Lake
2.3. Relationships among T/O Compounds and Algal Toxins in the Eastern Drinking Water Source of Chaohu Lake
2.4. Characteristics of the T/O Compounds in Freshwaters of the World
2.4.1. Spatiotemporal Distribution of T/O Compounds in Freshwater Sources Worldwide
2.4.2. Implications of Spatiotemporal Distribution of T/O Compounds for Management
2.5. Sources and Influencing Factors of T/O Compounds in Freshwater Bodies of the World
2.5.1. Biotic Factors
2.5.2. Physical Factors
2.5.3. Nutrients
2.5.4. Organic Matter
2.5.5. Interrelationships among Metabolites
3. Conclusions
4. Material and Methods
4.1. Study Area Description and Hydrological Conditions of the Lake
4.2. Taste and Odor Compounds Analysis
4.2.1. Chemicals, Material and Standards
4.2.2. Sample Preparation and Analysis
4.3. Literature Analysis
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plaas, H.E.; Paerl, H.W. Toxic cyanobacteria: A growing threat to water and air quality. Environ. Sci. Technol. 2021, 55, 44–64. [Google Scholar] [CrossRef]
- Glibert, P.; Elisa, B.; Michele, A.B.; Grant, C.P.; Mingjiang, Z. Global Ecology and Oceanography of Harmful Algal Blooms, 1st ed.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- O’Neil, J.M.; Davis, T.W.; Burford, M.A.; Gobler, C.J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 2012, 14, 313–334. [Google Scholar] [CrossRef]
- Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems—A global problem. Environ. Sci. Pollut. Res. 2003, 10, 126–139. [Google Scholar] [CrossRef]
- Huo, D.; Gan, N.; Geng, R.; Cao, Q.; Song, L.; Yu, G.; Li, R. Cyanobacterial blooms in China: Diversity, distribution, and cyanotoxins. Harmful Algae 2021, 109, 102106. [Google Scholar] [CrossRef]
- Li, H.; Gu, X.; Chen, H.; Mao, Z.; Shen, R.; Zeng, Q.; Ge, Y. Co-occurrence of multiple cyanotoxins and taste-and-odor compounds in the large eutrophic Lake Taihu, China: Dynamics, driving factors, and challenges for risk assessment. Environ. Pollut. 2022, 294, 118594. [Google Scholar] [CrossRef]
- Watson, S.B. Cyanobacterial and eukaryotic algal odour compounds: Signals or by-products? A review of their biological activity. Phycologia 2003, 42, 332–350. [Google Scholar] [CrossRef]
- Devi, A.; Chiu, Y.-T.; Hsueh, H.-T.; Lin, T.-F. Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Water Res. 2020, 188, 116478. [Google Scholar] [CrossRef]
- Sugiura, N.; Iwami, N.; Inamori, Y.; Nishimura, O.; Sudo, R. Significance of attached cyanobacteria relevant to the occurrence of musty odor in Lake Kasumigaura. Water Res. 1998, 32, 3549–3554. [Google Scholar] [CrossRef]
- Sun, D.L.; Yu, J.W.; Yang, M.; An, W.; Zhao, Y.Y.; Lu, N.; Yuan, S.G.; Zhang, D.Q. Occurrence of odor problems in drinking water of major cities across China. Front. Environ. Sci. Eng. 2014, 8, 411–416. [Google Scholar] [CrossRef]
- Shang, L.; Feng, M.; Xu, X.; Liu, F.; Ke, F.; Li, W. Co-occurrence of microcystins and taste-and-odor compounds in drinking water source and their removal in a full-scale drinking water treatment plant. Toxins 2018, 10, 26. [Google Scholar] [CrossRef]
- Manganelli, M.; Testai, E.; Tazart, Z.; Scardala, S.; Codd, G.A. Co-occurrence of taste and odor compounds and cyanotoxins in cyanobacterial blooms: Emerging risks to human health? Microorganisms 2023, 11, 872. [Google Scholar] [CrossRef]
- Gagné, F.; Ridal, J.; Blaise, C.; Brownlee, B. Toxicological effects of geosmin and 2-methylisoborneol on rainbow trout hepatocytes. Bull. Environ. Contam. Toxicol. 1999, 63, 174–180. [Google Scholar] [CrossRef]
- Smith, V.H.; Sieber-Denlinger, J.; deNoyelles, F.; Campbell, S.; Pan, S.; Randtke, S.J.; Blain, G.T.; Strasser, V.A. Managing taste and odor problems in a eutrophic drinking water reservoir. Lake Reserv. Manag. 2002, 18, 319–323. [Google Scholar] [CrossRef]
- Lee, J.E.; Youn, S.-J.; Byeon, M.; Yu, S.-J. Occurrence of cyanobacteria, actinomycetes, and geosmin in drinking water reservoir in Korea: A case study from an algal bloom in 2012. Water Supply 2020, 20, 1862–1870. [Google Scholar] [CrossRef]
- Jahnichen, S.; Jaschke, K.; Wieland, F.; Packroff, G.; Benndorf, J. Spatio-temporal distribution of cell-bound and dissolved geosmin in Wahnbach Reservoir: Causes and potential odour nuisances in raw water. Water Res. 2011, 45, 4973–4982. [Google Scholar] [CrossRef]
- Sugiura, N.; Nakano, K. Causative microorganisms for musty odor occurrence in the eutrophic Lake Kasumigaura. Hydrobiologia 2000, 434, 145–150. [Google Scholar] [CrossRef]
- Youn, S.J.; Kim, H.N.; Yu, S.J.; Byeon, M.S. Cyanobacterial occurrence and geosmin dynamics in Paldang Lake watershed, South Korea. Water Environ. J. 2020, 34, 634–643. [Google Scholar] [CrossRef]
- Watson, S.B.; Ridal, J. Periphyton: A primary source of widespread and severe taste and odour. Water Sci. Technol. 2004, 49, 33–39. [Google Scholar] [CrossRef]
- Harris, T.D.; Graham, J.L. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset. Lake Reserv. Manag. 2017, 33, 32–48. [Google Scholar] [CrossRef]
- Wu, T.; Zhu, G.; Zhu, M.; Xu, H.; Yang, J.; Zhao, X. Effects of algae proliferation and density current on the vertical distribution of odor compounds in drinking water reservoirs in summer. Environ. Pollut. 2021, 288, 117683. [Google Scholar] [CrossRef]
- Zhang, R.; Qi, F.; Liu, C.; Zhang, Y.; Wang, Y.; Song, Z.; Kumirska, J.; Sun, D. Cyanobacteria derived taste and odor characteristics in various lakes in China: Songhua Lake, Chaohu Lake and Taihu Lake. Ecotoxicol. Environ. Saf. 2019, 181, 499–507. [Google Scholar] [CrossRef]
- Ma, Z.M.; Xie, P.; Chen, J.; Niu, Y.; Tao, M.; Qi, M.; Zhang, W.; Deng, X.W. Microcystis blooms influencing volatile organic compounds concentrations in Lake Taihu. Fresenius Environ. Bull. 2013, 22, 95–102. [Google Scholar]
