Grass–Endophyte Interactions and Their Associated Alkaloids as a Potential Management Strategy for Plant Parasitic Nematodes
Abstract
:1. Introduction
2. Grass–Endophyte Interactions
3. Secondary Metabolites Associated with Grass–Endophyte Interactions
3.1. Lolines
3.2. Ergot Alkaloids
3.3. Indole-Diterpenes
3.4. Peramine
4. Distribution and Concentration of Alkaloids in Plant Tissues
5. Direct Effects of Secondary Metabolites to Nematodes
6. Host Status of Endophyte Grasses to Plant Parasitic Nematodes (PPNs)
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, S.L.F.; Patchett, B.J.; Gillanders, T.J.; Kantor, M.R.; Timper, P.; MacDonald, M.H. Festulolium and fungal endophyte associations: Host status for Meloidogyne incognita and nematotoxic plant extracts. J. Nematol. 2020, 52, 2020–2076. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.; Lewis, G.C. Fungal Endophytes and Nematodes of Agricultural and Amenity Grasses. In Biotic Interactions in Plant-Pathogen Associations; Jeger, M., Spence, N., Eds.; CABI Publishing: Wallingford, UK, 2001; pp. 35–61. [Google Scholar]
- Zabalgogeazcoa, I. Review. Fungal endophytes and their interaction with plant pathogens. Span. J. Agric. Res. 2008, 6, 138–146. [Google Scholar] [CrossRef]
- Christensen, M.J.; Bennett, R.J.; Ansari, H.A.; Koga, H.; Johnson, R.D.; Bryan, G.T.; Simpson, W.R.; Koolaard, J.P.; Nickless, E.M.; Voisey, C.R. Epichloë endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet. Biol. 2008, 45, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Gundel, P.E.; Seal, C.E.; Biganzoli, F.; Molina-Montenegro, M.A.; Vázquez-de-Aldana, B.R.; Zabalgogeazcoa, I.; Bush, L.P.; Martínez-Ghersa, M.A.; Ghersa, C.M. Occurrence of alkaloids in grass seeds symbiotic with vertically-transmitted Epichloë fungal endophytes and its relationship with antioxidants. Front. Ecol. Evol. 2018, 6, 1–7. [Google Scholar] [CrossRef]
- Hewitt, K.; Matthew, C.; McKenzie, C.; Mace, W.; Popay, A. The role of Epichloë grass endophytes during pasture renewal. NZGA Res. Pract. Ser. 2021, 17, 339–346. [Google Scholar] [CrossRef]
- Schardl, C.L.; Young, C.A.; Faulkner, J.R.; Florea, S.; Pan, J. Chemotypic diversity of epichloae, fungal symbionts of grasses. Fungal Ecol. 2012, 5, 331–344. [Google Scholar] [CrossRef]
- Schouten, A. Mechanisms Involved in Nematode Control by Endophytic Fungi. Annu. Rev. Phytopathol. 2016, 54, 121–142. [Google Scholar] [CrossRef]
- Lee, K.; Missaoui, A.; Mahmud, K.; Presley, H.; Lonnee, M. Interaction between grasses and epichloë endophytes and its significance to biotic and abiotic stress tolerance and the rhizosphere. Microorganisms 2021, 9, 2186. [Google Scholar] [CrossRef]
- Pańka, D.; Jeske, M.; Łukanowski, A.; Prus, P.; Szwarc, K.; Muhire, J.d.D. Achieving the european green “deal” of sustainable grass forage production and landscaping using fungal endophytes. Agriculture 2021, 11, 390. [Google Scholar] [CrossRef]
- Caradus, J.; Chapman, D.; Cookson, T.; Cotching, B.; Deighton, M.; Donnelly, L.; Ferguson, J.; Finch, S.; Gard, S.; Hume, D.; et al. Epichloë endophytes–new perspectives on a key ingredient for resilient perennial grass pastures. NZGA Res. Pract. Ser. 2021, 17, 347–360. [Google Scholar] [CrossRef]
- Johnson, L.J.; Caradus, J.R. The science required to deliver Epichloë endophytes to commerce. In Endophytes for a Growing World; Hodkinson, T., Doohan, F.M., Saunders, M., Murphy, B., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 343–370. ISBN 9781108607667. [Google Scholar]
