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Abstract: Mycotoxins, toxic secondary metabolites produced by certain fungi, pose significant
threats to global food safety and public health. These compounds can contaminate a variety of
crops, leading to economic losses and health risks to both humans and animals. Traditional lab
analysis methods for mycotoxin detection can be time-consuming and may not always be suitable
for large-scale screenings. However, in recent years, machine learning (ML) methods have gained
popularity for use in the detection of mycotoxins and in the food safety industry in general due to
their accurate and timely predictions. We provide a systematic review on some of the recent ML
applications for detecting/predicting the presence of mycotoxin on a variety of food ingredients,
highlighting their advantages, challenges, and potential for future advancements. We address the
need for reproducibility and transparency in ML research through open access to data and code.
An observation from our findings is the frequent lack of detailed reporting on hyperparameters
in many studies and a lack of open source code, which raises concerns about the reproducibility
and optimisation of the ML models used. The findings reveal that while the majority of studies
predominantly utilised neural networks for mycotoxin detection, there was a notable diversity in
the types of neural network architectures employed, with convolutional neural networks being the
most popular.

Keywords: machine learning; predictive model; mycotoxin; food safety; systematic review

Key Contribution: Recent developments in machine learning present promising approaches to
improve the precision and efficiency of detecting mycotoxins. This review comprehensively gathers
and examines the latest research at the juncture of machine learning and mycotoxin detection in
food items. It offers a detailed assessment of the methods used, accomplishments, and potential
future developments.

1. Introduction

Mycotoxins are a group of naturally occurring toxic chemical compounds produced by
certain species of moulds (fungi) during growth on various crops and foodstuffs, including
cereals, nuts, spices, and dairy products [1]. The ingestion of certain mycotoxins has been
linked to a range of harmful health impacts on both humans and animals, from short-term
poisoning to long-term consequences such as liver cancer and, in some cases, death [2–4].
Mycotoxins are secondary metabolites (that is, compounds produced by an organism
that are not essential for its primary life processes) and are often produced during the
pre-harvest, harvest, and storage phases under favourable conditions of humidity and
temperature [3,5]. The most prevalent mycotoxins include aflatoxins, tricothecenes, fumon-
isins, zearalenones, ochratoxins, and patulin, and are produced by certain plant-pathogenic
species of Aspergillus, Fusarium, and Penicillium [6]. Mycotoxin contamination in crop
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products has been found to vary significantly across different geographical locations and is
influenced by annual weather conditions [7,8]. However, since 2012, there has been a noted
increase in the occurrence of mycotoxins in Europe, with the impacts of climate change
being most likely a contributing factor [9,10]. An estimated 60–80% of the world’s crop
supply is contaminated by mycotoxins, and an estimated 20% of those crops surpass the
legally mandated food safety thresholds set by the European Union (EU) [11].

With the world’s food supply chain being highly interconnected, the presence of
mycotoxins not only endangers human health but also has an impact on the stability of
agricultural markets and trade [3,12]. The economic impact of mycotoxin contamination is
substantial, with a global estimate in the billions of euros for detection, regulation enforce-
ment, and mitigation efforts to manage mycotoxin presence in food and feeds annually [13].
It is estimated that, between 2010 and 2019, approximately 75 million tonnes of wheat in
Europe, which constitutes 5% of the wheat intended for human consumption, surpassed
the maximum threshold for DON contamination. This excess led to the reclassification of
this contaminated wheat grain as ‘animal feed’, resulting in an economic loss of around
EUR 3 billion [14]. Additionally, [15] shows that, between 2010 and 2020, aflatoxins were
responsible for the demotion of 4.2% of wheat intended for food, which potentially rep-
resented an additional economic loss of EUR 2.5 billion. As a result, the detection and
management of mycotoxins in crops and food products is crucial for ensuring food safety
and safeguarding consumer health worldwide as well as contributing to economic stability.

According to [16], the standard methodology for mycotoxin detection comprises
three main steps: sampling, sample preparation, and analytical determination. Chromato-
graphic techniques, such as liquid chromatography mass spectrometry (LC–MS), high-
performance liquid chromatography (HPLC), and gas chromatography mass spectrometry
(GC–MS), along with immunoassay-based methods like enzyme-linked immunosorbent
assays (ELISAs), are widely recognised as the most prevalent analytical approaches for
the detection of mycotoxins [17,18]. The mycotoxin level in a bulk load is determined by
measuring a sample taken from the food source. From this, the concentration of mycotoxins
in the entire load is assumed to be the same as the concentration of the sample. However,
these techniques often require extensive sample preparation, sophisticated equipment,
and highly trained personnel, leading to significant costs and time delays in the analytical
process. Furthermore, the varied and intricate nature of different foods requires customised
detection methods, which can add complexity to the screening process [19,20].

While traditional detection methods such as LC–MS, HPLC, GC–MS, and ELISA
generate reliable data, they often result in large, complex datasets that require extensive
interpretation and analysis. Machine learning (ML) approaches for both the detection and
prediction of the presence of mycotoxins have seen a rise in recent years as an alternative
to traditional detection methods (see Figure 1). At its core, ML employs statistical methods
to create algorithms that allow computers to learn from data and make decisions based on
identified patterns and inferences, without being explicitly programmed for each specific
task. ML methods offer a sophisticated approach to deciphering the complex patterns hid-
den within the data and are adept at processing and analysing large datasets and extracting
meaningful patterns that are not immediately apparent. By leveraging ML algorithms,
researchers can gain deeper insights into the data and offer a significant advantage, when
compared with traditional lab analysis, in terms of efficiency, cost, and scalability, as well
as maintaining or improving the accuracy of mycotoxin detection [21].

ML methods can be, broadly, broken into three categories, that is, supervised learning
(SL), unsupervised learning (UL), and reinforcement learning (RL). In SL, an algorithm is
trained using a dataset that includes both inputs and the corresponding outputs. The model
learns to associate the inputs with the outputs. After training, the model can apply this
learned relationship to predict the outputs for new, unseen inputs [22]. In UL, an algorithm
is presented with only the input data and identifies patterns and structures in the data based
only on the inputs. After training, it can classify new inputs based on the patterns it has
found. In RL, an algorithm learns to make decisions by performing actions to achieve a goal.
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It processes feedback through rewards or penalties associated with its actions, using this
information to develop a decision-making framework that aims to maximise rewards [23].
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Figure 1. Number of publications between 2013 and 2023 found by our systematic search criteria
in Scopus.

Within these categories, many different types of ML models exist and are used based on
the specificity of the problem. The most popular of these models, as found by this research,
are discussed in detail below. Although ML applications in food safety and mycotoxin
detection are widespread, there appears to be a lack of comprehensive reviews that cover
the broad spectrum of ML methodologies specifically tailored to mycotoxin analysis, as
most studies tend to concentrate on individual techniques. For example, Ref. [24] uses
neural networks (NNs) for the prediction of contamination from the mycotoxin fumonisin
in corn. Additionally, NNs have been used to forecast the accumulation of the trichothecene
mycotoxin deoxynivalenol (DON) in barley seeds [25] and to predict fungal growth [26].
For a comprehensive review of the use of NNs in food science, see Ref. [27]; for a review
of ML methods in general in the field of food safety, see Ref. [28]; and in agriculture,
see Ref. [21].

ML techniques can alleviate some of the current burdens of mycotoxin detection
by providing an efficient and low-cost solution [29]. Additionally, with the impact of
climate change, the need for these models to provide reliable predictions at the farm level is
increasingly crucial, especially in terms of food safety and health. In this work, we present
a comprehensive systematic review of some of the more popular ML techniques used in
the detection and prediction of mycotoxin on a range of foods and crops. Our review
also identifies critical areas in the current body of work that warrant attention. A notable
concern is the often insufficient discussion on the selection and tuning of hyperparameters
in ML models, which is crucial for understanding and replicating study results. This lack
of details creates issues with the reproducibility of the reviewed methods and also hinders
the advancement and application of these techniques.

The organisation of our article is as follows: In Section 2, we provide details regarding
our literature search methodology. This includes a description of the search criteria and
keywords and discussing the prevalence of each ML method. In Section 3, we provide a
short introduction to the ML process and describe some of the common terms. In Section 4,
we give a brief introduction to the main ML algorithms used (and their hyperparameters)
and discuss the outcomes of the articles reviewed based on the type of machine learning
model used. Finally, in Section 5, we provide some concluding remarks.
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2. Literature Search Methodology

The literature search for this review was primarily conducted using Scopus (https:
//www.scopus.com, URL accessed on 10 November 2023), a widely recognised academic
search engine that indexes scholarly articles across various disciplines. To ensure the
relevance of the research, the search was restricted to articles published within the last
10 years (since November 2023). This time frame was chosen to capture the most recent
advances and trends in the application of machine learning to mycotoxin detection in crops.
The search engine was used to identify key studies, reviews, and seminal works pertinent
to the topic at hand.