- Izaguirre, G.; Taylor, W.D. Geosmin and 2-methylisoborneol production in a major aqueduct system. Water Sci. Technol. 1995, 31, 41–48. [Google Scholar] [CrossRef]
- Izaguirre, G.; Taylor, W.D. Geosmin and MIB events in a new reservoir in southern California. Water Sci. Technol. 2007, 55, 9–14. [Google Scholar] [CrossRef]
- Yu, J.W.; Zhao, Y.M.; Yang, M.; Lin, T.F.; Guo, Z.H.; Gu, J.N.; Li, S.; Han, W. Occurrence of odour-causing compounds in different source waters of China. J. Water Supply Res. Technol.-Aqua 2009, 58, 587–594. [Google Scholar] [CrossRef]
- Olsen, B.K.; Chislock, M.F.; Wilson, A.E. Eutrophication mediates a common off-flavor compound, 2-methylisoborneol, in a drinking water reservoir. Water Res. 2016, 92, 228–234. [Google Scholar] [CrossRef]
- Clercin, N.A.; Druschel, G.K. Influence of environmental factors on the production of MIB and geosmin metabolites by bacteria in a eutrophic reservoir. Water Resour. Res. 2019, 55, 5413–5430. [Google Scholar] [CrossRef]
- Clercin, N.A.; Druschel, G.K.; Gray, M. Occurrences of 2-methylisoborneol and geosmin -degrading bacteria in a eutrophic reservoir and the role of cell-bound versus dissolved fractions. J. Environ. Manag. 2021, 297, 113304. [Google Scholar] [CrossRef]
- Du, S.; Xu, H.; Yang, M.; Pan, N.; Zheng, T.; Xu, C.; Li, Y.; Zuo, Z. Toxic mechanism of two cyanobacterial volatiles β-cyclocitral and β-ionone on the photosynthesis in duckweed by altering gene expression. Environ. Pollut. 2022, 308, 119711. [Google Scholar] [CrossRef]
- Jiittner, F. Characterization of Microcystis Strains by Alkyl Sulfides and β-Cyclocitral. Z. Für Naturforschung C 1984, 39, 867–871. [Google Scholar] [CrossRef]
- Watson, S.B.; Monis, P.; Baker, P.; Giglio, S. Biochemistry and genetics of taste- and odor-producing cyanobacteria. Harmful Algae 2016, 54, 112–127. [Google Scholar] [CrossRef]
- Jiang, Y.; Xie, P.; Nie, Y. Concentration and Bioaccumulation of Cyanobacterial Bioactive and Odorous Metabolites Occurred in a Large, Shallow Chinese Lake. Bull. Environ. Contam. Toxicol. 2014, 93, 643–648. [Google Scholar] [CrossRef]
- Bao, M.-L.; Barbieri, K.; Burrini, D.; Griffini, O.; Pantani, F. Determination of trace levels of taste and odor compounds in water by microextraction and gas chromatography-ion-trap detection-mass spectrometry. Water Res. 1997, 31, 1719–1727. [Google Scholar] [CrossRef]
- Qi, C.; Fang, J.; Wang, G.; Huang, H.; Wang, Z.; Si, Z.; Zhang, L. Characterization of odorants in contrasting ecotypes of Lake Taihu: Algae-dominated versus macrophyte-dominated zones. Environ. Sci. Pollut. Res. 2020, 27, 42221–42229. [Google Scholar] [CrossRef]
- Watson, S.B. Aquatic taste and odor: A primary signal of drinking-water integrity. J. Toxicol. Environ. Health-Part A-Curr. Issues 2004, 67, 1779–1795. [Google Scholar] [CrossRef]
- State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Standards for Drinking Water Quality; Standards Press of China: Beijing, China, 2022. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=DAB6B92C0764FC96E05397BE0A0A5F84 (accessed on 3 January 2024). (In Chinese)
- Lin, T.F.; Wong, J.Y.; Kao, H.P. Correlation of musty odor and 2-MIB in two drinking water treatment plants in South Taiwan. Sci. Total Environ. 2002, 289, 225–235. [Google Scholar] [CrossRef]
- Jung, S.; Baek, K.; Yu, M. Treatment of taste and odor material by oxidation and adsorption. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2004, 49, 289. [Google Scholar] [CrossRef]
- Young, C.C.; Suffet, I.H.; Crozes, G.; Bruchet, A. Identification of a woody-hay odor-causing compound in a drinking water supply. Water Sci. Technol. 1999, 40, 273–278. [Google Scholar] [CrossRef]
- Westerhoff, P.; Rodriguez-Hernandez, M.; Baker, L.; Sommerfeld, M. Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Res. 2005, 39, 4899–4912. [Google Scholar] [CrossRef]
- Jiang, Y.; Cheng, B.; Liu, M.X.; Nie, Y. Spatial and temporal variations of taste and odor compounds in surface water, overlying water and sediment of the western Lake Chaohu, China. Bull. Environ. Contam. Toxicol. 2016, 96, 186–191. [Google Scholar] [CrossRef]
- Wang, C.M.; Yu, J.W.; Guo, Q.Y.; Sun, D.L.; Su, M.; An, W.; Zhang, Y.; Yang, M. Occurrence of swampy/septic odor and possible odorants in source and finished drinking water of major cities across China. Environ. Pollut. 2019, 249, 305–310. [Google Scholar] [CrossRef]
- Yu, C.C.; Shi, C.F.; Ji, M.; Xu, X.G.; Zhang, Z.Q.; Ma, J.; Wang, G.X. Taste and odor compounds associated with aquatic plants in Taihu Lake: Distribution and producing potential. Environ. Sci. Pollut. Res. 2019, 26, 34510–34520. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Zhang, H.X.; Li, L.W.; Wang, Q.; Yu, J.W.; Chen, Y.S. Microbial community analysis and correlation with 2-methylisoborneol occurrence in landscape lakes of Beijing. Environ. Res. 2020, 183, 109217. [Google Scholar] [CrossRef]
- Li, L.; Wan, N.; Gan, N.; Xia, B.D.; Song, L.R. Annual dynamics and origins of the odorous compounds in the pilot experimental area of Lake Dianchi, China. Water Sci. Technol. 2007, 55, 43–50. [Google Scholar] [CrossRef]
- Wu, A.; Wang, Y.; Friese, K.; Zhang, L.; Han, C.; Kang, D.; Shen, Q. Spatial and seasonal distribution of 2-methylisoborneol in a large eutrophic shallow lake, China. Water Air Soil Pollut. 2021, 232, 387. [Google Scholar] [CrossRef]
- Ren, R.; Deng, X.; Lu, W.; Xiao, R.; Ping, X.; Jun, C. Sediments are important in regulating the algae-derived off-flavor (?-cyclocitral) in eutrophic lakes. Sci. Total Environ. 2023, 875, 162536. [Google Scholar] [CrossRef]
- Bruder, S.; Babbar-Sebens, M.; Tedesco, L.; Soyeux, E. Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies. Environ. Monit. Assess. 2014, 186, 1525–1545. [Google Scholar] [CrossRef]