- Malinowski, D.P.; Belesky, D.P. Adaptations of Endophyte-Infected Cool-Season Grasses to Environmental Stresses: Mechanisms of Drought and Mineral Stress Tolerance. Crop Sci. 2000, 40, 923–940. [Google Scholar] [CrossRef]
- Wang, J.; Hou, W.; Christensen, M.J.; Li, X.; Xia, C.; Li, C.; Nan, Z. Role of Epichloë Endophytes in Improving Host Grass Resistance Ability and Soil Properties. J. Agric. Food Chem. 2020, 68, 6944–6955. [Google Scholar] [CrossRef]
- Wiewióra, B.; Żurek, G. The response of the associations of grass and epichloë endophytes to the increased content of heavy metals in the soil. Plants 2021, 10, 429. [Google Scholar] [CrossRef]
- Bylin, A.G. Endophytic Fungi in Meadow Fescue and Other Forage Grasses. Ph.D Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2014. ISBN 9789157680402. [Google Scholar]
- Card, S.D.; Bastías, D.A.; Caradus, J.R. Antagonism to plant pathogens by epichloë fungal endophytes—A review. Plants 2021, 10, 1997. [Google Scholar] [CrossRef] [PubMed]
- Kuldau, G.; Bacon, C. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biol. Control 2008, 46, 57–71. [Google Scholar] [CrossRef]
- Timper, P.; Bouton, J. Variable response of non-ergot-producing strains of Neotyphodium coenophialum in tall fescue to lesion nematodes. In Epichloe, Endophytes of Cool Season Grasses: Implications, Utilizationand Biology; Young, C.A., Aiken, G.E., McCulley, R.L., Schardl, C.L., Eds.; The Samuel Roberts Noble Foundation: Ardmore, OK, USA, 2012; pp. 40–43. ISBN 978-0-9754303-6-1. [Google Scholar]
- Fletcher, L.; Finch, S.; Sutherland, B.; DeNicolo, G.; Mace, W.; van Koten, C.; Hume, D. The occurrence of ryegrass staggers and heat stress in sheep grazing ryegrass-endophyte associations with diverse alkaloid profiles. N. Z. Vet. 2017, 65, 232–241. [Google Scholar] [CrossRef]
- Easton, H.S. Endophyte in New Zealand ryegrass pastures, an overview. Grassl. Res. Pract. Ser. 1999, 7, 1–9. [Google Scholar] [CrossRef]
- Vassiliadis, S.; Reddy, P.; Hemsworth, J.; Spangenberg, G.C.; Guthridge, K.M.; Rochfort, S.J. Quantitation and Distribution of Epichloë-Derived Alkaloids in Perennial Ryegrass Tissues. Metabolites 2023, 13, 205. [Google Scholar] [CrossRef]
- Popay, A.J.; Thom, E.R. Endophyte effects on major insect pests in Waikato dairy pasture. Proc. N. Z. Grassl. Assoc. 2009, 71, 121–126. [Google Scholar] [CrossRef]
- Gooneratne, S.; Patchett, B.; Wellby, M.; Fletcher, L. Excretion of loline alkaloids in urine and faeces of sheep dosed with meadow fescue (Festuca pratensis) seed containing high concentrations of loline alkaloids. N. Z. Vet. 2012, 60, 176–182. [Google Scholar] [CrossRef]
- Leuchtmann, A.; Bacon, C.W.; Schardl, C.L.; White, J.F.; Tadych, M. Nomenclatural realignment of Neotyphodium species with genus Epichloë. Mycologia 2014, 106, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Desmedt, W.; Mangelinckx, S.; Kyndt, T.; Vanholme, B. A Phytochemical Perspective on Plant Defense Against Nematodes. Front. Plant Sci. 2020, 11, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Eaton, C.J.; Cox, M.P.; Scott, B. What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci. 2011, 180, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Passarge, A.; Demir, F.; Green, K.; Depotter, J.R.L.; Scott, B.; Huesgen, F.; Doehlemann, G.; Misas Villamil, J.C. Host apoplastic cysteine protease activity is suppressed during the mutualistic association of Lolium perenne and Epichloë festucae. J. Exp. Bot. 2021, 72, 3410–3426. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, A.; Christensen, M.J.; Takemoto, D.; Park, P.; Scott, B. Reactive oxygen species play a role in regulating a fungus-perennial ryegrass mutualistic interaction. Plant Cell 2006, 18, 1052–1066. [Google Scholar] [CrossRef] [PubMed]
