How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Collecting and Rearing of L. noctiluca Larvae
4.2. Extraction of Midgut Secretion for Proteomics
4.3. MALDI-TOF Mass Spectrometry
4.4. Top-Down and Bottom-Up Proteomics
4.5. RNA Extraction and Sequencing, and Transcriptome Assembly
4.6. Identification and Annotation of Midgut Peptides/Proteins
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hess, W.N. Notes on the Biology of Some Common Lampyridae. Biol. Bull. 1920, 38, 39–76. [Google Scholar] [CrossRef]
- Riley, W.B.; Rosa, S.P.; Lima Da Silveira, L.F. A Comprehensive Review and Call for Studies on Firefly Larvae. PeerJ 2021, 9, e12121. [Google Scholar] [CrossRef]
- Sato, N. Prey-Tracking Behavior and Prey Preferences in a Tree-Climbing Firefly. PeerJ 2019, 7, e8080. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, X.; Lei, C.; Jeng, M.-L.; Nobuyoshi, O. Biological Characteristics of the Terrestrial Firefly Pyrocoelia pectoralis (Cleoptera: Lampyridae). Coleopt. Bull. 2007, 61, 85–93. [Google Scholar] [CrossRef]
- Schwalb, H.H. Beiträge zur Biologie der Einheimischen Lampyriden Lampyris noctiluca Geoffr. und Phausis splendidula Lec. und Experimentelle Analyse ihres Beutefang- und Sexualsverhaltens. Zool. Jahrb. Abt. Syst. Geogr. Biol. Tiere 1961, 88, 399–550. [Google Scholar]
- Krenn, H.W. (Ed.) Insect Mouthparts: Form, Function, Development and Performance; Zoological Monographs; Springer International Publishing: Cham, Switzerland, 2019; Volume 5, ISBN 978-3-030-29653-7. [Google Scholar]
- Vogel, R. Beitrag zur Kenntnis des Baues und der Lebensweise der Larve von Lampyris noctiluca. Z. Wiss. Zool. 1915, 112, 292–427. [Google Scholar]
- Schmidt, J.O. Biochemistry of Insect Venoms. Annu. Rev. Entomol. 1982, 27, 339–368. [Google Scholar] [CrossRef]
- von Reumont, B.M.; Campbell, L.; Jenner, R. Quo Vadis Venomics? A Roadmap to Neglected Venomous Invertebrates. Toxins 2014, 6, 3488. [Google Scholar] [CrossRef]
- Walker, A.A.; Robinson, S.D.; Yeates, D.K.; Jin, J.; Baumann, K.; Dobson, J.; Fry, B.G.; King, G.F. Entomo-Venomics: The Evolution, Biology and Biochemistry of Insect Venoms. Toxicon 2018, 154, 15–27. [Google Scholar] [CrossRef] [PubMed]
- von Reumont, B.M.; Anderluh, G.; Antunes, A.; Ayvazyan, N.; Beis, D.; Caliskan, F.; Crnković, A.; Damm, M.; Dutertre, S.; Ellgaard, L.; et al. Modern Venomics—Current Insights, Novel Methods, and Future Perspectives in Biological and Applied Animal Venom Research. GigaScience 2022, 11, giac048. [Google Scholar]
- Lüddecke, T.; Vilcinskas, A.; Lemke, S. Phylogeny-Guided Selection of Priority Groups for Venom Bioprospecting: Harvesting Toxin Sequences in Tarantulas as a Case Study. Toxins 2019, 11, 488. [Google Scholar] [CrossRef] [PubMed]