- Shi, X.; Huang, Q.; Shen, X.; Wu, J.; Nan, J.; Li, J.; Lu, H.; Yang, C. Distribution, driving forces, and risk assessment of 2-MIB and its producer in a drinking water source-oriented shallow lake. Environ. Sci. Pollut. Res. 2023, 30, 71194–71208. [Google Scholar] [CrossRef]
- Lv, C.; Shi, R.; Ji, M.; Liu, Q.; Ma, J.; Xu, X.; Wang, G. Distribution characteristics and influencing factors of odorants in urban rivers with high exogenous algae input. Environ. Chem. 2022, 41, 1579–1590. [Google Scholar]
- Shang, L.; Feng, M.; Liu, F.; Xu, X.; Ke, F.; Chen, X.; Li, W. The establishment of preliminary safety threshold values for cyanobacteria based on periodic variations in different microcystin congeners in Lake Chaohu, China. Environ. Sci. Process. Impacts 2015, 17, 728–739. [Google Scholar] [CrossRef]
- Chen, X.; Yang, X.; Dong, X.; Liu, E. Environmental changes in Chaohu Lake (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica 2013, 43, 10–17. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Li, G. A scientometric review of the research on the impacts of climate change on water quality during 1998–2018. Environ. Sci. Pollut. Res. 2020, 27, 14322–14341. [Google Scholar] [CrossRef]
- Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the Midwestern United States. Environ. Sci. Technol. 2010, 44, 7361–7368. [Google Scholar]
- Xu, Y.; Li, W.; Wu, W.; Zhang, Y. Study on aquaticd off-flavors in eutrophic Donghu Lake. Acta Ecol. Sin. 1999, 19, 212–216. [Google Scholar]
- Tung, S.C.; Lin, T.F.; Yang, F.C.; Liu, C.L. Seasonal change and correlation with environmental parameters for 2-MIB in Feng-Shen Reservoir, Taiwan. Environ. Monit. Assess. 2008, 145, 407–416. [Google Scholar] [CrossRef]
- Sun, D.L.; Yu, J.W.; An, W.; Yang, M.; Chen, G.G.; Zhang, S.J. Identification of causative compounds and microorganisms for musty odor occurrence in the Huangpu River, China. J. Environ. Sci. 2013, 25, 460–465. [Google Scholar] [CrossRef]
- Wang, Z.J.; Song, G.F.; Shao, J.H.; Tan, W.H.; Li, Y.G.; Li, R.H. Establishment and field applications of real-time PCR methods for the quantification of potential MIB-producing cyanobacteria in aquatic systems. J. Appl. Phycol. 2016, 28, 325–333. [Google Scholar] [CrossRef]
- Su, M.; Yu, J.W.; Zhang, J.Z.; Chen, H.; An, W.; Vogt, R.D.; Andersen, T.; Jia, D.M.; Wang, J.S.; Yang, M. MIB-producing cyanobacteria (Planktothrix sp.) in a drinking water reservoir: Distribution and odor producing potential. Water Res. 2015, 68, 444–453. [Google Scholar] [CrossRef]
- Huang, X.; Huang, Z.F.; Chen, X.P.; Zhang, D.; Zhou, J.Z.; Wang, X.Y.; Gao, N.Y. The predominant phytoplankton of Pseudoanabaena holding specific biosynthesis gene-derived occurrence of 2-MIB in a drinking water reservoir. Environ. Sci. Pollut. Res. 2018, 25, 19134–19142. [Google Scholar] [CrossRef]
- Cao, T.; Fang, J.; Jia, Z.; Zhu, Y.; Su, M.; Zhang, Q.; Song, Y.; Yu, J.; Yang, M. Early warning of MIB episode based on gene abundance and expression in drinking water reservoirs. Water Res. 2023, 231, 119667. [Google Scholar] [CrossRef]
- Rong, C.; Liu, D.P.; Li, Y.; Yang, K.; Han, X.B.; Yu, J.W.; Pan, B.L.; Zhang, J.S.; Yang, M. Source water odor in one reservoir in hot and humid areas of southern China: Occurrence, diagnosis and possible mitigation measures. Environ. Sci. Eur. 2018, 30. [Google Scholar] [CrossRef]
- Deng, X.; Qi, M.; Ren, R.; Liu, J.; Sun, X.; Xie, P.; Chen, J. The relationships between odors and environmental factors at bloom and non-bloom area in Lake Taihu, China. Chemosphere 2019, 218, 569–576. [Google Scholar] [CrossRef]
- Yang, C.; Shen, X.; Shi, X.; Cui, Z.; Nan, J.; Lu, H.; Li, J.; Huang, Q. Impact of submerged macrophytes on growth and 2-MIB release risk of Pseudanabaena sp.: From field monitoringa to cultural experiments. J. Hazard. Mater. 2023, 442, 130052. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Zuo, Y.; Zhou, Q.; Song, L. Biological origins and annual variations of earthy-musty off-flavours in the Xionghe Reservoir in China. Aqua 2010, 59, 243. [Google Scholar] [CrossRef]
- Zuo, Y.X.; Li, L.; Zhang, T.; Zheng, L.L.; Dai, G.Y.; Liu, L.M.; Song, L.R. Contribution of Streptomyces in sediment to earthy odor in the overlying water in Xionghe Reservoir, China. Water Res. 2010, 44, 6085–6094. [Google Scholar] [CrossRef]
- Lu, J.; Su, M.; Su, Y.; Wu, B.; Cao, T.; Fang, J.; Yu, J.; Zhang, H.; Yang, M. Driving forces for the growth of MIB-producing Planktothricoides raciborskii in a low-latitude reservoir. Water Res. 2022, 220, 118670. [Google Scholar] [CrossRef]
- Qiu, L. Oxidation of Odor Compound and Inactivation Efficiency of Two Kinds of Typical Cyanobacteria by Hydrogen Peroxide and Ozone. Master’s Thesis, Beijing University of Civil Engineering and Architecture, Beijing, China, 2017. [Google Scholar]
- Pan, Y.; Xu, L.; Cao, W.; Yin, S.; Wang, Z.; Zhou, Q. Actinomycetes and earthy-musty odorous compounds in brackish fishponds in Tianjin, China. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2009, 59, 1185–1194. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Bi, Y.; Zhu, Y.; Song, G.; Wang, S.; Liang, J.; Mi, W. Spatio-temporal pattern of odorous compounds and its influencing factors in the canal of the midle-route of south-to-north water diversion project. Acta Hydrobiol. Sin. 2022, 46, 149–159. [Google Scholar]
- Luo, F.; Chen, H.; Wu, X.; Liu, L.; Chen, Y.; Wang, Z. Insights into the seasonal olfactory mechanism of geosmin in raw water of Huangpu River. Toxics 2022, 10, 485. [Google Scholar] [CrossRef]
- Lu, J.; Su, M.; Su, Y.; Fang, J.; Burch, M.; Cao, T.; Wu, B.; Yu, J.; Yang, M. MIB-derived odor management based upon hydraulic regulation in small drinking water reservoirs: Principle and application. Water Res. 2023, 244, 120485. [Google Scholar] [CrossRef]
- Qiu, P.; Zhang, Y.; Mi, W.; Song, G.; Bi, Y. Producers and drivers of odor compounds in a large drinking-water source. Front. Ecol. Evol. 2023, 11, 1216567. [Google Scholar] [CrossRef]