- Dinkins, R.D.; Coe, B.L.; Phillips, T.D.; Ji, H. Accumulation of Alkaloids in Different Tall Fescue KY31 Clones Harboring the Common Toxic Epichloë coenophiala Endophyte under Field Conditions. Agronomy 2023, 13, 356. [Google Scholar] [CrossRef]
- Timper, P.; Gates, R.N.; Bouton, J.H. Response of Pratylenchus spp. in tall fescue infected with different strains of the fungal endophyte Neotyphodium coenophialum. Nematology 2005, 7, 105–110. [Google Scholar] [CrossRef]
- Bacetty, A.; Snook, M.E.; Glenn, A.E.; Noe, J.P.; Nagabhyru, P.; Bacon, C.W. Chemotaxis disruption in Pratylenchus scribneri by tall fescue root extracts and alkaloids. J. Chem. Ecol. 2009, 35, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Van Hecke, M.M.; Treonis, A.M.; Kaufman, J.R. How does the Fungal Endophyte Neotyphodium coenophialum Affect Tall Fescue (Festuca arundinacea) Rhizodeposition and Soil Microorganisms? Plant Soil 2005, 275, 101–109. [Google Scholar] [CrossRef]
- Terlizzi, N.L.; Rodríguez, M.A.; Iannone, L.J.; Lanari, E.; Novas, M.V. Epichloë endophyte affects the root colonization pattern of belowground symbionts in a wild grass. Fungal Ecol. 2022, 57–58, 101143. [Google Scholar] [CrossRef]
- Schardl, C.L.; Grossman, R.B.; Nagabhyru, P.; Faulkner, J.R.; Mallik, U.P. Loline alkaloids: Currencies of mutualism. Phytochemistry 2007, 68, 980–996. [Google Scholar] [CrossRef]
- Vázquez-De-Aldana, B.R.; Zabalgogeazcoa, I.; García-Ciudad, A.; García-Criado, B. Fungal alkaloids in populations of endophyte-infected Festuca rubra subsp. pruinosa. Grass Forage Sci. 2007, 62, 364–371. [Google Scholar] [CrossRef]
- Yue, Q.; Miller, C.J.; White, J.F.; Richardson, M.D. Isolation and Characterization of Fungal inhibitors from Epichloe festucae. J. Agric. Food Chem. 2000, 48, 4687–4692. [Google Scholar] [CrossRef]
- Spiering, M.J.; Lane, G.A.; Christensen, M.J.; Schmid, J. Distribution of the fungal endophyte Neotyphodium lolii is not a major determinant of the distribution of fungal alkaloids in Lolium perenne plants. Phytochemistry 2005, 66, 195–202. [Google Scholar] [CrossRef]
- Patchett, B.J.; Chapman, R.B.; Fletcher, L.R.; Gooneratne, S.R. Root loline concentration in endophyte-infected meadow fescue (Festuca pratensis) is increased by grass grub (Costelytra zealandica) attack. N. Z. Plant Prot. 2008, 61, 210–214. [Google Scholar] [CrossRef]
- Blankenship, J.D.; Spiering, M.J.; Wilkinson, H.H.; Fannin, F.F.; Bush, L.P.; Schardl, C.L. Production of loline alkaloids by the grass endophyte, Neotyphodium uncinatum, in defined media. Phytochemistry 2001, 58, 395–401. [Google Scholar] [CrossRef]
- Bush, L.P.; Cornelius, P.L.; Buckner, R.C.; Varney, D.R.; Chapman, R.A.; Burrus, P.B.; Kennedy, C.W.; Jones, T.A.; Saunders, M.J. Association of N-acetyl Loline and N-formyl Loline with Epichloe typhina in Tall Fescue. Crop Sci. 1982, 22, 941–943. [Google Scholar] [CrossRef]
- Xu, L.L.; Han, T.; Wu, J.Z.; Zhang, Q.Y.; Zhang, H.; Huang, B.K.; Rahman, K.; Qin, L.P. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 2009, 16, 609–616. [Google Scholar] [CrossRef]
- Panaccione, D.G.; Beaulieu, W.T.; Cook, D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct. Ecol. 2014, 28, 299–314. [Google Scholar] [CrossRef]