- Drukewitz, S.; Fuhrmann, N.; Undheim, E.; Blanke, A.; Giribaldi, J.; Mary, R.; Laconde, G.; Dutertre, S.; von Reumont, B. A Dipteran’s Novel Sucker Punch: Evolution of Arthropod Atypical Venom with a Neurotoxic Component in Robber Flies (Asilidae, Diptera). Toxins 2018, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Lüddecke, T.; von Reumont, B.M.; Förster, F.; Billion, A.; Timm, T.; Lochnit, G.; Vilcinskas, A.; Lemke, S. An Economic Dilemma between Molecular Weapon Systems May Explain an Arachno-Atypical Venom in Wasp Spiders (Argiope bruennichi). Biomolecules 2020, 10, 978. [Google Scholar] [CrossRef] [PubMed]
- Jenner, R.A.; von Reumont, B.M.; Campbell, L.I.; Undheim, E.A.B. Parallel Evolution of Complex Centipede Venoms Revealed by Comparative Proteotranscriptomic Analyses. Mol. Biol. Evol. 2019, 36, 2748–2763. [Google Scholar] [CrossRef] [PubMed]
- Krämer, J.; Peigneur, S.; Tytgat, J.; Jenner, R.A.; van Toor, R.; Predel, R. A Pseudoscorpion’s Promising Pinch: The Venom of Chelifer cancroides Contains a Rich Source of Novel Compounds. Toxicon 2021, 201, 92–104. [Google Scholar] [CrossRef] [PubMed]
- von Reumont, B.; Undheim, E.; Jauss, R.-T.; Jenner, R. Venomics of Remipede Crustaceans Reveals Novel Peptide Diversity and Illuminates the Venom’s Biological Role. Toxins 2017, 9, 234. [Google Scholar] [CrossRef] [PubMed]
- Fry, B.G.; Roelants, K.; Champagne, D.E.; Scheib, H.; Tyndall, J.D.A.; King, G.F.; Nevalainen, T.J.; Norman, J.A.; Lewis, R.J.; Norton, R.S.; et al. The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annu. Rev. Genom. Hum. Genet. 2009, 10, 483–511. [Google Scholar] [CrossRef] [PubMed]
- Herzig, V.; Cristofori-Armstrong, B.; Israel, M.R.; Nixon, S.A.; Vetter, I.; King, G.F. Animal Toxins—Nature’s Evolutionary-Refined Toolkit for Basic Research and Drug Discovery. Biochem. Pharmacol. 2020, 181, 114096. [Google Scholar] [CrossRef] [PubMed]
- Bordon, K.d.C.F.; Cologna, C.T.; Fornari-Baldo, E.C.; Pinheiro-Júnior, E.L.; Cerni, F.A.; Amorim, F.G.; Anjolette, F.A.P.; Cordeiro, F.A.; Wiezel, G.A.; Cardoso, I.A.; et al. From Animal Poisons and Venoms to Medicines: Achievements, Challenges and Perspectives in Drug Discovery. Front. Pharmacol. 2020, 11, 1132. [Google Scholar] [CrossRef]
- Chow, C.Y.; Absalom, N.; Biggs, K.; King, G.F.; Ma, L. Venom-Derived Modulators of Epilepsy-Related Ion Channels. Biochem. Pharmacol. 2020, 181, 114043. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, Y.; Kang, D.; Liu, J.; Li, Y.; Undheim, E.A.B.; Klint, J.K.; Rong, M.; Lai, R.; King, G.F. Discovery of a Selective Na V 1.7 Inhibitor from Centipede Venom with Analgesic Efficacy Exceeding Morphine in Rodent Pain Models. Proc. Natl. Acad. Sci. USA 2013, 110, 17534–17539. [Google Scholar] [CrossRef] [PubMed]
- Tarcha, E.J.; Olsen, C.M.; Probst, P.; Peckham, D.; Muñoz-Elías, E.J.; Kruger, J.G.; Iadonato, S.P. Safety and Pharmacodynamics of Dalazatide, a Kv1.3 Channel Inhibitor, in the Treatment of Plaque Psoriasis: A Randomized Phase 1b Trial. PLoS ONE 2017, 12, e0180762. [Google Scholar] [CrossRef] [PubMed]