- Badawy, M.I.; Abou-Waly, H.F.; Ali, G.H. Excretion products of algae and their occurrence in Solar Lake. Taba, Egypt. Int. J. Environ. Health Res. 1999, 9, 233–243. [Google Scholar] [CrossRef]
- Henatsch, J.J.; Juttner, F. Production and degradation of geosmin in a stratified lake with anaerobic hypolimnion (Schleinsee). Fems Microbiol. Lett. 1986, 35, 135–139. [Google Scholar] [CrossRef]
- Godo, T.; Saki, Y.; Nojiri, Y.; Tsujitani, M.; Sugahara, S.; Hayashi, S.; Kamiya, H.; Ohtani, S.; Seike, Y. Geosmin-producing species of Coelosphaerium (Synechococcales, Cyanobacteria) in Lake Shinji, Japan. Sci. Rep. 2017, 7, 41928. [Google Scholar] [CrossRef]
- Kishida, N.; Sagehashi, M.; Takanashi, H.; Fujimoto, N.; Akiba, M. Nationwide survey of organism-related off-flavor problems in Japanese drinking water treatment plants (2010–2012). J. Water Supply Res. Technol.-Aqua 2015, 64, 832–838. [Google Scholar] [CrossRef]
- Akamatsu, Y.; Nakao, R.; Motozawa, H.; Furukawa, K.; Kurita, Y. Application of a quantitative PCR method for monitoring of geosmin-producing Anabaena spp. in a Japanese reservoir. Landsc. Ecol. Eng. 2023, 19, 87–93. [Google Scholar] [CrossRef]
- Boivin, S.; Hasegawa, E.; Yamaguchi, D.; Fujioka, T. The rapid counting method for 2-MIB-producing cyanobacteria (Pseudanabaena sp.) using fluorescence detection of phycocyanin pigments in algal cells. Environ. Sci.-Water Res. Technol. 2023, 9, 2561–2568. [Google Scholar] [CrossRef]
- Romero, J.; Ventura, F. Occurrence of geosmin and other odorous compounds of natural origin in surface and drinking waters. A case study. Int. J. Environ. Anal. Chem. 2000, 77, 243–254. [Google Scholar] [CrossRef]
- Park, T.J.; Yu, M.N.; Kim, H.S.; Cho, H.S.; Hwang, M.Y.; Yang, H.J.; Lee, J.C.; Lee, J.K.; Kim, S.J. Characteristics of actinomycetes producing geosmin in Paldang Lake, Korea. Desalination Water Treat. 2016, 57, 888–899. [Google Scholar] [CrossRef]
- Hwan, B.J.; Kim, H.N.; Kang, T.G.; Kim, B.-H.; Byeon, M.-S. Study of the cause of the generation of odor compounds (geosmin and 2-methylisoborneol) in the Han river system, the drinking water source, Republic of Korea. Water Supply 2023, 23, 1081–1093. [Google Scholar] [CrossRef]
- Lee, J.E.; Park, R.; Yu, M.; Byeon, M.; Kang, T. qPCR-based monitoring of 2-methylisoborneol/geosmin-producing cyanobacteria in drinking water reservoirs in South Korea. Microorganisms 2023, 11, 2332. [Google Scholar] [CrossRef]
- Shin, J.-K.; Park, Y.; Kim, N.-Y.; Hwang, S.-J. Downstream transport of geosmin based on harmful cyanobacterial outbreak upstream in a reservoir cascade. Int. J. Environ. Res. Public Health 2022, 19, 9294. [Google Scholar] [CrossRef]
- Durrer, M.; Zimmermann, U.; Juttner, F. Dissolved and particle-bound geosmin in a mesotrophic lake (Lake Zürich): Spatial and seasonal distribution and the effect of grazers. Water Res. 1999, 33, 3628–3636. [Google Scholar] [CrossRef]
- Suwanpakdee, S.; Gutierrez, R.; Pithakpol, S.; Jampeetong, A.; Pathom-aree, W.; Nomura, N.; Itayama, T.; Whangchai, N. Earthy-musty odour and off-flavour taints in Phayao Lake, Thailand. Chiang Mai J. Sci. 2016, 43, 1076–1085. [Google Scholar]
- Ridal, J.J.; Brownlee, B.; Lean, D.R.S. Occurrence of the odor compounds, 2-methylisoborneol and geosmin in eastern Lake Ontario and the upper St. Lawrence River. J. Great Lakes Res. 1999, 25, 198–204. [Google Scholar] [CrossRef]
- Ridal, J.J.; Brownlee, B.; Lean, D.R.S. Is Lake Ontario the source of taste and odor compounds to the Upper St. Lawrence River? J. Great Lakes Res. 2000, 26, 315–322. [Google Scholar] [CrossRef]
- Watson, S.B.; Chariton, M.; Rao, Y.R.; Howell, T.; Ridal, J.; Brownlee, B.; Marvin, C.; Millard, S. Off flavours in large waterbodies: Physics, chemistry and biology in synchrony. Water Sci. Technol. 2007, 55, 1–8. [Google Scholar] [CrossRef]
- Hooper, A.S.; Kille, P.; Watson, S.E.; Christofides, S.R.; Perkins, R.G. The importance of nutrient ratios in determining elevations in geosmin synthase (geoA) and 2-MIB cyclase (mic) resulting in taste and odour events. Water Res. 2023, 232, 119693. [Google Scholar] [CrossRef]
- Youngsteadt, N.W. Factors that influence phosphorus, filamentous cyanobacteria and odor in McDaniel Lake, a southwest Missouri water supply reservoir, 1983–2002. Lake Reserv. Manag. 2005, 21, 453–464. [Google Scholar] [CrossRef]
- Izaguirre, G.; Taylor, W.D.; Pasek, J. Off-flavor problems in two reservoirs, associated with planktonic Pseudanabaena species. Water Sci. Technol. 1999, 40, 85–90. [Google Scholar] [CrossRef]
- Harris, T.D.; Smith, V.H.; Graham, J.L.; Van de Waal, D.B.; Tedesco, L.P.; Clercin, N. Combined effects of nitrogen to phosphorus and nitrate to ammonia ratios on cyanobacterial metabolite concentrations in eutrophic Midwestern USA reservoirs. Inland Waters 2016, 6, 199–210. [Google Scholar] [CrossRef]
- Olsen, B.K.; Chislock, M.F.; Rebelein, A.; Wilson, A.E. Nutrient enrichment and vertical mixing mediate 2-methylisoborneol and geosmin concentrations in a drinking water reservoir. Water Sci. Technol.-Water Supply 2017, 17, 500–507. [Google Scholar] [CrossRef]
- Dzialowski, A.R.; Smith, V.H.; Huggins, D.G.; deNoyelles, F.; Lim, N.C.; Baker, D.S.; Beury, J.H. Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Res. 2009, 43, 2829–2840. [Google Scholar] [CrossRef]
- Downing, J.A.; Watson, S.B.; McCauley, E. Predicting cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. 2001, 58, 1905–1908. [Google Scholar] [CrossRef]
- Oklahoma Water Resources Board. Justification for Chlorophyll-a Criteria to Protect the Public and Private Water Supply Beneficial Use of Sensitive Water Supplies. Available online: http://www.owrb.ok.gov/quality/index.php (accessed on 3 January 2024).