Search Criteria and Overview

A comprehensive search was conducted on the Scopus database and focused on pub-
lications between the years 2013 and 2023. The search was conducted using the primary
keyword “mycotoxin” in combination with these machine learning-related terms: “artificial
intelligence”, “bagging”, “Bayesian network”, “boosting”, “decision tree”, “deep learning”, “en-
semble”, “gradient boost”, “k-means”, “k-nearest neighbour”, “knn”, “machine learning”, “neural
network”, “principal component analysis”, “random forest”, “supervised learning”, “support vector
machine”, “SVM”, and “unsupervised learning”. The search terms were motivated by a
similar search used in a review of machine learning for the monitoring and prediction of
food safety by [28]. This strategy was employed to ensure a wide coverage of potential
articles at the intersection of mycotoxin detection and machine learning methodologies.

This search yielded 313 documents on Scopus. Figure 1 shows the results obtained
from Scopus over the years 2013 to 2023. There is a general increasing trend across the
years, with a marked rise after the year 2021.

To limit the search further, only peer-reviewed articles in English in the fields of agri-
cultural and biological sciences, environmental science, computer science, and mathematics
were chosen. This reduced the search size to 91. After examining the abstracts of all the 91
articles, 30 were selected for their relevance and included in this study. A flow diagram
demonstrating our selection process can be found in Appendix A. From these articles, the
predominant ML technique used was neural networks (NNs), followed by random forests
(RFs) and gradient boosting (GB), and then support vector machines (SVMs), decision trees
(DTs), and Bayesian networks (BNs). Figure 2 shows the frequency of each ML algorithm
used in the literature.

Bayesian Network

Decision Trees

SVM

GBM

Random Forest

 Neurual Network

0 5 10 15
Number of Articles

Figure 2. Most popular machine learning methods reviewed in this work.
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3. A Brief Introduction to Machine Learning

In this section, we provide a general overview of the ML process. This foreknowledge
is useful when discussing the ML approaches reviewed later in this document, though
those already with experience in this topic may skip this section. To begin, we describe the
typical process of creating an ML model.

3.1. Typical Machine Learning Process

Figure 3 shows a typical ML process for unsupervised and supervised learning methods.

Figure 3. Typical machine learning process.

We can break up the process outlined in Figure 3 into five distinct steps. These are
as follows:

1. Data Collection: The process starts with the collection of raw data, which can be from
many sources or sites.

2. Data Preparation: These raw data are then prepared for analysis. This process typically
involves cleaning and formatting the data.

3. Data Splitting: After preparation, the data can be split into three parts. These are
training data, validation data, and test data (discussed more below).

4. Model Selection: Depending on the type of data, either an unsupervised or supervised
learning model (or models) is chosen.

5. Model Training, Evaluation, and Prediction: This process involves training the model
with training data, optimising the hyperparameters of the model using the validation
data, and then evaluating its overall performance using test data.

3.2. Training, Validation, and Test Data

In ML, validation and test data are crucial for developing and evaluating models.
Validation data are a separate subset of the original data, not used in training the model
(see Figure 3). It helps in fine-tuning the model’s parameters (known as hyperparameters),
which are pre-set configurations of the model. This fine-tuning of hyperparameters during
the validation process is essential to optimise the model’s performance. One common
technique used during this process is regularisation. Regularisation involves adding a
penalty to the model’s complexity, which helps prevent overfitting by ensuring that the
model generalises well to new, unseen data rather than just memorising the training data.
Validation also assists in selecting the best version of the model by providing feedback on
its performance. This step is essential to prevent overfitting, ensuring that the model learns
to generalise from the data and makes accurate predictions on new, unseen data. Test data
are used after the model has been trained and validated (see Figure 3). It is another distinct
subset of the dataset, not used in either training or validation. The test data are used to
evaluate the final model’s performance, providing an unbiased assessment of how well the
model is likely to perform in real-world scenarios.

In all the referenced studies we cover below, model performance is quantified by
evaluating the model performance on the test dataset, unless otherwise stated. Sometimes
authors also report the training or validation dataset performance, but for the reasons
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outlined above, these should be discarded as a measure of model performance. The
common performance metrics used in these studies include the following:

• R2: This statistic measures the proportion of the variance in the dependent variable
that can be explained by the independent variables in the model. An R2 value closer
to 1 indicates that the model accounts for a significant amount of the variance in the
dependent variable.

• MSE and RMSE: Mean Square Error (MSE) is the average of the squares of the errors,
which are the differences between predicted and actual values. Lower MSE values
indicate a better fit of the model to the data. Root Mean Square Error (RMSE) is
the square root of MSE. It has the same units as the quantity being estimated (for
regression problems) and provides a measure of the differences between a model’s
predicted values and the actual observed values. Like MSE, a lower RMSE is better.

• Accuracy: This metric is commonly used for classification tasks and represents the
ratio of correctly predicted observations to the total observations. High accuracy
indicates that the model can correctly classify instances with high reliability.

• AUC: Area Under the Receiver Operating Characteristic Curve (AUC) is used in binary
classification to measure a model’s ability to distinguish between classes. An AUC of
1 represents perfect classifier performance, while an AUC of 0.5 denotes a model with
no discriminative power.

4. Application of Machine Learning to Mycotoxin Data

In this section, we first include a brief discussion on common data types in mycotoxin
detection. We then discuss the most common ML algorithms (from Figure 2) and review
their application to mycotoxin data. Each subsection is dedicated to a single ML method
in which we describe the basic algorithm, how it makes predictions/detections, some
advantages and disadvantages of the algorithm, and finally a review of the literature using
these methods. In cases where the reviewed studies employ multiple machine learning
models, we categorise each paper based on the highest-performing model used in that
particular work.

4.1. Types of Data Used in Mycotoxin Detection

In the context of ML applications for mycotoxin detection, the literature highlights
the use of various data types, including weather parameters (temperature, rainfall, and
relative humidity), crop phenology, agronomic data, and spectral imaging. Additionally,
spatiotemporal data, which include information collected over time and across different
spatial locations, play a vital role in understanding and predicting mycotoxin contamination
by incorporating key environmental variables and temporal dynamics. Each type of data
offers unique characteristics and applications. Understanding the context and conditions
under which these data are collected is essential for interpreting the results and evaluating
the effectiveness of different ML models.

4.1.1. Weather Data

Weather variables, including temperature, relative humidity, precipitation, and carbon
dioxide levels, play a significant role in mycotoxigenic fungal growth and subsequent
mycotoxin formation on agricultural commodities [30–32]. ML models can leverage his-
torical and real-time weather data to predict the likelihood of mycotoxin contamination.
For example, continuous monitoring of these variables in the field can help create more
dynamic and responsive models. Incorporating these factors allows for a more compre-
hensive understanding of the conditions that favour mycotoxin contamination and can
improve the predictive power of ML models.

Ref. [33] proposed a Convolutional Neural Network model based on CO2 respiration
rate and the visual appearance of mold formation for classifying mycotoxin contamination
in wheat grains stored in sealed containers, which achieved an accuracy of 83.3%. Ref. [34]
constructed a predictive model that incorporated multiple data sources, such as historical
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records of aflatoxin and fumonisin in corn, daily weather conditions, satellite imagery,
dynamic geospatial soil characteristics, and land usage information. Using both a gradient
boosting machine and a neural network, the study demonstrated that the NN models
exhibited high class-specific accuracy for predicting mycotoxin levels over a 1-year period,
with accuracies of 73% for aflatoxin and 85% for fumonisin, demonstrating their efficacy in
forecasting annual mycotoxin levels.

4.1.2. Agronomic Data

The impact of agronomic factors on mycotoxin occurrence has been extensively studied
in various research. These factors include previous crop details, the use of fungicides,
cropping patterns, and cultivar selection, all of which have been found to significantly
affect mycotoxin levels [35–37]. In a study by Ref. [38], data on cropping system factors
were used as input variables to predict aflatoxins and fumonisins in corn. Additionally,
soil properties, when combined with meteorological data and historical aflatoxin content,
have been used in gradient boosting machine models to distinguish aflatoxin-contaminated
corn [39].

4.1.3. Crop Phenology and Cultivar-Specific Data

Another important aspect of spatiotemporal data is the inclusion of specific cultivars.
Different crop varieties can exhibit varying levels of susceptibility to fungal colonisation
and mycotoxin contamination [37,40]. Including data on specific cultivars in ML models
can help tailor predictions and interventions to the particular characteristics of each crop
variety. Certain wheat varieties may be more resistant to Fusarium head blight, while
others might be more prone to infection. By incorporating cultivar-specific data, ML
models can provide more accurate risk assessments and suggest more effective mitigation
strategies [41]. This approach enhances the precision of mycotoxin contamination forecasts
and supports targeted agricultural practices, such as selecting the most resistant varieties for
planting in high-risk areas. Additionally, integrating crop phenology data, such as growth
stages and development timelines, can improve the temporal accuracy of predictions [42].

4.1.4. Spectral Data

Spectral data are one of the most common types used in mycotoxin detection, val-
ued for their non-invasive nature. This data type involves capturing the reflectance or
absorbance of light at various wavelengths from the material being analysed. Spectral data
can be further categorised into multispectral and hyperspectral data, each offering different
levels of detail and information.