- Chassagnon, I.R.; McCarthy, C.A.; Chin, Y.K.-Y.; Pineda, S.S.; Keramidas, A.; Mobli, M.; Pham, V.; De Silva, T.M.; Lynch, J.W.; Widdop, R.E.; et al. Potent Neuroprotection after Stroke Afforded by a Double-Knot Spider-Venom Peptide That Inhibits Acid-Sensing Ion Channel 1a. Proc. Natl. Acad. Sci. USA 2017, 114, 3750–3755. [Google Scholar] [CrossRef] [PubMed]
- Furman, B.L. The Development of Byetta (Exenatide) from the Venom of the Gila Monster as an Anti-Diabetic Agent. Toxicon 2012, 59, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, S.; Malyavka, A.; McCutchen, B.; Lu, A.; Schepers, E.; Herrmann, R.; Grishin, E. A Novel Strategy for the Identification of Toxinlike Structures in Spider Venom. Proteins Struct. Funct. Bioinform. 2005, 59, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.C. Extra-Oral Digestion in Predaceous Terrestrial Arthropoda. Annu. Rev. Entomol. 1995, 40, 85–103. [Google Scholar] [CrossRef]
- Cantón, P.E.; Bonning, B.C. Extraoral Digestion: Outsourcing the Role of the Hemipteran Midgut. Curr. Opin. Insect Sci. 2020, 41, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Fuzita, F.J.; Pinkse, M.W.H.; Patane, J.S.L.; Verhaert, P.D.E.M.; Lopes, A.R. High Throughput Techniques to Reveal the Molecular Physiology and Evolution of Digestion in Spiders. BMC Genom. 2016, 17, 716. [Google Scholar] [CrossRef] [PubMed]
- Nelsen, D.R.; Nisani, Z.; Cooper, A.M.; Fox, G.A.; Gren, E.C.K.; Corbit, A.G.; Hayes, W.K. Poisons, Toxungens, and Venoms: Redefining and Classifying Toxic Biological Secretions and the Organisms That Employ Them: Redefining Toxic Secretions and Organisms. Biol. Rev. 2014, 89, 450–465. [Google Scholar] [CrossRef]
- Weinstein, S.A. Snake Venoms: A Brief Treatise on Etymology, Origins of Terminology, and Definitions. Toxicon 2015, 103, 188–195. [Google Scholar] [CrossRef]
- Peigneur, S.; Béress, L.; Möller, C.; Marí, F.; Forssmann, W.; Tytgat, J. A Natural Point Mutation Changes Both Target Selectivity and Mechanism of Action of Sea Anemone Toxins. FASEB J. 2012, 26, 5141–5151. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Peigneur, S.; Gao, B.; Umetsu, Y.; Ohki, S.; Tytgat, J. Experimental Conversion of a Defensin into a Neurotoxin: Implications for Origin of Toxic Function. Mol. Biol. Evol. 2014, 31, 546–559. [Google Scholar] [CrossRef]
- Langenegger, N.; Nentwig, W.; Kuhn-Nentwig, L. Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins 2019, 11, 611. [Google Scholar] [CrossRef] [PubMed]
- Pineda, S.S.; Chin, Y.K.-Y.; Undheim, E.A.B.; Senff, S.; Mobli, M.; Dauly, C.; Escoubas, P.; Nicholson, G.M.; Kaas, Q.; Guo, S.; et al. Structural Venomics Reveals Evolution of a Complex Venom by Duplication and Diversification of an Ancient Peptide-Encoding Gene. Proc. Natl. Acad. Sci. USA 2020, 117, 11399–11408. [Google Scholar] [CrossRef] [PubMed]