- Watson, S.B.; Brownlee, B.; Satchwill, T.; Hargesheimer, E.E. Quantitative analysis of trace levels of geosmin and MIB in source and drinking water using headspace SPME. Water Res. 2000, 34, 2818–2828. [Google Scholar] [CrossRef]
- Braak, C.t.; Šmilauer, P. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (version 4.5). In Section on Permutation Methods; Microcomputer Power: Ithaca, NY, USA, 2002. [Google Scholar]
Indexes | Factors | Geosmin | 2-Methyl Isoborneol | β-Cyclocitral | β-Ionone |
---|---|---|---|---|---|
Biological | Chlorophyll-a | −0.133 | 0.300 | 0.206 | 0.095 |
Cyanobacteria | −0.271 | 0.291 | −0.013 | 0.052 | |
Microcystis spp. | −0.187 | 0.505 ** | −0.039 | −0.121 | |
Dolichospermum spp. | −0.418 * | −0.350 * | −0.087 | 0.387 * | |
Physical | Temperature | 0.040 | 0.722 ** | −0.066 | −0.132 |
pH | 0.230 | 0.413 * | 0.227 | 0.130 | |
Dissolved oxygen | 0.004 | −0.762 ** | 0.069 | 0.253 | |
Conductivity | 0.379 * | 0.788 ** | 0.250 | −0.022 | |
Nutrient | Total nitrogen | 0.270 | −0.010 | −0.021 | −0.071 |
Nitrate | 0.404 * | 0.298 | −0.014 | −0.166 | |
Ammonia nitrogen | 0.322 | 0.372 * | −0.025 | −0.247 | |
Total phosphorus | −0.044 | 0.243 | −0.096 | −0.371 * | |
Orthophosphate | −0.210 | −0.155 | −0.202 | −0.188 | |
Organic | Potassium permanganate index | 0.210 | 0.452 ** | 0.287 | −0.030 |
Dissolved organic carbon | 0.028 | 0.383 * | 0.059 | 0.095 |
Geosmin | 2-Methyl Isoborneol | β-Cyclocitral | β-Ionone | MC-LR | MC-RR | MC-YR | |
---|---|---|---|---|---|---|---|
geosmin | 1 | ||||||
MIB | 0.288 | 1 | |||||
β-cyclocitral | 0.660 ** | 0.256 | 1 | ||||
β-ionone | 0.408 * | 0.169 | 0.654 ** | 1 | |||
MC-LR | −0.183 | 0.228 | 0.239 | 0.014 | 1 | ||
MC-RR | −0.136 | 0.217 | 0.157 | 0.077 | 0.802 ** | 1 | |
MC-YR | −0.368 * | 0.128 | −0.019 | −0.265 | 0.817 ** | 0.643 ** | 1 |
Country and Region | Sampling Site | Sampling Time | Geosmin (ng·L−1) | 2-Methyl Isoborneol (ng·L−1) | β-Cyclocitral (ng·L−1) | β-Ionone (ng·L−1) | Reference |
---|---|---|---|---|---|---|---|
China | Eastern Chaohu Lake | August 2012, December 2012 | 0–1300 (August 2012) | 0 | 0–800 (August 2012) | 0–8300 (December 2012) | [33] |
Drinking water intakes in the Eastern Chaohu Lake | August 2011–August 2012 | 0.3–39.7 (March 2011) | 0.1–180.5 (July 2012) | 11.3–105.6 (January 2012) | 8.5–136.6 (June 2012) | This study, [11] | |
Western Chaohu Lake | July 2013–December 2013 | 0–28.3 (December 2013) | 0.4–1.8 (August 2013) | 0.7–714.8 (September 2013) | 0.2–11.2 (September 2013) | [42] | |
Chaohu Lake | September 2017 | 3.8–8.0 (September 2017) | 0.5–9.5 (September 2017) | 9.4–28.0 (September 2017) | [22] | ||
Dianchi Lake | June 2003–May 2004 | 0–130 (October 2003) | 0–450 (July 2003) | 20–450 (September 2003) | 40–570 (September 2003) | [46] | |
Donghu Lake | May 1995–April 1996 | 0–3.3 (June 1995) | 10–317 (January 1996) | [56] | |||
Feng-Shen Reservoir | December 2000–July 2003 | 0–185 (July 2003) | [57] | ||||
Huangpu River | January 2009–December 2009 | 0–71 (August 2009) | [58] | ||||
Lushui Reservoir | July 2010–November 2011 | 7.2–45.3 | [59] | ||||
Miyun Reservoir | 2009–2012 | 0–195 (September 2010) | [60] | ||||
Qingcaosha Reservoir | May 2016–September 2016 | 0–7.3 (May 2016) | [61] | ||||
QCS Reservoir | 2021 | 0–99 (05/2021) | [62] | ||||
Shenzhen Reservoir | October 28, 2016, May 8, 2017, 26/September 2017 | 1.2–4.2 (May 2017) | 0 | [63] | |||
Shiyan Reservoir | October 28, 2016, May 8, 2017, 26/September 2017 | 1.7–8.0 (May 2017) | 22.1–52.9 (May 2017) | [63] | |||
Songhua Lake | September 2017 | 1.1–38.1 (September 2017) | 0.6–3.4 (September 2017) | 1.1–8.9 (September 2017) | [22] | ||
East Taihu Lake | September 2017 | 4.7–16.8 (September 2017) | 13.1–32.7 (September 2017) | 15.0–37.2 | 4.4–13.8 (September 2017) | [44] | |
August 2020–November 2021 | 0.5–1446 (August 2021) | [50] | |||||
Taihu Lake | January 2009–December 2009 | 0–4 (September 2009) | 0–325 (September 2009) | 5–2080 (September 2009) | 32–573 (August 2009) | [23] | |
June 2009–May 2010 | 0.2–4 (June 2009) | 2–152 (July 2009) | 1–360 (July 2009) | 2–80 (September 2009) | [64] | ||
September 2017 | 0.3–1.2 (September 2017) | 0.2–1.0 (September 2017) | 2.2–1976.4 (September 2017) | [22] | |||
2020 published | 1–20 | 15–100 | 22–530 | 8–600 | [35] | ||
11.7–1446 (August 2021) | [65] | ||||||
Xionghe Reservoir | May 2007–April 2008 | 0–2711.5 (July 2007) | 0–378.4 (April 2008) | [66] | |||
November 2007–October 2008 | 0–826.7 (November 2007) | 0–148.1 (April 2008) | [67] | ||||
FH Reservoir | July 2018–June 2019 | 3.0 ± 2.3–52.4 ± 8.4 (November 2019) | [68] | ||||
Lake Yangcheng | 2018–2019 | 0.4–940.6 (August 2018) | [47] | ||||
Seven landscape lakes in Beijing | May 2016–September 2016 | 1–3509 (July 2016) | 0–6000 (May 2016) | [45,69] | |||
Seven important reservoirs in eastern China | August 2019 | 13.11 | 18.39 | 0 | 0 | [21] | |
RW from eight cities | 2005–2007 | 0–7200 (July 2007) | 0–255 (September 2005) | 0–358 | [26] | ||
RW from rivers of DWTPs | November 2019–March 2010 | 0–6.1 | 0–25.8 | [10] | |||
RW from lake/reservoir of DWTPs | November 2019–March 2010 | 0–9.1 | 0–65.0 | [10] | |||
RW of 56 DWTPs in 31 major cities | July 2011–December 2011 | 0–5.5 | 0–104 | [43] | |||
Fishponds | April 2006–January 2007 | 0.3–12.1 (July 2006) | 0.5–5302.7 (July 2006) | [70] | |||
MRSNWDP | September 2018–August 2019 | 7.431 ± 9.631 | 12.371 ± 12.800 | 11.973 ± 20.643 | [71] | ||
LWSP | March 2016–December 2017 | 5.15–17.66 (Winter) | [72] | ||||
Liangxi River | September 2018 | 3–10 | 30–119 | 18–239 | 50–350 | [51] | |