Multispectral Imaging: This imaging technique captures data at a few specific wave-
length bands, making it effective for distinguishing between different materials based
on their spectral signatures. Unlike hyperspectral imaging, which captures continuous
spectral information across a wide range of wavelengths, multispectral imaging focuses on
discrete bands, making data collection and processing less complex while still providing
valuable information for specific applications. For instance, multispectral images can be
captured in controlled greenhouse environments, where conditions such as temperature,
humidity, and lighting are regulated to optimise data quality. This controlled setting allows
for consistent and repeatable measurements, crucial for precise analysis. An example of
this application is a study [43] that used hyperspectral data to detect Fusarium head blight
in wheat under greenhouse conditions, demonstrating the potential of spectral imaging
in plant pathology. Moreover, multispectral imaging can be integrated with advanced
computational techniques for enhanced analysis. In another study, Ref. [44] used ML
combined with multispectral imaging and image processing techniques to detect aflatoxin
contamination in figs.

Hyperspectral Imaging: Hyperspectral imaging is a technique that captures data
across a continuous spectrum of wavelengths, providing significantly more detailed in-
formation compared with multispectral imaging. This method is particularly valuable for
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the precise identification of toxigenic fungal contaminants and mycotoxins [45]. Hyper-
spectral images can be acquired using various platforms, including ground-based systems
and unmanned aerial vehicles (UAVs). UAV hyperspectral imagery showed to effectively
monitor Fusarium head blight in wheat fields, highlighting its potential for large-scale
agricultural monitoring [46]. In another study, Ref. [47] used a visible and near-infrared
hyperspectral imaging system operating in the range of 400–900 nm under ultraviolet
excitation. They successfully differentiated spectral characteristics between corn kernels
inoculated with aflatoxigenic A. flavus strains and naturally infected kernels from the
same field. Furthermore, Ref. [48] explored the combination of fluorescence and reflectance
visible and near-infrared hyperspectral images for detecting aflatoxin contamination in
inoculated corn kernels in the field.

Ground vs. Intact Material: The context in which spectral data are collected can also
vary. In some cases, imaging occurs on ground material, where samples are collected
and analysed in a laboratory setting. This approach allows for controlled conditions and
high-resolution data. In other instances, imaging is performed on intact material, such as
whole peanut grains [49], to assess contamination directly in the field or during processing.

4.1.5. Limitations in Image Analysis

While image analysis using spectral data is a powerful tool for detecting mycotoxins,
there are notable limitations and challenges. One significant factor is that visual features of
an image, such as plant damage or fungal presence, may not always directly correlate with
the presence of specific mycotoxins [50]. This is particularly relevant when different species
of fungi, capable of producing various mycotoxins, are involved [51]. For example, certain
fungi can cause visible damage or contamination on crops, which may be detected by ML
models. However, these visual features might not indicate the presence of the specific
mycotoxin of interest [50]. As a result, models focusing on plant damage or fungal contam-
ination might not accurately reflect the levels of regulated mycotoxins. This discrepancy
underscores the importance of integrating spectral imaging features that are more closely
associated with the specific mycotoxins being regulated. Addressing this challenge requires
combining image analysis with other data types, such as chemical analysis or molecular
techniques, to improve the specificity and accuracy of mycotoxin detection. By doing so,
ML models can better distinguish between general fungal contamination and the presence
of specific harmful mycotoxins.

4.2. Neural Networks

Neural networks (NNs), first introduced by [52], are a class of machine learning
algorithms modelled loosely after the human brain [53]. They are designed to identify
patterns and make predictions by learning from data and can be used for supervised or
unsupervised problems. NNs are made up of interconnected nodes and edges, where the
nodes represent the neurons and the edges are the links between the neurons. The nodes
are organised into layers, where the first layer is called the input layer, the last layer is the
output layer, and all intermediate layers are called hidden layers. Typically, in an NN, the
data are fed to the input layer; then one or more hidden layers perform computations and
learn from the data, and finally, predictions (or classifications) are provided by the output
layer. A simple diagram of an NN can be seen in Figure 4.

Every neuron in a hidden layer applies a weighted sum of the inputs to transform the
data. This is followed by a function, referred to as an activation function [53]. The network
fine-tunes the weights associated with each neuron by employing optimisation algorithms
throughout the training phase. There are numerous hyperparameters associated with NNs.
Some of the main hyperparameters include (i) the learning rate, which determines how
much the weights are changed at each iteration; (ii) the number of epochs, which refers to
how many times the entire training dataset is passed forward and backward through the
neural network; (iii) the batch size, which controls the number of training examples used in
one iteration; and (iv) activation functions like ReLU (Rectified Linear Unit), sigmoid, and
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tanh, which determine the output value of a node given an input or a set of inputs. After
training, the NN is capable of generating predictions for new, unseen data by passing the
input across the layers to produce an output.

Figure 4. Basic neural network structure, showing an input layer, two hidden layers, and an output
layer, where each circle represents a neuron, and these neurons are interconnected by lines symbolis-
ing neural connections. The input layer receives the initial data, which are then processed through
successive hidden layers using weights and activation functions, refining the information before it
reaches the output layer.

Like all machine learning models, NNs come with their own set of advantages and
disadvantages. For example, NNs excel at identifying and modelling non-linear interactions
present in data, which are common in biological processes. They are also flexible and can
handle a wide range of data types, such as numerical and categorical, text, and image
data. Despite their advantages, neural networks also have limitations. One of the major
limitations is interpretability. NNs are considered black-box algorithms, meaning that it is
difficult to understand why specific predictions are being made [54]. Second, like many
of the other ML approaches we cover, they are not probabilistic models, making it hard
to accurately quantify the uncertainty in the predictions. Overfitting can also be an issue
for NNs. Without appropriate regularisation, NNs can become too complex, capturing
the noise in the training data instead of generalising to the underlying pattern [55]. Finally,
training large NNs requires a significant amount of computing power. The computational
cost of NNs will increase with the complexity of the model [56]. In the following subsections,
we review the use of NNs on different types of mycotoxin data.

4.2.1. NNs Applied to Spatiotemporal Data

NNs have been widely applied to spatiotemporal data, despite them not forming part
of the traditional suite of spatiotemporal analytics techniques. In the field of mycotoxin
study, NNs have been used for a variety of tasks and data types. For example, Ref. [38]
used data from several sites in Northern Italy over the years 2005 to 2018. Their goal was
to predict the presence of mycotoxins (specifically, aflatoxin and fumonisins) using NNs in
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corn. In their work, they trained two NNs to predict if the contamination levels were above
legal thresholds at the time of harvest. Both models performed well, achieving an accuracy
of greater than 75% on the test data. However, they recommend, for future research, that
improvements can be made to the modelling by taking into account the co-occurrence of
aflatoxin and fumonisins in corn and their complex interaction, which may be due to the
effects of climate change.

Ref. [57] applied NNs to analyse the concentration of mycotoxins in winter wheat
grain. They examined 23 winter wheat genotypes with different Fusarium resistances from
three different sites in Poland during the years 2011 to 2013. They developed three NN
models; however, only two of these are concerned with the detection of mycotoxins, that
is, the DONANN model, which is used to detect DON, and the NIVANN model, which
examines the nivalenol content. The DONANN and NIVANN models were designed using
an automatic network designer using Statistica v7.1 software [58], and were evaluated
among a set of 10,000 generated networks. The performance of these models was assessed
on several statistical metrics, but the primary focus was on the correlation coefficient
(which, in this case, would be the correlation between the predicted values from the
model and the actual observed values) and the mean absolute error (MAE), which is the
absolute differences between the predicted values and the actual values. For the best-
performing DONANN model, a low MAE of 0.37 was reported; however, the correlation
coefficient was exceptionally high at 0.99, indicating an almost perfect linear relationship
between the predicted and actual values. The best-performing NIVANN model, while
exhibiting a slightly lower correlation coefficient of 0.81 and an MAE of 0.02, still performed
within acceptable ranges. The architecture of the created models was designed as a multi-
layer perceptron (MLP) type of NN, with two hidden layers. Despite reporting training,
validation, and test errors, the authors did not specify the dataset on which the correlation
and MAE metrics were based.

In a novel application of NNs, Ref. [59] used a transformer-based deep learning
method, called GPTransformer. A transformer-based deep learning algorithm refers to a
type of NN architecture that relies on a mechanism called attention to boost the perfor-
mance of the model [60]. In their work, the authors proposed a transformer-based genomic
prediction model for predicting Fusarium head blight disease levels and associated DON
concentration in barley data collected in three locations in Canada over the years 2014 to
2015. One of their goals was to compare the accuracy of the GPTransformer model to exist-
ing genomic prediction methods such as decision tree algorithms (DT), linear regression
(LReg), and traditional statistical algorithms like best linear unbiased prediction (BLUP).
The authors used the Pearson correlation coefficient (PCC) as a measure of performance,
which calculates the linear relation between the true output and the predicted output. They
showed that the GPTransformer model (and all of the used ML models) did not signifi-
cantly outperform the statistical method of BLUP in terms of predictive accuracy. However,
GPTransformer did perform better than both the DT and LReg methods. The authors note
that the ML methods used are able to capture non-additive genetic elements, and as such,
the predictions provided might include some of these interactions in their estimations.