- Vogt, R.G.; Prestwich, G.D.; Lerner, M.R. Odorant-binding-protein Subfamilies Associate with Distinct Classes of Olfactory Receptor Neurons in Insects. J. Neurobiol. 1991, 22, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, J.; Qian, C.; Fang, Q.; Ye, G. Venom of the Parasitoid Wasp Pteromalus puparum Contains an Odorant Binding Protein. Arch. Insect Biochem. Physiol. 2015, 88, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.A.; Kim, W.; Lee, S.; Yang, H.; Lee, B.; Lee, S.H. Comparative Analyses of the Venom Components in the Salivary Gland Transcriptomes and Saliva Proteomes of Some Heteropteran Insects. Insect Sci. 2022, 29, 411–429. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Alabi, I.; Colley, M.; Yan, F.; Griffith, W.; Bach, S.; Weintraub, S.T.; Renthal, R. Major Venom Proteins of the Fire Ant Solenopsis invicta: Insights into Possible Pheromone-binding Function from Mass Spectrometric Analysis. Insect Mol. Biol. 2018, 27, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Rihani, K.; Ferveur, J.-F.; Briand, L. The 40-Year Mystery of Insect Odorant-Binding Proteins. Biomolecules 2021, 11, 509. [Google Scholar] [CrossRef]
- Terra, W.R.; Ferreira, C. Insect Digestive Enzymes: Properties, Compartmentalization and Function. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994, 109, 1–62. [Google Scholar] [CrossRef]
- Caccia, S.; Casartelli, M.; Tettamanti, G. The Amazing Complexity of Insect Midgut Cells: Types, Peculiarities, and Functions. Cell Tissue Res. 2019, 377, 505–525. [Google Scholar] [CrossRef]
- Terra, W.R.; Ferreira, C. Evolutionary Trends of Digestion and Absorption in the Major Insect Orders. Arthropod Struct. Dev. 2020, 56, 100931. [Google Scholar] [CrossRef]
- Wu, K.; Li, S.; Wang, J.; Ni, Y.; Huang, W.; Liu, Q.; Ling, E. Peptide Hormones in the Insect Midgut. Front. Physiol. 2020, 11, 191. [Google Scholar] [CrossRef]
- Krämer, J.; Pommerening, R.; Predel, R. Equipped for Sexual Stings? Male-Specific Venom Peptides in Euscorpius italicus. Int. J. Mol. Sci. 2022, 23, 11020. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconsis, X.; Fran, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-Length Transcriptome Assembly from RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness with Single-Copy Orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Teufel, F.; Almagro Armenteros, J.J.; Johansen, A.R.; Gíslason, M.H.; Pihl, S.I.; Tsirigos, K.D.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 6.0 Predicts All Five Types of Signal Peptides Using Protein Language Models. Nat. Biotechnol. 2022, 40, 1023–1025. [Google Scholar] [CrossRef]
- The UniProt Consortium UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [CrossRef]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making Protein Folding Accessible to All. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE Database Resources in 2022: A Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
Name | BLAST/InterProScan | Expression Level [tpm] | PTM | Predicted Mass [M + H+] | OrbitrapMS | MALDI-TOF MS |
---|---|---|---|---|---|---|
U-Lampyristoxin-Ln1a | Potassium channel blocker pMeKTx2-3 (Mesobuthus eupeus), 38%, Acc: A0A088D9Q6 | 18,044 | C-C | 2539.01/3248.4 | Bottom-up + Top-down | + |