Nanping Reservoir | 2017–2020 | 0–113 (August 2020) | [73] | ||||
Zhuxiandong Reservoir | March–Apirl 2021 | 51.7 ± 12.8 (Apirl 2021) | [73] | ||||
Yuqiao Reservoir | 2018–2021 | 0–193 (August 2018) | 0–938.30 | [74] | |||
13 eutrophic lakes in China | May 2018–September 2019 | 0–49.05 (September 2019) | [48] | ||||
Egypt | Solar Lake | March 1997, June 1997, July 1997, August 1997 | – | – | [75] | ||
Germany | Schleinsee Lake | 1984,1985 | 0–180 (July 1984) | [76] | |||
Wahnbach Reservoir | May–October 2006–2009 | 0–600 (August) | 0 | [16] | |||
Italy | Arno River | May 8, 1995 | 15–70 (May 1995) | 0 | 0–57 (May 1995) | 0–7 (May 1995) | [34] |
Japan | Lake Kasumigaura | September 1989–October 1990 | 0–90 (September 1989) | 0–150 (October 1990) | [9] | ||
1994–1997 | 0–560 (March 1995) | 0–185 (April 1995) | [17] | ||||
Lake Shinji | September 2009–October 2009 | 3–640 (October 2009) | [77] | ||||
RW of DWTPs | October 2010–September 2012 | 0–520 | 0–1400 | [78] | |||
A reservoir in Mie Prefecture | December 10th, 2019 | 0–9.53 | [79] | ||||
Lake Y in Nagasaki Prefecture | March–July 2022 | <2 | 0–13 | [80] | |||
Spain | Llobregat River | 1997–1999 | 5–200 | 10–20 | 0 | [81] | |
Korea | Paldang Lake | June 2012–September 2012 April 2017–November 2018 | 0–4384 (July 2012) 0–246 (August 2017) 2–31 (July 2020) | 0–22 (July 2012) 0–280 (October 2017) | [15,82,83,84] | ||
North Han River and Han River | December 2011 | 2–1640 | [85] | ||||
Bukhan River | 2011–2015 | 0–810 (August 2014) | [18] | ||||
Namhan River | 2011–2015 | 0–75 (September 2015) | [18] | ||||
Switzerland | Lake Zürich | 1995–1996 | 3.1–23 (December 1995) | [86] | |||
Thailand | Phayao Lake | June 2012–February 2013 | 0–12.0 (October 2012) | 0.1–1.1 | [87] | ||
North America | Eastern Ontario Lake and the Upper Saint Lawrence River | 1996–1997 | 5–20 (September 1996) | 2–25 (September 1996) | [88] | ||
July 1998, September 1998 | 0–20 (September 1998) | 0–60 (September 1998) | [89] | ||||
Ontario Lake | 2007 published | 0–200 (August–September) | [90] | ||||
Saint Lawrence River | 2000–2001 | 8–60 | 0–26 | [19] | |||
2007 published | 10–60 | 10–60 | [90] | ||||
Wales, U.K. | Nine reservoirs | July 2019–August 2020 | 0.3–420 | 0.57–58 | [91] | ||
United States of America | California Aqueduct | August 1990–October 1990 | 3–48 (August 1990) | [24] | |||
July 1991–November 1991 | 0–78 | [24] | |||||
Cheney Reservoir | August 1999–October 2000 | 0–37 (July 2000) | 0–2 | [14] | |||
May 2001–June 2015 | 1–113 (July) | [20] | |||||
Diamond Valley Lake | May 2000 | 0–750 (May 2000) | [25] | ||||
October 2004 | 2–63 (October 2004) | [25] | |||||
Eagle Creek Reservoir | 2008–2010 | 0–109.4 (October 2009) | 0–223.7 (May 2010) | [49] | |||
January 2013–December 2013 | 0–77.3 (May 2013) | 0–111.8 (May 2013) | [28,29] | ||||
McDaniel Lake | 1983–2002 | 0–33 | 0–90 | [92] | |||
San Vicente Reservoir | 1996 | 23 | [93] | ||||
Winnebago Lake | August 20, 1996 | 18 (August 1996) | 133 (August 1996) | [40] | |||
Three water supply reservoirs | 1999–2002 | 0–2 (September 2000) | 0–46 (September 2000) | [41] | |||
Four Reservoirs | May 2001–December 2012 | 0–133 | 0–224 | [94] | |||
Drinking water Reservoir | November 2013–December 2013, 06/2014–August 2014 | 10–289 (August 2014) | [27,95] |
Geosmin | 2-Methyl Isoborneol | β-Cyclocitral | β-Ionone | ||
---|---|---|---|---|---|
CHL | + | TL–CN–January 2009–December 2009 [23] CR–US–August 1999–October 2000 [14] REC–CN–August 2019 [21] | TL–CN–June 2009–May 2010 [64] TL–CN–January 2009–December 2009 [23] REC–CN–August 2019 [21] ETL–CN–August 2020–November 2021 [50] LR–CN–2022 [51] | TL–CN–June 2009–May 2010 [64] TL–CN–January 2009–December 2009 [23] DL–CN–June 2002–May 2003 [46] LR–CN–2022 [51] TEL–CN–05/18–09/19 [48] | TL–CN–June 2009–May 2010 [64] TL–CN–January 2009–December 2009 [23] DL–CN–June 2002–May 2003 [46] |
# | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] TL–CN–June 2009–May 2010 [64] DL–CN–June 2002–May 2003 [46] WR–DE–May–October 2006–2009 [16] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] DL–CN–June 2002–May 2003 [46] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) SWDP–CN–September 2018–August 2019 [71] | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] SWDP–CN–September 2018–August 2019 [71] | |
CYA | + | PL–TH–June 2012–February 2013 [87] BR–KR–2011–2015 [18] NR–KR–2011–2015 [18] PAL–KO–June 2012–September 2012 [15] | LL–CN–May–September 2016 [45,69] DWR–US–November 2013–December 2013 [27] YC–CN–2018–2019 [47] ETL–CN–August 2020–November 2021 [50] | DL–CN–June 2002–May 2003 [46] | DL–CN–June 2002–May 2003 [46] |
# | DECL–CN–September 2011–August 2012 (This study) DL–CN–June 2002–May 2003 [46] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) DL–CN–June 2002–May 2003 [46] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | |
PHY | + | REC–CN–August 2019 [21] | |||
MIC | + | TL–CN–January 2009–December 2009 [23] CA–US–August 1990 [24] BR–KR–2011–2015 [18] NR–KR–2011–2015 [18] LW–US–August 20, 1996 [40] | DECL–CN–September 2011–August 2012 (This study) TL–CN–June 2009–May 2010 [64] TL–CN–January 2009–December 2009 [23] YC–CN–2018–2019 [47] | LL–CN–May–September 2016 [45,69] TL–CN–June 2009–May 2010 [64] WCL–CN–December 2013 [42] ECL–August 2012, December 2012 [33] TL–CN–January 2009–December 2009 [23] DL–CN–June 2002–May 2003 [46] LW–US–August 20, 1996 [40] | TL–CN–June 2009–May 2010 [64] TL–CN–January 2009–December 2009 [23] DL–CN–June 2002–May 2003 [46] |