4.2.2. NNs Applied to Spectral Data

Hyperspectral (or just spectral) data refer to the capture and processing of information
from across the electromagnetic spectrum [61]. Refs. [43,62,63] applied NN classification
algorithms to pixels of hyperspectral image data to examine wheat for Fusarium head
blight infection. Each author used a convolutional NN (CNN), which captures spatial
patterns or motifs by identifying and calculating weights from the images according to
how often the motif appears.

In Ref. [43], the authors investigated four distinct methods for converting hyperspec-
tral imaging data. They then evaluated the performance of eight different CNN models
in classifying pixels as either healthy or infected with Fusarium head blight. The effec-
tivenesses of these models were compared based on their classification accuracy. They
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found that a particular type of CNN called DarkNet 19 [64] performed the best, with an
accuracy of close to 100% across all data conversion methods, on both the validation and
test data. For Ref. [63], tests showed that the CNN model is effective in detecting images
that contain the blight and achieved an R2 value of 0.80, and the mean average accuracy
for the testing dataset was 92%. In Ref. [62], the authors compared the accuracies of the
different NNs to determine which is the best at identifying diseased regions of the wheat
kernel. They showed that a two-dimensional convolutional bidirectional gated recurrent
unit NN performed the best, with an accuracy of 84.6% on the validation dataset and an
F1 score and accuracy of 0.75 and 74.3%, respectively, on the test data.

Ref. [49] used a combination of hyperspectral data and NNs to detect aflatoxin in
peanuts. They showed the CNN’s efficacy in classifying infected peanuts and achieved
a test set accuracy of 95%. They later expanded their work and used a one-dimensional
CNN (1D-CNN) to classify aflatoxin infection in corn and peanuts. This time, they achieved
accuracies of 96.4% for peanuts and 92.1% for corn [65].

In a research conducted by [66], infrared (IR) spectroscopy and ML algorithms were
used to detect fungal contamination in corn. In their study, 183 naturally infected sam-
ples (contaminated with different Fusarium DON species and at different concentrations)
were obtained from the seed production Linz of Austria (SBL) and from the Cereal Re-
search Centre of Hungary (CRC). The authors assessed several classification ML models,
including multi-layer perceptron (MLP) neural networks, random forests, support vector
machines, and adaptive boosting, for their accuracy in correctly classifying contaminated
from non-contaminated samples. Their results showed that the MLP approach correctly
classified 94% of the non-contaminated samples and 91% of the contaminated samples. The
authors note that while this approach yields promising results, these findings are specific
to a contamination threshold of 1250 mg/kg, which is the EU regulatory limit, and that
subsequent research will aim to evaluate the performance of the classification methods
across various contamination levels.

4.2.3. NNs with an Electronic Nose

An electronic nose (e-nose) is a device intended to detect chemical compounds
in gasses. E-noses have been extensively used in the detection of aflatoxins [67,68],
fumonisins [69], and DON [70] in corn. However, Ref. [71] used an e-nose supported
by NNs for the detection of aflatoxin and fumonisins in corn. In their work, they compared
three different approaches, that is, NN, logistic regression (LR), and discriminant analysis
(DA), to examine the e-nose’s ability to discriminate between samples contaminated with
concentrations either exceeding or falling below legal thresholds on data spanning 5 years.
They showed that all methodologies achieve an accuracy of above 70%, with the NN
performing the best with an accuracy of 78% for aflatoxin detection and 77% for fumonisin
detection. They went on to suggest that the e-nose, when supported by an NN, can provide
a fast screening tool for classifying samples.

4.2.4. NN Summary

Neural Networks have been widely adopted as the ML algorithm of choice for
analysing mycotoxin data, especially in the field of hyperspectral imaging. However,
as of yet, there seems to be a gap between research applications and the wider use in
industry. The application of NNs in hyperspectral data for mycotoxin detection (and food
safety in general) is a relatively new process, and the implementation of an NN approach
to hyperspectral data in industrial quality control faces various challenges, mainly due to
hardware limitations, such as the cost of operating imaging equipment [72]. However, in
research, NNs for use in hyperspectral imaging have seen an increase in popularity with
many of the reviewed works being widely cited, for example, Refs. [62,63].
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4.3. Random Forests

A random forest (RF) [73] is an ensemble learning method used for classification and
regression. The RF algorithm creates a forest of decision trees, where each tree in the forest is
built from a sample drawn with replacement (that is, a bootstrap sample) from the training
set and selects splits from a random subset of features.

While Section 4.6.1 provides a comprehensive examination of decision trees, this
section offers a concise introduction to familiarise readers with the basic concepts and
terminologies associated with decision trees. Figure 5 shows an example of a single
decision tree. In constructing each decision tree, the root node is the starting point, and
it represents the entire dataset, which gets split based on a feature that provides the best
separation according to a certain criterion [like Gini impurity [74]]. The decision nodes are
the points where the data are split further. Each decision node represents a decision rule
on a specific feature. The process continues recursively until a stopping criterion is met,
such as reaching the tree’s maximum depth, attaining a minimum sample count in a leaf,
or achieving adequate purity within the leaf nodes. The leaf/terminal nodes represent the
final output of the decision process. Each branch/sub-tree represents a possible outcome of
the decision made at the decision node, leading to further sub-trees or leaf nodes.

For RF classification tasks, each tree in the forest votes for a class, and the class
receiving the majority of votes becomes the model’s prediction. For regression tasks, the
forest takes the average of the outputs by individual trees. Figure 6 shows a summary of
the RF algorithm.

One of the main advantages of using RFs is their versatility. They are capable of
performing both regression and classification tasks, as well as handling large datasets.
Additionally, they require very little tuning and can perform well without much hyper-
parameter optimisation. Some of the main hyperparameters associated with RF include
the following: (i) Number of trees: this is the number of trees in the forest. Generally,
more trees increase performance but also increase the computational cost. (ii) Maximum
depth of trees: the maximum depth of each tree. Deeper trees can model more complex
patterns but might lead to overfitting. (iii) Minimum samples split: the smallest number of
samples needed to split an internal node. Setting higher values helps prevent the model
from learning overly specific patterns, which can lead to overfitting. As with NNs, RFs
are a black-box algorithm, and so interpretability can be an issue. Each decision tree upon
which the RF is built can be easy to interpret, but since RFs consist of a large number of
decision trees averaged together, the decision process by which a prediction is made can be
somewhat opaque.

Root Node

Decision 
Node

Decision 
Node

Leaf/Terminal Leaf/Terminal Decision 
Node

Leaf/Terminal

Leaf/Terminal Leaf/Terminal

Branch/Sub-Tree

D
ep

th

Figure 5. Decision tree process demonstrating the structure of a decision tree, including the root
node, branching to decision nodes, and culminating in leaf/terminal nodes. The depth of the tree is
indicated, showing the levels of decision making from the root to the leaves.
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Figure 6. The random forest algorithm constructs an ensemble of decision trees, with each tree built
from a unique bootstrapped sample of the original dataset. Nodes are colored light blue to represent
the regular decision nodes of the trees. Distinct paths through each tree are shown, highlighted
by the darker blue nodes, and represent a sequence of decisions made from the root to a leaf node
based on the input features. The final prediction of the random forest is determined by aggregating
the predictions of all trees, using majority voting for classification tasks or mean prediction for
regression tasks.

4.3.1. RFs for Spectral Data

As with NNs, RFs have been applied to hyperspectral data. For example, Ref. [75] used
a RF classification model to classify corn silage for high or low mycotoxin contamination
using near-infrared spectroscopy (NIR). In their study, 155 samples were collected from
several sites in the Po Valley (Italy) and from Sardinia over the years 2017 to 2019. Their
aim was to develop qualitative models capable of distinguishing corn silage based on
either the total concentrations or the total counts of various groups of mycotoxins (in
this case, Fusarium and Penicillium toxins). To evaluate various classification strategies,
different distinct threshold levels were established for each mycotoxin contamination.
These thresholds were used to categorise each sample as having either a high or low
contamination level in relation to these specified values. To predict the contamination level,
an RF classification model was fitted, using the wavelength of light as the predictors, and
achieved an out-of-sample accuracy of above 90% for the classification of both Fusarium
and penicillium toxins.

In a 2023 study, Ref. [76] utilised NIR spectroscopy for detecting DON in oat samples
from Spain and Sweden collected over the years 2021–2022. The authors applied two
different transformation techniques to the spectral data and examined which allowed for
greater classification of the data using four different ML algorithms (k-nearest neighbours,
naïve Bayes, NN, and RF). Both preprocessing transformation methods achieved similar
results for all ML methods, with RFs performing the best with an accuracy of 77.8% and an
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area under the curve (AUC) of around 0.77. However, they noted that other similar studies
have been conducted that achieved a higher classification accuracy, such as [77].