- Caradus, J.R.; Johnson, L.J. Epichloë fungal endophytes—From a biological curiosity in wild grasses to an essential component of resilient high performing ryegrass and fescue pastures. J. Fungi 2020, 6, 322. [Google Scholar] [CrossRef] [PubMed]
- Panaccione, D.G.; Kotcon, J.B.; Schardl, C.L.; Johnson, R.D.; Morton, J.B. Ergot alkaloids are not essential for endophytic fungus-associated population suppression of the lesion nematode, Pratylenchus scribneri, on perennial ryegrass. Nematology 2006, 8, 583–590. [Google Scholar] [CrossRef]
- Potter, D.A.; Tyler Stokes, J.; Redmond, C.T.; Schardl, C.L.; Panaccione, D.G. Contribution of ergot alkaloids to suppression of a grass-feeding caterpillar assessed with gene knockout endophytes in perennial ryegrass. Entomol. Exp. Appl. 2008, 126, 138–147. [Google Scholar] [CrossRef]
- Sakai, K.; Kinoshita, H.; Shimizu, T.; Nihira, T. Construction of a Citrinin Gene Cluster Expression System in Heterologous Aspergillus oryzae. J. Biosci. Bioeng. 2008, 106, 466–472. [Google Scholar] [CrossRef]
- Guerre, P. Ergot Alkaloids Produced by Endophytic Fungi of the Genus Epichloë. Toxins 2015, 7, 773–790. [Google Scholar] [CrossRef]
- Bluett, S.J.; Thom, E.R.; Clark, D.A.; Macdonald, K.A.; Minneé, E.M.K. Effects of perennial ryegrass infected with either AR1 or wild endophyte on dairy production in the Waikato. N. Z. J. Agric. Res. 2005, 48, 197–212. [Google Scholar] [CrossRef]
- Jensen, J.G.; Popay, A.J. Perennial ryegrass infected with AR37 endophyte reduces survival of porina larvae. N. Z. Plant Prot. 2004, 57, 323–328. [Google Scholar] [CrossRef]
- Tanaka, A.; Tapper, B.A.; Popay, A.; Parker, E.J.; Scott, B. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol. Microbiol. 2005, 57, 1036–1050. [Google Scholar] [CrossRef] [PubMed]
- Koulman, A.; Lane, G.A.; Christensen, M.J.; Fraser, K.; Tapper, B.A. Peramine and other fungal alkaloids are exuded in the guttation fluid of endophyte-infected grasses. Phytochemistry 2007, 68, 355–360. [Google Scholar] [CrossRef]
- Bush, L.P.; Wilkinson, H.H.; Schardl, C.L. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol. 1997, 114, 1–7. [Google Scholar] [CrossRef]
- Patchett, B.; Gooneratne, R.; Fletcher, L.; Chapman, B. Seasonal changes in leaf and stem loline alkaloids in meadow fescue. Crop Pasture Sci. 2011, 62, 261–267. [Google Scholar] [CrossRef]
- Bush, L.P.; Fannin, F.F.; Siegel, M.R.; Dahlman, D.L.; Burton, H.R. Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte-grass interactions. Agric. Ecosyst. Environ. 1993, 44, 81–102. [Google Scholar] [CrossRef]
- Clay, K.; Schardl, C. Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses. Am. Nat. 2015, 160. [Google Scholar] [CrossRef]
- Bultman, T.; Bell, G.; Martin, W. A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology 2004, 85, 679–685. [Google Scholar] [CrossRef]
- Cagnano, G.; Lenk, I.; Roulund, N.; Jensen, C.S.; Cox, M.P.; Asp, T. Mycelial biomass and concentration of loline alkaloids driven by complex population structure in Epichloë uncinata and meadow fescue (Schedonorus pratensis). Mycologia 2020, 112, 474–490. [Google Scholar] [CrossRef]
- Jia, C.; Ruan, W.B.; Zhu, M.J.; Ren, A.Z.; Gao, Y.B. Potential antagnosim of cultivated and wild grass-endophyte associations towards Meloidogyne incognita. Biol. Control 2013, 64, 225–230. [Google Scholar] [CrossRef]
- Meyer, S.L.F.; Nyczepir, A.P.; Rupprecht, S.M.; Mitchell, A.D.; Martin, P.A.W.; Brush, C.W.; Chitwood, D.J.; Vinyard, B.T. Tall Fescue ‘Jesup (Max-Q)’: Meloidogyne incognita Development in Roots and Nematotoxicity. Agron. J. 2013, 105, 755–763. [Google Scholar] [CrossRef]