# | DECL–CN–September 2011–August 2012 (This study) TL–CN–June 2009–May 2010 [64] DL–CN–June 2002–May 2003 [46] | DL–CN–June 2002–May 2003 [46] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | |
DOL | + | PAL–KO–June 2012–September 2012 [82] WCL–CN–December 2013 [42] RW–JP–October 2010–September 2012 [78] DL–CN–June 2002–May 2003 [46] BR–KR–2011–2015 [18] NR–KR–2011–2015 [18] Diamond Valley Lake in the US [25] | DECL–CN–September 2011–August 2012 (This study) | ||
– | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | |||
# | DL–CN–June 2002–May 2003 [46] YC–CN–2018–2019 [47] | DECL–CN–September 2011–August 2012 (This study) | |||
MER | + | NR–KR–2011–2015 [18] | |||
# | YC–CN–2018–2019 [47] | ||||
OSC | + | TL–CN–June 2009–May 2010 [64] RW–JP–October 2010–September 2012 [78] | |||
# | TL–CN–June 2009–May 2010 [64] | YC–CN–2018–2019 [47] | TL–CN–June 2009–May 2010 [64] | TL–CN–June 2009–May 2010 [64] | |
PHO | + | LK–JP–September 1989–1990.10 [9] | RW–JP–October 2010–September 2012 [78] HR–CN–January 2009–December 2009 [58] LK–JP–September 1989–October 1990 [9] LK–JP–1994–1997 [17] YC–CN–2018–2019 [47] | ||
PLA | + | ECR–US–January 2013–December 2013 [28] ER–US–2008–2010 [49] | MR–CN–2009–2012 [60] DL–CN–June 2002–May 2003 [46] ER–US–2008–2010 [49] NP–CN–2017–2020 [73] | ||
# | YC–CN–2018–2019 [47] | ||||
PSE | + | SVR–US–1996 [93] LSK–US–1996 [93] LY–JP–2022 [80] TL–CN–2021 [65] SWDP–CN–September 2018–August 2019 [71] | SR–CN–April–July 2018 [63] QR–CN–May 2016–September 2016 [61] SWDP–CN–September 2018–August 2019 [71] ETL–CN–August 2020–November 2021 [50] NP–CN–2017–2020 [73] YQR-CN–2018–2021 [74] | ||
# | ER–US–2008–2010 [49] | ER–US–2008–2010 [49] | |||
CYL | + | ER–US–2008–2010 [49] | |||
COE | + | LS–JP–September–October 2009 [77] | |||
LYN | + | CA–US–August 1990 [24] | |||
DIA | + | DWR–US–November 2013–December 2013 [27] | |||
# | ER–US–2008–2010 [49] | ||||
ACT | + | PL–TH–June 2012–February 2013 [87] LK–JP–1994–1997 [17] PAL–KO–June 2012–September 2012 [82] | ECR–US–January 2013–December 2013 [28] FP–CN–April 2006–January 2007 [70] | ||
# | PAL–KO–June 2012–September 2012 [15] | ||||
FLA | + | ECR–US–January 2013–December 2013 [29] | |||
PRO | + | ECR–US–January 2013–December 2013 [29] | |||
GEN | + | PAL–KO–07–10/2020 [84] | QR–CN–May 2016–September 2016 [61] LSR–CN–July 2010–November 2011 [59] QCS Reservoir–CN–2021 [62] PAL–KO–July–October 2020 [84] | ||
T | + | TL–CN–June 2009–May 2010 [64] REC–CN–August 2019 [21] YQR–CN–2018–2021 [74] | DECL–CN–September 2011–August 2012 (This study) TL–CN–June 2009–May 2010 for p–MIB [64] FR–CN–December 2000–July 2003 [57] YC–CN–2018–2019 [47] | TL–CN–June 2009–May 2010 [64] TEL–CN–05/18–09/19 [48] | TL–CN–June 2009–May 2010 for p–ION [64] |
– | ER–US–2008–2010 [49] | TL–CN–June 2009–May 2010 for d–MIB [64] | DECL–CN–September 2011–August 2012 (This study) | TL–CN–June 2009–May 2010 for d–ION [64] | |
# | DECL–CN–September 2011–August 2012 (This study) | ER–US–2008–2010 [49] August 2012 | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | |
pH | + | DECL–CN–September 2011–August 2012 (This study) LL–CN–May 2016–09 [45,69] | |||
# | DECL–CN–September 2011–August 2012 (This study) ER–US–2008–2010 [49] | FR–CN–December 2000–July 2003 [57] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | |
DO | + | REC–CN–August 2019 [21] | TL–CN–June 2009–May 2010 [64] | TL–CN–June 2009–May 2010 for d–ION [64] | |
− | SL–CN–September 2017 [22] TL–CN–June 2009–May 2010 [64] August 2012 | DECL–CN–September 2011–August 2012 (This study) | TL–CN–June 2009–May 2010 [64] | SL–CN–September 2017 [22] TL–CN–June 2009–May 2010 for p–ION [64] | |
# | DECL–CN–September 2011–August 2012 (This study) TL–CN–September 2017 [22] ER–US–2008–2010 [49] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) CL–CN–September 2017 [22] TL–CN–September 2017 [22] | |
CON | + | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | ||
# | ER–US–2008–2010 [49] | FR–CN–December 2000–July 2003 c ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | |
WD | + | ETL–CN–August 2020–November 2021 [50] | |||
TUR | # | PAL–KO–June 2012–September 2012 [15] | |||
TDS | + | ER–US–2008–2010 [49] | ER–US–2008–2010 [49] | ||
ORP | # | ER–US–2008–2010 [49] | ER–US–2008–2010 [49] | ||
TN | + | REC–CN–August 2019 [21] | TL–CN–September 2017 [44] | TL–CN–September 2017 [44] | TL–CN–September 2017 [44] LR–CN–2022 [51] |
# | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] ETL–CN–September 2017 [44] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] ER–US–2008–2010 [49] ETL–CN–August 2020–November 2021 [50] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] | |
NO3 | + | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] LR–CN–2022 [51] | SWDP–CN–September 2018–August 2019 [71] | SWDP–CN–September 2018–August 2019 [71] | SL–CN–September 2017 [22] SWDP–CN–September 2018–August 2019 [71] |
− | ETL–CN–September 2017 [44] | ||||
# | TL–CN–September 2017 [22] ETL–CN–September 2017 [44] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) CL–CN–September 2017 [22] TL–CN–September 2017 [22] | |
TKN | + | ER–US–2008–2010 [49] | |||
# | ER–US–2008–2010 [49] | ||||
NH4 | + | SL–CN–September 2017 [22] | DECL–CN–September 2011–August 2012 (This study) ER–US–2008–2010 [49] | SL–CN–September 2017 [22] LR–CN–2022 [51] | |
− | LL–CN–May-September 2016 [45,69] | ||||