In a similar study, Ref. [78] constructed a biosensor array for identifying mycotoxins
in peanuts and corn, produced by Aspergillus flavus, using six ML models, including
partial least square determination analysis (sPLS-DA), linear support vector machine
(svmLinear), radial support vector machine (svmRadial), RF, NN, and high-dimensional
discriminant analysis (HDDA). The authors used the classification models for three separate
purposes: to distinguish healthy from infected samples, to distinguish the pre-mould status
in infected samples, and to distinguish between infected peanuts or corn samples. To
distinguish the pre-mould status, the aim was to create a three-class model to predict either
the control or 1 or 2 days after inoculation. Their approach achieved a reported 100%
accuracy in distinguishing healthy from infected samples and RF accuracies of 95% and
98% in identifying pre-mould status in peanuts and corn, respectively. However, such high
levels of accuracy warrant further investigation, as such high accuracy rates can often be
indicative of issues in the experimental design, such as the creation of non-representative
test sets or overfitting, especially if the test sets are not properly randomised.

4.3.2. RFs for Mycotoxin Treatment

ML models in mycotoxin treatment can be used to predict mycotoxin contamination
risk and optimise mitigation strategies. This application can boost accuracy in prediction
and effectiveness in deploying targeted anti-fungal treatments. In a study conducted
by [79], the authors employed machine learning techniques to predict the growth of Fusar-
ium culmorum and Fusarium proliferatum, as well as their production of mycotoxins, in
environments where ethylene vinyl alcohol copolymer films are used. These films contain
pure components of essential oils, which are used to inhibit the growth of the fungi and
their mycotoxin production. In their work, they studied fungal growth on corn in vitro and
modelled the fungal growth and toxin production under different environmental scenar-
ios and with different treatments applied. The ML models used were NNs, RF, extreme
gradient boosted trees (XGB), and multiple linear regression (MLR). The performance of
the ML methods was assessed using the root mean square error (RMSE). It was found that
RF performed the best in predicting the growth rates of Fusarium culmorum and Fusarium
proliferatum and mycotoxin production, having consistently the lowest RMSE value.

Ref. [80] evaluated the anti-fungal properties of specific lactic acid bacteria strains
against Fusarium species found in cereals. To achieve this, various machine learning
algorithms, including NN, RF, XGB, and MLR, were employed to predict the extent of
fungal growth inhibition resulting from the application of the tested lactic acid bacteria
strains. As with the previous study, the RMSE was the metric used to assess the performance
of the model, in conjunction with the R2 value. In this work, both RF and XGB showed
comparable performances, reporting similar RMSE (0.0604 and 0.0581, respectively) and
R2 values (0.992 and 0.992, respectively) on the test data, in predicting the percentage of
growth inhibition.

Several other studies exist on the topic of using ML models (and specifically RF) to
predict mycotoxin growth in the presence of treatments. In the interest of brevity and space,
we name them here but do not provide additional details of the studies. In each of these
studies, the authors used multiple ML models, with a general consensus that RF models
performed the best at their given tasks. See Refs. [81–83] for more details.

4.3.3. Random Forest Summary

RFs have emerged as a robust and versatile tool in the field of mycotoxin detection
and treatment and have gained popularity due to their ease of use, computational speed,
and predictive performance. These studies collectively underline the significant potential
of RF in enhancing food safety measures, although it is crucial to acknowledge the necessity
for rigorous validation and testing to ensure the reliability of these models.



Toxins 2024, 16, 268 15 of 30

4.4. Gradient Boosting

Gradient boosting (GB) [84] builds on the concept of boosting, where weak learners are
converted into strong ones through an iterative process. The GB framework builds boosted
regression models by sequentially training a weak classifier (such as a linear regression
or simple decision tree) successively on the data using the residuals from previous model
fits (as shown in Figure 7). This process ensures that each new weak classifier addresses
the inaccuracies of its predecessors, thereby enhancing the prediction accuracy. The final
model aggregates the outputs from all these weak classifiers to form a robust, ‘strong’
classifier through an ensemble approach. The term gradient in gradient boosting refers to
the method’s use of gradient descent, a numerical optimisation algorithm, to minimise the
loss or the difference between the actual and predicted values.

gbmProcess.pdf

Prediction Residuals

Tree 1 Tree 2 Tree n

Figure 7. Gradient boosting process. Here, the weak learners are trees that are trained sequentially
on weighted data with iteratively adjusted weights based on previous prediction errors. The light
yellow circles represent data points with lower residuals (errors), the light blue circles represent data
points with moderate residuals, and the dark blue circles represent data points with higher residuals
from previous model predictions. The pink circles within the trees indicate the decision nodes of each
weak learner. The final prediction is made by aggregating the outputs from all weak learners.

In gradient boosting, when the weak learners are decision trees, each tree is grown in a
greedy manner, but unlike random forests, trees are grown sequentially. After the first tree
is built and predictions are made, the errors (residuals) from those predictions are used to
build the next tree. The subsequent tree aims to predict the residuals from the previous tree.
This process is continued, with each new tree correcting the residuals of the ensemble of
all previous trees. The final prediction is made by summing the predictions from all trees,
which can be thought of as a weighted vote where trees that reduce the error the most have
more influence.

An advantage of GB models is their strong predictive capability and adaptability,
especially in dealing with complex non-linear relationships between independent variables
and the dependent variable. They adapt to various prediction problems by supporting
different loss functions, making them suitable for both regression and classification tasks.



Toxins 2024, 16, 268 16 of 30

However, these models have their challenges. Without careful tuning and regularisation,
there is a risk of overfitting, a problem exacerbated by noisy data [85]. Additionally, their
sequential boosting process is computationally intensive and time-consuming compared
with methods like random forests that build trees in parallel. This complexity can be
a significant drawback in scenarios where computational resources or time are limited.
Some of the main hyperparameters associated with GB are as follows: (i) Number of weak
learners: this defines the number of boosting stages or learners to be created. More learners
can lead to a more powerful model, but also increase the risk of overfitting and raise
computational cost. (ii) Learning rate: this parameter scales the contribution of each learner.
A smaller learning rate requires more weak learners but can yield a more generalised model.
In the case of the weak learner being trees, (iii) the maximum depth of trees determines the
maximum depth of each individual tree. Deeper trees can model more complex patterns
but can also lead to overfitting. An extension of a GBM model is called eXtreme Gradient
Boosting (XGB) [86], with the key difference between the two being performance. In general,
XGB models are faster and have better optimisation. Additionally, XGB models have the
ability to deal with missing values.

4.4.1. GB for Spatiotemporal Data

In a study by [87], the authors designed a program for aflatoxin monitoring in feed
products (peanuts and soy beans), while considering both the performance of the model and
the cost of monitoring. In the study, they applied four different ML algorithms (namely, GB,
LR, SVM, and DT) to historical data concerning monitoring for the presence of aflatoxins in
feed products. The data were collected from several sites around the world, including China,
Brazil, and Argentina, over the years 2005 to 2018. The ML algorithms were compared
to predict which feed batches are high risk and which should be considered for further
aflatoxin analysis. In their work, they found that all the ML models performed well and
used several error metrics to assess their models. They obtained an accuracy of over 90%
for all models and an AUC and recall of over 0.8 and 0.6, respectively. However, the XGB
model performed better than all other models, and the authors proposed a reduction to the
monitoring cost of up to 96% for the years 2016 to 2018.

In Ref. [88], the authors proposed to use un-targeted metabolomics and ML techniques
to mine biomarkers of the species Aspergillus on peanut data collected from several sites in
China over the years 2013 to 2018. They initially used an RF model to determine Aspergillus
species with 97.8% accuracy. They then went on to use XGB to create a decision rule to help
regulators in evaluating risk prioritisation with a claimed accuracy of 87.2%. However, the
authors noted that they built the XGB model using only a single tree and used this tree to
create an operable decision workflow for risk assessment. Although using a single tree can
reduce complexity, it also increases the likelihood of less robust predictions. Part of the
strength of XGB (and GBM) models is that they iteratively correct the mistakes of previous
trees, a process that is lost if only a single tree is used.

Ref. [39] conducted a study with the objective of evaluating the performance of GBM
models to predict the presence of aflatoxins in corn at two risk thresholds, that is, 20 ppb and
5 ppb. These cut-off values were chosen based on the U.S. Food and Drug Administration’s
(FDA) action level for corn (20 ppb) [89], whereas the lower cut off is based on the European
standard of 5 ppb [90]. Additionally, the authors performed feature engineering, which
is the process of transforming raw data into meaningful and informative features with
the intention of enhancing the performance of ML algorithms [91]. The data used were
historical climate, soil, and aflatoxin data, collected in several sites in Iowa in the years
2010, 2011, 2012, and 2021. As the data had many missing values, the authors used an
imputation method; however, they noted that data from the months of January, February,
and December had to be excluded from the model as there were too many missing values
to accurately impute the data. The authors reported that the GBM model performed well,
achieving high accuracy rates of 96.8% for the 20 ppb threshold and 90.3% for the 5 ppb
threshold. The study highlighted the significant influence of the vegetative index (which
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is a quantitative measure that uses satellite imagery to assess the amount and health of
plant life in a specific area) in August on aflatoxins risk for both thresholds, indicating
the critical environmental and ecological impact of drought conditions during this month.
Additionally, predictors related to soil properties (such as hydraulic conductivity, pH, and
bulk density) were found to potentially affect aflatoxin contamination levels before harvest.