- Spanu, P.D. The genomics of obligate (and non-obligate) biotrop. Annu. Rev. Phytopathol. 2012, 50, 91–109. [Google Scholar] [CrossRef]
- Wallwey, C.; Li, S.-M. Ergot alkaloids: Structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat. Prod. Rep. 2011, 28, 496–510. [Google Scholar] [CrossRef]
- Lorenz, N.; Haarmann, T.; Pažoutová, S.; Jung, M.; Tudzynski, P. The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects. Phytochemistry 2009, 70, 1822–1832. [Google Scholar] [CrossRef]
- Bacetty, A.; Snook, M.; Glenn, A.; Noe, J.; Hill, N.; Culbreath, A.; Timper, P.; Nagabhyru, P.; Bacon, C. Toxicity of endophyte-infected tall fescue alkaloids and grass metabolites on Pratylenchus scribneri. Phytopathology 2009, 99, 1336–1345. [Google Scholar] [CrossRef]
- Bultman, T.L.; Ganey, D.T. Induced resistance to fall armyworm (Lepidoptera: Noctuidae) mediated by a fungal endophyte. Environ. Entomol. 1995, 24, 1196–1200. [Google Scholar] [CrossRef]
- Vu, T.; Hauschild, R.; Sikora, R.A. Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 2006, 8, 847–852. [Google Scholar] [CrossRef]
- Kumar, K.; Dara, S.K. Fungal and bacterial endophytes as microbial control agents for plant-parasitic nematodes. Int. J. Environ. Res. Public Health 2021, 18, 4269. [Google Scholar] [CrossRef] [PubMed]
- Dababat, A.E.F.A.; Sikora, R.A. Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 2007, 9, 771–776. [Google Scholar] [CrossRef]
- Sikora, R.A.; Pocasangre, L.; zum Felde, A.z.; Niere, B.; Vu, T.T.; Dababat, A.A. Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol. Control 2008, 46, 15–23. [Google Scholar] [CrossRef]
- Mwaura, P.; Dubois, T.; Losenge, T.; Coyne, D.; Kahangi, E. Effect of endophytic Fusarium oxysporum on paralysis and mortality of Pratylenchus goodeyi. Afr. J. Biotechnol. 2010, 9, 1130–1134. [Google Scholar] [CrossRef]
- Khan, B.; Yan, W.; Wei, S.; Wang, Z.; Zhao, S.; Cao, L.; Rajput, N.A.; Ye, Y. Nematicidal metabolites from endophytic fungus Chaetomium globosum YSC5. FEMS Microbiol. Lett. 2019, 366, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Nyczepir, A.P.; Meyer, S.L.F. Host status of endophyte-infected and noninfected tall fescue grass to Meloidogyne spp. J. Nematol. 2010, 42, 151–158. [Google Scholar] [PubMed]
- Kimmons, C.A.; Gwinn, K.D.; Bernard, E.C. Nematode reproduction on endophyte-infected and endophyte-free tall fescue. Plant Dis. 1990, 74, 757–761. [Google Scholar] [CrossRef]
- West, C.P.; Izekor, E.; Oosterhuis, D.M.; Robbins, R.T. The effect of Acremonium coenophialum on the growth and nematode infestation of tall fescue. Plant Soil 1988, 112, 3–6. [Google Scholar] [CrossRef]
- Roberts, C.; Marek, S.; Niblack, T.; Karr, A. Parasitic Meloidogyne and mutualistic Acremonium increase chitinase in tall fescue. J. Chem. Ecol. 1992, 18, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Nyczepir, A.P. Host suitability of an endophyte-friendly tall fescue grass to Mesocriconema xenoplax and Pratylenchus vulnus. Nematropica 2011, 41, 45–51. [Google Scholar]
- Uesugi, K.; Sasaki, T.; Iwahori, H.; Tateishi, Y. Reproduction of four plant-parasitic nematodes on endophyte-infected Italian ryegrasses. Nematol. Res. (Jpn. J. Nematol.) 2014, 44, 43–47. [Google Scholar] [CrossRef]