# | DECL–CN–September 2011–August 2012 (This study) CL–CN–September 2017 [22] TL–CN–September 2017 [22] ETL–CN–September 2017 [44] ER–US–2008–2010 [49] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] FR–CN–December 2000–July 2003 [57] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) CL–CN–September 2017 [22] TL–CN–September 2017 [22] | |
TP | + | TL–CN–January 2009–December 2009 [23] ER–US–2008–2010 [49] ETL–CN–August 2020–November 2021 [50] | WCL–CN–December 2013 [42] TL–CN–January 2009–December 2009 [23] TEL–CN–05/18–09/19 [48] | WCL–CN–December 2013 [42] TL–CN–January 2009–December 2009 [23] | |
− | CL–CN–September 2017 [22] | YC–CN–2018–2019 [47] | DECL–CN–September 2011–August 2012 (This study) CL–CN–September 2017 [22] | ||
# | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] TL–CN–September 2017 [22] ETL–CN–September 2017 [44] ER–US–2008–2010 [49] | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] | DECL–CN–September 2011–August 2012 (This study) | SL–CN–September 2017 [22] TL–CN–September 2017 [22] | |
DIP | − | CL–CN–September 2017 [22] | |||
# | SL–CN–September 2017 [22] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] | ||
DOP | # | SL–CN–September 2017 [22] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] | |
PO4 | + | WCL–CN–December 2013 [42] | WCL–CN–December 2013 [42] | ||
− | LL–CN–May–September 2016 [45,69] | ||||
# | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | |
N/P | + | ETL–CN–September 2017 [44] | ETL–CN–September 2017 [44] | ETL–CN–September 2017 [44] | ETL–CN–September 2017 [44] LR–CN–2022 [51] |
# | YC–CN–2018–2019 [47] | ||||
UV254 | + | ||||
− | SL–CN–September 2017 [22] | SL–CN–September 2017 [22] | |||
# | CL–CN–September 2017 [22] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] | CL–CN–September 2017 [22] | ||
SUVA | + | LL–CN–May–September 2016 [45,69] | |||
− | SL–CN–September 2017 [22] | ||||
# | SL–CN–September 2017 [22] CL–CN–September 2017 [22] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–September 2017 [22] | CL–CN–September 2017 [22] | ||
COD | + | YQR–CN–2018–2021 [74] | DECL–CN–September 2011–August 2012 (This study) YQR–CN–2018–2021 [74] | ||
# | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) | ||
DOC | + | DECL–CN–September 2011–August 2012 (This study) | |||
− | CL–CN–September 2017 [22] | SL–CN–September 2017 [22] CL–CN–September 2017 [22] | CL–CN–September 2017 [22] | ||
# | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] TL–CN–September 2017 [22] | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) SL–CN–September 2017 [22] TL–CN–September 2017 [22] | ||
MC | + | August 2012 | August 2012 | ||
− | DECL–CN–September 2011–August 2012 (This study) | DECL–CN–September 2011–August 2012 (This study) ER–US–2008–2010 [49] | |||
# | ER–US–2008–2010 [49] | ||||
GSM | + | ER–US–2008–2010 [49] CL–CN–September 2017 [22] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] CL–CN–September 2017 [22] SL–CN–September 2017 [22] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | |
− | DECL–CN–September 2011–August 2012 (This study) | ||||
# | TL–CN–2020 published [35] SL–CN–September 2017 [22] TL–CN–September 2017 [22] | TL–CN–September 2017 [22] | |||
MIB | + | ER–US–2008–2010 [49] CL–CN–September 2017 [22] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] CL–CN–September 2017 [22] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | |
− | DECL–CN–September 2011–August 2012 (This study) | ||||
# | TL–CN–2020 published [35] SL–CN–September 2017 [22] TL–CN–September 2017 [22] | SL–CN–September 2017 [22] TL–CN–September 2017 [22] | |||
CYC | + | TL–CN–2020 published [35] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | |
ION | + | TL–CN–2020 published [35] SL–CN–September 2017 [22] CL–CN–September 2017 [22] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] CL–CN–September 2017 [22] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | TL–CN–2020 published [35] TL–CN–January 2009–December 2009 [23] ETL–CN–September 2017 [44] | |
# | TL–CN–September 2017 [22] | SL–CN–September 2017 [22] TL–CN–September 2017 [22] |
Indexes | Minimum | Maximum | Mean |
---|---|---|---|
Chlorophyll-a (µg·L−1) | 5.3 | 75.6 | 25.7 |
Cyanobacterial density (×104 cells·mL−1) | 0.1 | 21.9 | 9.4 |
Microcystis spp. density (×104 cells·mL−1) | 0.0 | 18.5 | 5.6 |
Dolichospermum spp. density (×104 cells·mL−1) | 0.1 | 17.1 | 3.7 |
Temperature (°C) | 6 | 31 | 19 |
pH | 7.3 | 8.8 | 8.1 |
Dissolved oxygen (mg·L−1) | 6.0 | 12.4 | 9.4 |
Conductivity (μS·cm−1) | 293 | 416 | 329 |
Total nitrogen (mg·L−1) | 0.48 | 3.29 | 1.67 |
Nitrate (mg·L−1) | 0.09 | 1.46 | 0.59 |
Ammonia nitrogen (mg·L−1) | 0.06 | 0.38 | 0.19 |
Total phosphorus (mg·L−1) | 0.02 | 0.19 | 0.08 |
Orthophosphate (mg·L−1) | 0.00 | 0.02 | 0.00 |
Potassium permanganate index (mg·L−1) | 3.8 | 8.3 | 5.5 |
Dissolved organic carbon (mg·L−1) | 3.71 | 5.82 | 4.22 |
MC-LR (μg·L−1) | 0.07 | 1.90 | 0.53 |
MC-RR (μg·L−1) | 0.12 | 3.73 | 0.79 |
MC-YR (μg·L−1) | 0.00 | 4.18 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, L.; Ke, F.; Xu, X.; Feng, M.; Li, W. Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters. Toxins 2024, 16, 264. https://doi.org/10.3390/toxins16060264
Shang L, Ke F, Xu X, Feng M, Li W. Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters. Toxins. 2024; 16(6):264. https://doi.org/10.3390/toxins16060264
Chicago/Turabian StyleShang, Lixia, Fan Ke, Xiangen Xu, Muhua Feng, and Wenchao Li. 2024. "Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters" Toxins 16, no. 6: 264. https://doi.org/10.3390/toxins16060264
APA StyleShang, L., Ke, F., Xu, X., Feng, M., & Li, W. (2024). Temporal Dynamics and Influential Factors of Taste and Odor Compounds in the Eastern Drinking Water Source of Chaohu Lake, China: A Comparative Analysis of Global Freshwaters. Toxins, 16(6), 264. https://doi.org/10.3390/toxins16060264