4.4.2. GB for Spectral Data

Ref. [92] conducted a study on aflatoxin and fumonisin contamination in a single
kernel corn. They argued that bulk sampling of the corn may not produce accurate results,
and thus focus solely on single kernels. In their study, they performed measurements
to show the skewness of the data and calculated weighted sums of toxin contamination.
Additionally, they aimed to improve single kernel classification performance through the
use of different ML applications. Their methodology was to take corn kernels that were
already contaminated and scan them using the NIR technique. The samples were then
ground and measured for both toxins using the ELISA method (discussed in Section 1).
In their work, they used five different ML models to classify both mycotoxins. They are
GBM, RF, least absolute shrinkage and selection operator (LASSO), elastic-net regularised
generalised linear models (GLMNETs), and support vector machines (SVMs). They addi-
tionally applied ML algorithms for classifying each individual mycotoxin. For aflatoxin,
they used bagged AdaBoost, linear discriminant analysis (LDA), and penalised logistic
regression (PLR). For fumonisin classification, GBM and penalised discriminant analysis
(PDA) were used. For aflatoxin, they found that GBM was the best-performing model, with
an accuracy of 83%, on both the training and the test data. For fumonisin, the PDA model
performed the best with an accuracy of 86% on the test data. However, the authors noted
that, for future studies, opportunities for better classification exist, including increasing the
proportion of samples so the algorithm can learn the characteristics of contaminated corn
kernels better.

4.4.3. Gradient Boosting Summary

The application of GBM models across various datasets, from spatiotemporal to spec-
tral data, demonstrate their versatility and potential in predicting mycotoxin contamination
in agricultural products. While GBM models generally exhibit high accuracy, there are
criticisms concerning the robustness of these models when applied with limited trees, as
in the case of [88], or when handling datasets with substantial missing values, as noted
by [39]. The high accuracy rates reported should be examined for potential overfitting or
lack of generalisation to broader datasets. The approach of ref. [92] to single kernel analysis
opens avenues for improved precision in toxin detection, but also indicates the need for
larger sample sizes to enhance model learning.

4.5. Support Vector Machines

Support vector machines (SVMs) [93] are a set of supervised learning methods used
for classification, regression, and outlier detection. To make predictions, SVMs identify
the optimal hyperplane that maximises the margin between the two classes (where the
margin is defined as the distance between the nearest data points of each class and the
dividing hyperplane). The data points that are closest to the hyperplane and that influence
its position and orientation are known as support vectors, as they support or define the
hyperplane. Figure 8 illustrates an SVM in action. One of the key advantages of SVMs is
their versatility as they can be used on a variety of data types, and are particularly useful
for image recognition [94]. Additionally, they are memory efficient since they only use a
subset of training points, called support vectors, in the decision function. However, SVMs
require careful tuning of the hyperparameters and an appropriate kernel choice. A kernel
is a function used to transform data into a higher-dimensional space. By projecting the data
into a higher dimension, a kernel makes it possible to find a hyperplane that can effectively
separate the classes. Some of the common kernels include [95]:
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1. Linear: No non-linear transformation, suitable for linearly separable data.
2. Polynomial: Suitable for non-linearly separable data, involves higher degree terms of

the features.
3. Radial basis function: Good for non-linear data, uses a Gaussian distribution.
4. Sigmoid: Similar to the sigmoid function in logistic regression.

Additional hyperparameters include the following: (i) Gamma: This is needed for
all kernels except linear. It determines the extent of the influence that a single training
example has. Low values indicate a wide reach, and high values indicate a close reach. A
high gamma value can cause the model to overfit. (ii) Degree: This is only relevant for a
polynomial kernel. It defines the degree of the polynomial used in the kernel. A higher de-
gree can model more complex relationships but increases the risk of overfitting. (iii) Coef0:
This is a parameter for polynomial and sigmoid kernels that adjusts the independent term
in the kernel function. It is often called the kernel bias.

Margin

Support Vectors

Hyperplane

X

Y

Figure 8. Support vector machine process. The diagram illustrates the SVM’s method of finding
the optimal hyperplane that maximises the margin between two classes, depicted by the blue and
orange points. The support vectors, which are the data points closest to the decision boundary, define
the margin.

4.5.1. SVMs for Spectral Data

In the review of the literature concerning the use of SVMs in mycotoxin detection,
it was found that they were overwhelmingly used for image recognition and, as such,
primarily used spectral data. For example, ref. [45] used several ML models (SVM, NN,
and LR) for the classification of Fusarium head blight in wheat, using spectral data. The
data were collected in the years 2020 to 2021 at a single site in Belgium, with the experiment
using eight varieties of wheat. They found that the SVM model outperformed both the NN
and LR method in classifying contaminated wheat in every variety, with a classification
accuracy of 96.5% on the test data (with NN and LR achieving accuracies of 82.9% and
82.5%, respectively).

In a similar study, Ref. [96] used three different imaging methods alongside ML classi-
fication models to test ground corn samples for the presence of aflatoxin and fumonisin,
both as individual contaminants and in combination. Two classification models were
used, partial least squares-discriminant analysis (PLS-DA) and SVM, using specific thresh-
old values for each mycotoxin. The naturally contaminated corn samples were obtained
from the Office of Texas State Chemist, which in turn collected the samples from different
feed companies located around Texas. They found that the SVM performed better than
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the PLS-DA with classification accuracies of 89.1%, 71.7%, and 95.7% for each imaging
technique. The imaging method with the highest accuracy was the short-wave infrared
(SWIR) method.

In a study concerning the detection of Aspergillus parasiticus in corn kernels using
NIR hyperspectral imaging, conducted by [97], the authors used SVMs to compare the
performances of multiple different preprocessing and imaging techniques. For their study,
corn kernels were harvested from Hefei City, Anhui Province, China, in 2015. Each day
(for a period 7 days), 36 sterilised corn kernels were inoculated with Aspergillus parasiticus
and were grouped into four groups depending on the day of inoculation. From this, an
SVM was used to determine which groups were infected using different preprocessing
techniques. Additionally, this study examined the orientation of the kernel in the image
to determine if this property had an effect on predictive performance. They found that
the best preprocessing method was a combination of the standard normal variate (SNV)
and moving average smoothing (MAS) methods, with an accuracy of 91.67% for detecting
contaminated kernels using the validation data. They also found that the performance of
the classified models was influenced by orientation; however, the models built using data
from a mix of kernels with their germs facing both up and down still achieved an accuracy
of 84.38% on the validation data.

4.5.2. Support Vector Machine Summary

In the reviewed work, SVMs demonstrated considerable accuracy in mycotoxin de-
tection through spectral data analysis. However, as with other ML methods reviewed, the
consistently high classification accuracy reported raises questions about potential over-
fitting and the representativeness of the datasets used. Moreover, factors such as kernel
orientation (which refers to the way in which the kernel function transforms the input data
into a higher-dimensional space to find an optimal boundary between classes) significantly
influenced SVM performance, indicating that model robustness may be context dependent.
The choice of kernel and its parameters, like orientation, scale, and type, is critical in
shaping the decision surface and, thus, the SVM’s ability to generalise from training to
unseen data.

4.6. Other ML Methods

In this section, we cover the remaining ML methods. These include decision trees and
Bayesian networks and have been grouped together as they make up a minority of the
reviewed work. As such, they are not separated by the type of data used, and all data types
are discussed together.

4.6.1. Decision Trees

Decision tree (DT) learning is a type of non-parametric supervised learning algorithm
used for both classification and regression tasks [74,98]. A DT is a flowchart-like structure,
resembling a tree structure with branches representing decision paths and leaves (or
terminal nodes) representing predicted outcomes (see Figure 5 in Section 4.3). A DT splits
the data into subsets based on the value of input features. Splits are chosen to maximise
the separation of the classes based on measures like Gini impurity or information gain [74].
This process continues recursively until a stopping criterion is met, resulting in a tree
where each path represents a decision pathway that leads to a predicted outcome. The
advantages of decision trees include their simplicity, interpretability, and ability to handle
both numerical and categorical data. However, DTs have a tendency to overfit, especially
when a tree is particularly deep [74]. This can be mitigated by pruning the tree or setting
a maximum depth of the tree via the use of hyperparameters. As this method is a tree-based
approach, there is an overlap with RF and GB in terms of hyperparameters. Some of these
include maximum depth, minimum samples split, and minimum samples leaf (i.e., the
minimum number of samples needed to be at a leaf node. Setting this parameter can ensure
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that each leaf node represents a reasonable number of samples, which can smooth the
model, particularly for regression tasks, and prevent overfitting).

The use of DTs in the field of mycotoxin detection is quite varied. For example, in
a study conducted by [99], in which they assessed the use of an electronic nose to identify
DON contamination of wheat samples, an extension of decision trees called Classification
and Regression Trees (CART) [74] was used to classify samples based on four thresholds of
DON contamination (1750, 1250, 750, and 500 µg/kg). For this study, 214 wheat samples
were collected from Northern Italy during the years 2014–2015 and 2017–2018. For the
threshold values of ≥1250 µg/kg, the accuracy of sample classification was the highest,
ranging between 88% and 92%. The lower thresholds of ≤750 µg/kg were found to be the
least accurate, with an accuracy of <83%. The authors proposed that the reduced sensitivity
of the instrument at lower DON concentrations might explain this drop in accuracy.