- Rogers, J.K.; Walker, N.R.; Young, C.A. The effect of endophytic fungi on nematode populations in summer-dormant and summer-Active tall fescue. J. Nematol. 2016, 48, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Davis, L.T.; Bell, N.L.; Watson, R.N.; Rohan, T.C. Host range assessment of Helicotylenchus pseudorobustus (Tylenchida: Hoplolaimidae) on pasture species. J. Nematol. 2004, 36, 487–492. [Google Scholar] [PubMed]
- Bell, N.L.; Watson, R.N. Identification and host range assessment of Paratylenchus nanus (Tylenchida: Tylenchulidae) and Paratrichodorus minor (Triplonchida: Trichodoridae). Nematology 2001, 3, 483–490. [Google Scholar] [CrossRef]
- Nyczepir, A.P.; Brannen, P.M.; Cook, J.; Meyer, S.L.F. Management of Meloidogyne incognita with Jesup (Max-Q) tall fescue grass prior to peach orchard establishment. Plant Dis. 2014, 98, 625–630. [Google Scholar] [CrossRef]
- Pedersen, J.F.; Rodriguez-Kabana, R.; Shelby, R.A. Ryegrass Cultivars and Endophyte in Tall Fescue Affect Nematodes in Grass and Succeeding Soybean. Agron. J. 1988, 80, 811–814. [Google Scholar] [CrossRef]
- Card, S.D.; Faville, M.J.; Simpson, W.R.; Johnson, R.D.; Voisey, C.R.; de Bonth, A.C.M.; Hume, D.E. Mutualistic fungal endophytes in the Triticeae-survey and description. FEMS Microbiol. Ecol. 2014, 88, 94–106. [Google Scholar] [CrossRef]
- Hume, D.E.; Drummond, J.B.; Rolston, M.P.; Simpson, W.R.; Johnson, R.D. Epichloë endophyte improves agronomic performance and grain yield of rye (Secale cereale). In Proceedings of the 10th International Symposium on Fungal Endophytes of Grasses, Salamanka, Spain, 18–21 June 2018. [Google Scholar]
Grass Host | Endophyte | Grass Genotype | Alkaloids a | Plant Tissue | Reference | |||
---|---|---|---|---|---|---|---|---|
Ergopeptines | Lolines | Lolitrems | Peramine | |||||
Festuca arundinacea | E. coenophialum | 0.5 | 1100 | 0 | 2 | Shoots | [53] | |
N. lolli | 1.2 | 0 | 23 | 18 | Shoots | |||
F. arundinacea | E. coenophialum | KY31 | 1.72–6.81 | 2407–3427 | − | − | Shoots | [30] |
F. arundinacea | A. coenophialum | − | 1544 | − | − | Shoots | [53] | |
Lolium perenne | E. lolii | − | 0 | − | − | |||
E. starri | − | 0 | − | − | ||||
E. coenophialum | − | 1109 | − | − | ||||
E. typhina | − | 0 | − | − | ||||
E. lolli | 1.3 | 0 | 4.7 | 19 | ||||
E. coenophialum | 2.5 | 1000 | 0 | 29 | ||||
E. typhina | 0 | 0 | 0 | 53 | ||||
E. lolli X E. typhina | 4.8 | 0 | 0.4 | 22 | ||||
Festulolium spp. | E. uncinata | U2 | − | 358 | − | − | Roots | [1] |
U5 | − | 270 | − | − | ||||
U6 | − | 596 | − | − | ||||
U8 | − | 590 | − | − | ||||
U10 | − | 548 | − | − | ||||
F. pratensis | E. uncinatum | FP53 | − | 102 | − | − | Roots | [39] |
Fp246 | − | 86 | − | − | Roots | |||
Fp248 | − | 123 | − | − | Roots | |||
Fp408 | − | 1444 | − | − | Roots | |||
Fp87 | − | 1334 | − | − | Roots | |||
Fp358 | − | 1251 | − | − | Roots | |||
Fp391 | − | 1368 | − | − | Roots | |||
Fp345 | − | 1474 | − | − | Roots | |||
Fp262 | − | 1330 | − | − | Roots | |||
Fp440 | − | 1725 | − | − | Roots | |||
Fp390 | − | 1362 | − | − | Roots | |||
Fp430 | − | 1320 | − | − | Roots | |||
F. pratensis | E. uncinatum | FP53 | − | 38 | − | − | Crown | [39] |
Fp246 | − | 45 | − | − | Crown | |||
Fp248 | − | 51 | − | − | Crown | |||
Fp408 | − | 1944 | − | − | Crown | |||
Fp87 | − | 2766 | − | − | Crown | |||
Fp358 | − | 1498 | − | − | Crown | |||
Fp391 | − | 1007 | − | − | Crown | |||
Fp345 | − | 1976 | − | − | Crown | |||
Fp262 | − | 1862 | − | − | Crown | |||
Fp440 | − | 2281 | − | − | Crown | |||
Fp390 | − | 1574 | − | − | Crown | |||
Fp430 | − | 1393 | − | − | Crown | |||
FP53 | − | 40 | − | − | Shoots | |||
Fp246 | − | 47 | − | − | Shoots | |||