MKLSTFVLVTIMFVLLCAVQAEPVVERANCGLCPVFCKLGFHCTANGQRCC | ||||||
U-Lampyristoxin-Ln1b | - | 13,146 | C-C | 2469.89/3122.27 | Bottom-up + Top-down | + |
MKLSTFVLVTIMFGFLCAVQAAQVVVRANCDLCAPFCAAGFHCTANGQRCC | ||||||
U-Lampyristoxin-Ln1c | - | 8310 | C-C | 2452.91/3009.22 | Top-down | + |
MKLTFVLVTIMFVLLCAVRADPAVMVRANCDLCKPFCAVGIHCTANGESCC | ||||||
U-Lampyristoxin-Ln2 | Scorpion toxin-like/defensin (InterProScan) | 7326 | C-C | 4378.8 | Bottom-up + Top-down | + |
MNRSIFILLLVISVLFAAVVAVPIHEKEELPHLMLYTRAVSCKAVSSRPNDPSSYNEACNAHCILNGNRGGVCGSGTCICLG | ||||||
U-Lampyristoxin-Ln3 | U-scoloptoxin(19)-Sm1a (Scolopendra morsitans), 33%, P0DQE9 | 2 | C-C | 10,661.77 | Bottom-up | - |
MFSSLLLICLLPILVLGTGTSGPVDFHPEEPCNRAGGQCIKRDECPVHIEDIYLNLCPQQQSQGAECCHGISTKEYRCK KFGGECFREGSKCPDNLK RPQATDCPAGKFCCVLI | ||||||
U-Lampyristoxin-Ln4 | U-scoloptoxin(17)-Er3a (Ethmostigmus rubripes), 35%, P0DQE6, Odorant-binding protein (InterProScan) | 56 | C-C | 12,803.47 | Bottom-up | - |
MKWLLCFVIACALRVYSKRINVGALVPERECLKDYRDNFPKIIYALYSISPSNDEVVGEYFICTLKKRQILEDNGEINPEKIYKYWVEVYQTTIISPSEEKEISDAAEECAKLKDDKMAFLALKIKNCILEGAHKLPFVG | ||||||
U-Lampyristoxin-Ln5a | Long neurotoxin OH-34 (Orchesella cincta), 43%, A0A1D2NF32 | 6 | C-C | 4839.16 | Bottom-up | - |
MVILAIFGRVDAADVSLGCTLSCSIWNACRVKAALSGNLESCGPQPGGCRCTQFAWER | ||||||
U-Lampyristoxin-Ln5b | Long neurotoxin OH-34 (Orchesella cincta), 36%, A0A1D2NF32 | 18 | C-C | 5055.25 | Top-down | - |
MKNIVLLSVLAMVILAIFGRVDSADISWGCTLSCSIWNACRVKAALSGNLKSCDPQPEGCRCTQFAWER | ||||||
U-Lampyristoxin-Ln6 | Putative beta-like toxin Tx770 (Buthus occitanus Israelis), 29%, B8XH02 | 19 | C-C | 4656.00 | Bottom-up | - |
MNRTLVIFLVFIFGFVIAESMVVQGGDRYKYCRIAQCKIDCVFQNHIDGFCKNNQCVCTDYN | ||||||
U-Lampyristoxin-Ln7 | U-Asilidin(12)-Dg3b (Dolopus genitalis), 30%, A0A3G5BIB1 | 76 | C-C | 6288.81 | Bottom-up | - |
MVRVVIYTTILALMLFNVMAGPLLNEDQAQLIRHKRASCSSVTTNGDSRGGWANEGCRAYCVMSGYRTGLCSQGTCACR | ||||||
NLVC 1 | - | 1 | C-C | 3359.22 | Bottom-up | + |
MKLIIFLLVVCMVFAVPISSYCYFCADQCNPGETTYPDSDCPPGKVSCCKA | ||||||
NLVC 2 | - | 104 | C-C | 3439.38 | Bottom-up | + |
MKTFLVVLLITILYMSLSVDADCGERCQFMPCRTGYTGVPERCPGGGIRCCPP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krämer, J.; Hölker, P.; Predel, R. How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins 2024, 16, 272. https://doi.org/10.3390/toxins16060272
Krämer J, Hölker P, Predel R. How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins. 2024; 16(6):272. https://doi.org/10.3390/toxins16060272
Chicago/Turabian StyleKrämer, Jonas, Patrick Hölker, and Reinhard Predel. 2024. "How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca)" Toxins 16, no. 6: 272. https://doi.org/10.3390/toxins16060272
APA StyleKrämer, J., Hölker, P., & Predel, R. (2024). How to Overcome a Snail? Identification of Putative Neurotoxins of Snail-Feeding Firefly Larvae (Coleoptera: Lampyridae, Lampyris noctiluca). Toxins, 16(6), 272. https://doi.org/10.3390/toxins16060272