Ref. [99] examined the classification of DON mycotoxin-contaminated corn and
peanuts at regulatory limits using spectral data. The spectral data were analysed using
a bootstrap-aggregated (bagged) DT approach, focusing on the protein and carbohydrate
absorption bands of the spectrum. The corn samples were obtained by Saatbau Linz (Linz,
Austria) and the Cereal Research Centre (Szeged, Hungary). For the peanuts, 92 different
infected samples were purchased from public markets in Tanzania, Mozambique, and
Burkina Faso. The authors demonstrated that the DT method could classify corn samples
at the 1750 and 500 µg/kg thresholds for DON with accuracies of 79% and 85%, respec-
tively. Additionally, it was able to classify peanut samples for aflatoxin at 8 µg/kg with
a 77% accuracy.

In a study related to identifying and predicting risks related to the presence of fumon-
isins in breakfast cereal products, Ref. [100] developed a model specifically designed to
predict the risk of fumonisin contamination, with a particular emphasis on a mixture of
ingredients. In their research, fifty-eight distinct breakfast products were purchased from
local grocery stores in Florence, Italy, during 2019. The selection criteria for purchasing
breakfast products included (i) products with packaging sizes ranging from 200 to 500 g,
including both plastic and non-plastic materials; (ii) items sourced from retail shops; and
(iii) products primarily made of wheat, corn, dry fruits, rice, and oats. Principal compo-
nent analysis (PCA) and k-means clustering were employed to explore the connection
between cereal ingredients, their composition and packaging, and the concentration of
fumonisins. The findings suggested that the fumonisin concentration might be linked to
complex non-linear interactions among various factor variables. To explore this potential
and identify the factors most closely linked with high concentrations, DTs were employed.
Two decision trees (DTs) were developed, with the first indicating a relationship between
high concentrations of fumonisins and cereal products rich in corn, particularly when
combined with high levels of sodium or rice. The second tree highlighted a link between
corn and either high sodium or high-fat concentrations. In both models, the presence of
plastic packaging appeared to mitigate the concentration of fumonisins to a certain degree.

4.6.2. Bayesian Network

Bayesian networks (BN) are a type of probabilistic graphical model that uses Bayesian
statistics to represent and infer the conditional dependencies between different variables in
a dataset [101]. The networks are structured as a directed acyclic graph (DAG), with feature
nodes representing variables and edges indicating probabilistic relationships between
them. Predictions in BNs are made through a process called probabilistic inference, which
involves calculating the likelihood of certain outcomes based on known information and the
network’s structure. In contrast with linear regression models, BN models excel at analysing
variable dependencies, handling non-linear interactions, and incorporating diverse types of
data [102]. The strengths of BN include the handling of uncertainty, the integration of prior
knowledge with observed data (thereby enhancing the model’s predictive capabilities),
and interpretability. However, some disadvantages of using BNs exist. As the number
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of variables increases, the complexity of the network and the computational resources
required for inference can grow exponentially.

In a study aimed for predicting DON contamination in wheat, ref. [103] compared
three different modelling approaches. These are a mixed effect LR method, a mechanistic
model (which simulates the mechanisms of plant and fungus development stages and
their interactions) adapted to the current data, and a BN. These were all used to predict
DON contamination. The data used were collected in the Netherlands over the years
2001 to 2013. The results of the experiments showed that all three models performed
well, with the LR method performing the best, achieving an accuracy of 88% for detecting
DON contamination. However, the authors noted that this model is greatly reliant on
both the specific location and the available data, and it requires that all input data be
present. The mechanistic model achieved an accuracy of 80%, while the BN achieved an
86% accuracy. However, the authors noted that the BN is easier to implement when the
data are incomplete, when compared with the other methods.

Ref. [104] constructed transcriptional regulatory networks (TRNs) using a BN algo-
rithm called the module network algorithm. TRNs are complex systems in biology that
describe the relationships and interactions between various proteins and genes involved
in the process of transcription [105], where transcription is the process by which the infor-
mation encoded in a section of the DNA is transcribed to produce a complementary RNA
strand. The goal of their work was to understand how specific gene groups (modules) in the
fungus Fusarium graminearum regulate biological processes. The authors reported that their
network inference is of high credibility, with 81.8% of the evaluable modules classified as
high or moderate confidence based on their validation against a variety of evidence sources.
This suggests a robust alignment of the inferred network with the existing understanding
of the biological processes within Fusarium graminearum.

4.6.3. Summary of Other ML Methods

Decision trees have shown varying degrees of effectiveness in detecting mycotoxins,
as evidenced by diverse research outcomes. The use of CART to classify contaminated
wheat samples achieved higher accuracy at certain thresholds but showed diminished
performance at lower contamination levels. A bagged DT approach showed moderate
success, suggesting that while DTs are capable classifiers, their accuracy can vary signifi-
cantly based on the mycotoxin levels and sample types. The application of these methods
includes potential issues with model sensitivity, particularly at lower toxin concentrations,
and a reliance on the quality of the data. These factors underscore the need for a careful
calibration and validation of DTs in diverse settings for reliable mycotoxin detection.

BNs have shown effectiveness in mycotoxin detection, as demonstrated in various
studies, but with some limitations. Ref. [103] compared BNs with other models for pre-
dicting DON contamination in wheat, achieving a respectable 86% accuracy. However,
they highlighted BNs’ advantage in handling incomplete data, a significant benefit over
other methods like logistic regression. The reviewed applications show BNs’ flexibility and
efficiency, though their performance can be contingent on data completeness and specific
biological contexts, which may limit their broader applicability.

4.7. Summary and Comparison of Case Studies

To provide a comprehensive overview of the specific case studies discussed, here,
we include a summary table in Table 1 that highlights the key findings by describing
the data types, ML models used, application contexts, and reported accuracies. In cases
where more than one ML model is used, the highest-performing model is reported in the
accuracy column.

Examining Table 1, we can see that the most frequently used ML model in the reviewed
studies is the neural network, with convolutional neural networks also being highly preva-
lent. The most common data type used is spatiotemporal data, followed by hyperspectral
data. The research covers a range of crops, including corn, wheat, barley, peanuts, and
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oats, with a primary focus on detecting contaminants such as aflatoxin, fumonisins, and
Fusarium head blight. However, the most commonly studied crop is corn. Many studies
achieved high accuracy rates, often above 90%, showcasing the potential of ML models
to enhance mycotoxin detection in agriculture. However, it is important to consider that
these high accuracies may be influenced by the controlled environments of individual
laboratories, which can lead to overfitting and potentially less reliable performance in
real-world applications (see Section 5 for a discussion on this).
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Table 1. Summary of reviewed mycotoxin detection studies. In cases where more than one ML model is used, the highest-performing model is reported.

Study Data Type ML Model Application Context Accuracy

Camardo et al., 2021 [38] Spatiotemporal NN Corn in Northern Italy (2005–2018) >75%

Niedbala et al., 2020 [57] Spatiotemporal NN Winter wheat in Poland (2011–2013) DONANN: 99%, NIVANN: 81%

Jubair et al., 2021 [59] Spatiotemporal GPTransformer Barley in Canada (2014–2015) Not significantly better than BLUP

Rangarajan et al., 2022 [43] Hyperspectral CNN (DarkNet 19) Wheat for Fusarium head blight 100%

Qiu et al., 2019 [63] Hyperspectral CNN Wheat for Fusarium head blight 92%

Jin et al., 2018 [62] Hyperspectral CNN (2D conv. bidirectional GRU) Wheat for Fusarium head blight 84.6%

Han et al., 2019 [49] Hyperspectral CNN Peanuts for aflatoxin 95%

Han et al., 2019 [49] Hyperspectral CNN Corn and peanuts for aflatoxin 96% corn, 92% peanuts

Gao et al., 2021 [65] Hyperspectral 1D-CNN Peanuts and corn for aflatoxin Peanuts: 96.4%, corn: 92.1%

Öner et al., 2019 [66] Infrared spectroscopy MLP NN, RF, SVM, adaptive boosting Corn for fungal contamination MLP: 91%

Leggieri et al., 2021 [71] E-nose NN, LR, DA Corn for aflatoxin and fumonisins NN: 78% (aflatoxin), 77% (fumonisins)

Ghilardelli et al., 2022 [75] NIR RF Corn silage >90%

Teixidó et al., 2023 [76] NIR RF Oat for DON 77.8%

Ma et al., 2023 [78] Biosensor sPLS-DA, svmLinear, svmRadial, RF, NN, HDDA Peanuts and corn RF: 95–98%

Tarazona et al., 2021 [79] Spatiotemporal NN, RF, XGB, MLR Corn RF: Best performance

Mateo et al., 2023 [80] Spatiotemporal NN, RF, XGB, MLR Cereals for lactic acid bacteria RF, XGB: Similar performance

Chávez et al., 2022 [92] NIR GBM, RF, LASSO, GLMNET, SVM Single kernel corn GBM: 83%

Liu et al., 2018 [103] Spatiotemporal BN, LR, mechanistic Wheat for DON LR: 88%, BN: 86%

Guo et al., 2020 [104] TRNs BN Fusarium graminearum High confidence modules: 81.8%