Fp248 | − | 38 | − | − | Shoots | |||
Fp408 | − | 1374 | − | − | Shoots | |||
F. pratensis | E. uncinatum | Fp87 | − | 1513 | − | − | Shoots | [39] |
Fp358 | − | 907 | − | − | Shoots | |||
Fp391 | − | 772 | − | − | Shoots | |||
Fp345 | − | 1272 | − | − | Shoots | |||
Fp262 | − | 1297 | − | − | Shoots | |||
Fp440 | − | 1528 | − | − | Shoots | |||
Fp390 | − | 1251 | − | − | Shoots | |||
Fp430 | − | 840 | − | − | Shoots | |||
F. pratensis Huds | E. uncinatum | − | 670 | − | − | Shoots | [54] | |
− | 1240 | − | − | Shoots | ||||
− | 610 | − | − | Shoots | ||||
− | 1160 | − | − | Shoots | ||||
− | 760 | − | − | Shoots | ||||
− | 500 | − | − | Shoots | ||||
− | 3180 | − | − | Stem | ||||
− | 4080 | − | − | Stem | ||||
− | 2600 | − | − | Stem | ||||
− | 2690 | − | − | Stem | ||||
− | 2600 | − | − | Stem | ||||
− | 1670 | − | − | Stem |
Nematode Species | Grass Genotype | Endophyte Species/Alkaloids Tested | Exposure Material | Assay | Nematode Stage | Dose | Exposure Time | Effect | %Efficacy | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Meloidogyne incognita | S. arundinacea | Epichloë coenophialum | Seedlings | Chemotaxis | Juveniles | 2 h | Repulsion | Chemotaxis factor = 0 | [59] | |
M.incognita | S. arundinacea | E. coenophialum | Fungal filtrate | Mortality | Juveniles | 100% | 72 h | Nematicidal | 72% | [59] |
Leymus chiniensis | Epichloë sp. | Fungal filtrate | Juveniles | 100% fungal filtrate | 72 h | 91.7% | ||||
Achnatherum sibiricum | E. sibiricum | Fungal filtrate | Juveniles | 100% fungal filtrate | 72 h | 66.8% | ||||
Pratylenchus scribinieri | Ergovaline | Purified alkaloids | Mortality | Juveniles | 5 µg mL−1 | 72 h | Nematicidal | 100% | [32] | |
Lolines | 50 µg mL−1 | 72 h | Nematostatic | 100% | ||||||
Ergocryptine | 50 µg mL−1 | 72 h | Nematostatic | 100% | ||||||
P. scribinieri | Festuca arundinacea | E. coenophialum | Root extracts | Mortality | Juveniles | 2400 µg mL− | 72 h | Nematostatic | 80% | [32] |
P. scribinieri | Ergovaline | Purified alkaloids | Mortality | Juveniles | 5 µM | 24 h | Nematicidal | 50% | [45] | |
Agroclavine | 21 µM | 24 h | No effect | |||||||
Setoclavine + Agroclavine | 7 µM + 34 µM | 24 h | No effect | |||||||
M. incognita | Festuca arundinacea | E. coenophialum | Root exudates | Mortality | Juveniles | 1.4 w/w | 7 days | Nematostatic | 39.5% | [60] |
Eggs | 1.4 w/w | 7 days | Hatching inhibition | 97.6% | ||||||
Root extracts | Juveniles | 100% | 7 days | Nematostatic | 32% | |||||
Eggs | 100% | 7 days | Hatching inhibition | 34% | ||||||
Shoot extracts | Juveniles | 100% | 7 days | Nematostatic | 21% | |||||
Eggs | 100% | 7 days | Hatching inhibition | 46% | ||||||
P. scribinieri | Festuca arundinacea | E. coenophialum | Root extracts | Chemotaxis | Juveniles | 100–400 µg mL−1 | 2 h | Strong repellent | Chemotaxis factor = 0 | [32] |
P. scribinieri | Ergovaline | Purified alkaloids | Chemotaxis | Juveniles | 100–200 µg mL−1 | 2 h | Strong repellent | Chemotaxis factor = 0 | [32] | |
Ergotamine | 50–200 µg mL−1 | Attractant | Cf = 2–3 | |||||||
Ergonovine | 50–200 µg mL−1 | Weak repellent | Cf = 0.2–0.4 | |||||||
N-Formylloline | 50–200 µg mL−1 | Weak repellent | Cf = 0.2–0.4 | |||||||
M. incognita | Festulolium spp. | Epichloë uncinata | Root extracts | Mortality | Juveniles | Nematicidal | 12.7–18.3% | [1] | ||
Shoot extracts | Nematicidal | 9–19.2% |
Nematode Species | Endophyte | Grass | Reproduction on Colonised (E+) or Non-Colonised (E−) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species | Strain | Genotype | Cultivar/Variety | Initial Densities (Pi)/Pot | Final Densities (Pf) | Assessment | Trial Duration (Days) | Country | References | ||
E+ | E− | ||||||||||
Meloidogyne incognita | Epichloë uncinate | U6 U8 U10 | Festulolium hybrids | FHCDO802 BUS 10–12 FHAB0802 ABA 10–22 FHCD0802 BUS 10–13 | 5000 | 285.5 71.2 803.2 | 500 NS 63.1 NS 95.3 NS | Eggs/gram roots | 49 | USA | [1] |
Pratylenchus scribinieri | Epichloë coenophialum | Festuca arundinacea | Jesup. | 1500 | 75 1 | 600 * 1734 * | Nematodes/100 cm3 soil Nematodes/gram roots | 40–45 | USA | [64] | |
Pratylenchus spp. | E. coenophialum | Endemic | Georgia Jesup. | 984 | 20–30 50–70 | 150–190 * 130–140 * | Nematodes in roots/pot | 56 | USA | [31] | |
P. vulnus Mesocriconema xenoplax | E. coenophialum | F. pratensis | Wild-type Jesup Jesup (Max-Q) Georgia Wild-type Jesup Jesup (Max-Q Georgia | 3000 1000 | 2 0 6 8 6 6 | 12 * 12 * 12 NS 17 NS 17 NS 17 NS | Nematodes in 100 cm3 soil | 153 159 | USA | [76] | |
M.incognita M.arenaria P. coffeae P. penetrans | N. uncinatum | Lolium multiflorum-rum | Bishanon JFIR-18 Bishanon JFIR-18 Bishanon JFIR-18 Bishanon JFIR-18 | 500 500 300 300 | 50.5 37 41 66.2 721.50 288.2 412.40 367.10 | 42.5 NS 44 NS 39 NS 57.4 NS 515 NS 291.4 NS 501.6 NS 370.1 NS | Egg mass/root system Nematodes/root system | 42 48 | Japan | [77] | |
M.incognita | F. arundinacea | Wild-type Jesup Jesup (Max-Q) Georgia 5 Bulldog 51 | 3000 | 0 0 0 7 | 15 NS 15 NS 15 NS 15 NS | Eggs/gram root | USA | [72] | |||
Tylenchorynchus spp. Criconemella spp. Helicotylenchus spp. | Kentucky 31 Texoma MaxQII Flecha MaxQ Kentucky 31 Texoma MaxQII Flecha MaxQ Kentucky 31 Texoma MaxQII Flecha MaxQ Kentucky 31 Texoma MaxQII Flecha MaxQ | 270 High rate (800) Low rate (250) 225 | 20 35 91 6 159 606 14 34 1026 55 84 330 | 40 NS 32 NS 40 * 246 NS 236 NS 311 NS 64 NS 291 NS 162 * 174 NS 80 NS 147 * | Nematodes in 100 cm3 soil | 180 | USA | [78] | |||
M.incognita | E sibiricum E. coenophialum | Achnatherum sibiricum F.arundin-acea | Wild-type Kentucky 31 | 1000 | 10 0–5 | 20–25 * 10–20 * | Nematodes/root system | 15 | China | [59] | |
P.scribneri | Epichloë spp. | Wild-type Isolate Lp1 | Lolium perenne | Isolate Lp1 lpsA knockout dmaW knockout | 1000 | 80–100 100–150 100–110 | 400–410 * 400–410 * 400–410 * | Nematodes/pot | 48 | USA | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mwangi, N.G.; Stevens, M.; Wright, A.J.D.; Edwards, S.G.; Hare, M.C.; Back, M.A. Grass–Endophyte Interactions and Their Associated Alkaloids as a Potential Management Strategy for Plant Parasitic Nematodes. Toxins 2024, 16, 274. https://doi.org/10.3390/toxins16060274
Mwangi NG, Stevens M, Wright AJD, Edwards SG, Hare MC, Back MA. Grass–Endophyte Interactions and Their Associated Alkaloids as a Potential Management Strategy for Plant Parasitic Nematodes. Toxins. 2024; 16(6):274. https://doi.org/10.3390/toxins16060274
Chicago/Turabian StyleMwangi, Nyambura G., Mark Stevens, Alistair J. D. Wright, Simon G. Edwards, Martin C. Hare, and Matthew A. Back. 2024. "Grass–Endophyte Interactions and Their Associated Alkaloids as a Potential Management Strategy for Plant Parasitic Nematodes" Toxins 16, no. 6: 274. https://doi.org/10.3390/toxins16060274
APA StyleMwangi, N. G., Stevens, M., Wright, A. J. D., Edwards, S. G., Hare, M. C., & Back, M. A. (2024). Grass–Endophyte Interactions and Their Associated Alkaloids as a Potential Management Strategy for Plant Parasitic Nematodes. Toxins, 16(6), 274. https://doi.org/10.3390/toxins16060274