Kim et al., 2024 [33] Weather CNN Wheat grains stored in sealed containers 83.3%

Castano et al., 2023 [34] Weather NN Corn in the US Aflatoxin: 73%, fumonisin: 85%

Branstad et al., 2023 [39] Spatiotemporal GBM Corn in Iowa 20 ppb: 96.8%, 5 ppb: 90.3%

Wang et al., 2022 [87] Spatiotemporal XGB Peanuts and soybeans in China, Brazil, Argentina >90%

Xie et al., 2022 [88] Spatiotemporal XGB Peanuts in China 98%

Xie et al., 2022 [88] Spatiotemporal XGB with decision rule Peanuts in China 87.2%

Zhao et al., 2017 [97] Hyperspectral SVM Corn in China 91.67%

Kim et al., 2023 [96] Hyperspectral SVM Ground corn samples from Texas 95.7%

Almoujahed et al., 2022 [45] Spectral SVM Fusarium head blight in wheat in Belgium, 2020–2021 97%

Kos et al., 2016 [99] Spatiotemporal CART Wheat in Italy 88–92%

Purchase et al., 2023 [100] Spatiotemporal DT Breakfast cereals in Italy High fumonisin risk in high sodium or high-fat cereals
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5. Conclusions

Our research focuses on highlighting and evaluating different ML models for mon-
itoring and predicting the presence of mycotoxins in common crops. We conducted an
extensive literature review of over 30 studies performed within the years 2013 to 2023. The
number of publications in each field has grown significantly over the 10 years reviewed;
however, the application of ML in the area of monitoring and predicting mycotoxins is
still in its infancy, and despite the promise of ML methods in mycotoxin detection, their
adoption in industry has been cautious. This is likely due to the high operational costs asso-
ciated with advanced techniques like hyperspectral imaging, as opposed to the use of ML
methods themselves. The prevalence of such data-intensive methods raises questions about
the feasibility of widespread implementation, particularly in resource-constrained settings.

We found that the most common data type was spectral or image data, and as such,
the most common ML method used was NNs, as they can be readily applied to image
data. RFs were the second most popular ML method and have gained traction due to
their robustness and ease of implementation. Additionally, most of the studies reviewed
used classification ML techniques to distinguish contaminated from healthy crops. The
high predictive accuracy reported in the reviewed studies suggests that these methods
represent a promising approach for mycotoxin detection and enhancing food safety in
general. However, a point to note is that the reported high accuracy of the ML model’s
predictions, often exceeding 90%, may not fully account for the homogeneity of training
and test sets within individual laboratories. This homogeneity can result in overfitting,
where models appear highly accurate in a controlled setting but may not perform as well
under the variable conditions of real-world applications.

Although this work focused on the application of the most popular ML methods,
numerous other ML and statistical techniques have been applied to mycotoxin detec-
tion data. For example, in a study by [106], classification models such as partial least
squares-discriminant analysis (PLS-DA) and principal component-linear discriminant anal-
ysis (PC-LDA) were employed to distinguish between wheat samples with high and low
contamination. Additionally, statistical techniques like PCA are often used as a dimen-
sion reduction method. Refs. [107–109] used PCA when dealing with high-dimensional
image data.

A critical bottleneck in the development of ML applications for food safety is the
lack of detailed hyperparameter descriptions, which further complicates the landscape,
as these parameters are crucial for the replication and validation of ML models. Without
clear reporting on hyperparameter tuning, the ability to reproduce results and validate
findings becomes challenging, hindering the progression towards robust and reliable ML
applications in food safety. The majority of the reviewed studies do not provide open access
to code, and many have limited access to data, further impeding the reproducibility of the
described methods.

Despite these challenges, the future prospects of ML in food safety are promising.
As the field matures, there is a need for standardisation in reporting practices and for
developing models that can reliably perform across diverse laboratory conditions and
datasets. Extensive research could be conducted that directly compares different ML
models under a standardised set of hyperparameters, providing clearer insights into the
most effective techniques in specific contexts related to mycotoxin detection.

As the field is growing, there are numerous avenues for future work. One such
avenue is model interpretability. Given the critical nature of food safety, future research
could also focus on improving the interpretability of ML models. Techniques like SHAP
(SHapley Additive exPlanations) [110] and LIME (Local Interpretable Model-Agnostic
Explanations) [111] can be used to make the models’ decisions more transparent and
trustworthy. Furthermore, addressing the current bottlenecks, such as the high operational
costs and the need for data standardisation, will be crucial. Future research should explore
cost-effective techniques and advocate for open-access datasets and standardised reporting
practices to enhance reproducibility and application in diverse settings.



Toxins 2024, 16, 268 25 of 30

Author Contributions: Conceptualization, A.I. and A.C.P.; investigation, A.I.; data curation, A.I.;
writing—original draft preparation, A.I.; writing—review and editing, A.C.P., F.M.D. and N.S.;
visualization, A.I.; supervision, A.C.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was conducted as part of the Mycotox-I project, which is kindly supported by
the Department of Agriculture, Food, and the Marine (DAFM) and the Department of Agriculture,
Environment, and Rural Affairs (DAERA), grant number 2021R460. Andrew Parnell’s work was
supported by the SFI Centre for Research Training in Foundations of Data Science 18/CRT/6049
and the SFI Research Centre award 12/RC/2289_P2. For the purpose of open access, the author has
applied a CC BY public copyright licence to any author-accepted manuscript version arising from
this submission.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analysed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NN Neural Network
CNN Convolutional Neural Network
RF Random Forest
GBM Gradient Boosted Machine
XGB eXtreme Gradient Boosted Machine
DT Decision Trees
CART Classification and Regression Trees
SVM Support Vector Machine
BM Bayesian Models
BN Bayesian Network
LDA Linear Discriminant Analysis
PDA Penalised Discriminant Analysis
LReg Linear Regression
LR Logistic Regression
MLR Multiple Linear Regression
LASSO Least Absolute Shrinkage and Selection Operator
GLMNET Elastic-Net Regularized Generalised Linear Models
PLS-DA Partial Least Squares-Discriminant Analysis
sPLS-DA Sparse Partial Least Squares-Discriminant Analysis
PCA Principal Component Analysis
MLP Multi-Layer Perceptron
BLUP Best Linear Unbiased Prediction
PCC Pearson Correlation Coefficient
RMSE Root Mean Square Error
R2 Coefficient of Determination
AUC Area Under the Curve
NIR Near-Infrared Spectroscopy
DON Deoxynivalenol

Appendix A

The quality of review has been assessed according to PRISMA guidelines [112]. This
review has not been registered in a public registry. Figure A1 shows a flow chart demon-
strating the selection process used in this work.
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Figure A1. PRISMA flowchart of literature search strategy.
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aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia. J. Sci. Food Agric. 2019, 99, 5202–5210.
[CrossRef]

110. Shapley, L.S. A Value for n-Person Games; Princeton University Press: Princeton, NJ, USA, 1953.
111. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why should I trust you?” Explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August
2016; pp. 1135–1144.

112. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews Br. Med. J. Publ. Group 2021,
372, n71. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app7010090
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1080/19440049.2016.1217567
http://www.ncbi.nlm.nih.gov/pubmed/27684544
http://dx.doi.org/10.1007/s12550-023-00483-5
http://www.ncbi.nlm.nih.gov/pubmed/37165150
http://dx.doi.org/10.1016/j.ijepes.2014.07.034
http://dx.doi.org/10.3390/toxins10070267
http://www.ncbi.nlm.nih.gov/pubmed/30004414
http://dx.doi.org/10.1186/s12864-020-6596-y
http://www.ncbi.nlm.nih.gov/pubmed/32093656
http://dx.doi.org/10.1016/j.sbi.2004.05.004
http://dx.doi.org/10.1016/j.foodchem.2019.01.008
http://dx.doi.org/10.1016/j.lwt.2019.04.019
http://dx.doi.org/10.1007/s40030-020-00507-8
http://dx.doi.org/10.1002/jsfa.9768
http://dx.doi.org/10.1136/bmj.n71
http://www.ncbi.nlm.nih.gov/pubmed/33782057

	Introduction
	Literature Search Methodology
	A Brief Introduction to Machine Learning
	Typical Machine Learning Process
	Training, Validation, and Test Data

	Application of Machine Learning to Mycotoxin Data
	Types of Data Used in Mycotoxin Detection
	Weather Data
	Agronomic Data
	Crop Phenology and Cultivar-Specific Data
	Spectral Data
	Limitations in Image Analysis

	Neural Networks
	NNs Applied to Spatiotemporal Data
	NNs Applied to Spectral Data
	NNs with an Electronic Nose
	NN Summary

	Random Forests
	RFs for Spectral Data
	RFs for Mycotoxin Treatment
	Random Forest Summary

	Gradient Boosting
	GB for Spatiotemporal Data
	GB for Spectral Data
	Gradient Boosting Summary

	Support Vector Machines
	SVMs for Spectral Data
	Support Vector Machine Summary

	Other ML Methods
	Decision Trees
	Bayesian Network
	Summary of Other ML Methods

	Summary and Comparison of Case Studies

	Conclusions
	
	References

