Assessment of Mycotoxin Exposure and Associated Risk in Pregnant Dutch Women: The Human Biomonitoring Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mycotoxin Concentrations
2.2. Comparison with Other European Groups
Country | Collection Year | Study Population | Biological Matrix | Mycotoxin | Positive % | Median (μg/L) | Range (μg/L) | Method Sensitivity (μg/L) | Reference |
---|---|---|---|---|---|---|---|---|---|
The Netherlands | 2020–2022 | 36 pregnant women | 24-h urine Serum | total DON 1 total ZEN 2 total α-ZEL 2 total β-ZEL 2 OTA | 100 100 75 50 100 | 4.75 0.0413 0.0379 0.0189 0.121 | 1.26–21.6 0.01–0.138 <LOD-0.115 <LOD-0.058 0.0586–2.26 | LOD = 0.07 LOD = 0.005 LOD = 0.025 LOD = 0.025 LOD = 0.05 | Present study |
Croatia | 2011 | 40 pregnant women | FMV urine | DON DON15GlcA DON3GlcA total DON 3 OTA | 76 98 83 - 10 | 6.7 55.2 10.0 48.7 <LOQ | <LOD-275 <LOD-1237 <LOD-298 4.8–1238 - | LOD = 4 LOD = 3 LOD = 6 - LOD = 0.05 | [49] |
Croatia | 2011 | 40 pregnant women | FMV urine | OTA OTα | 78 100 | 0.02 1.18 | <LOD-1.11 0.11–7.57 | LOD = 0.019 LOD = 0.016 | [50] |
UK | 2008–2009 | 85 pregnant women | 24-h urine | total DON | 100 | - | 0.5–117 2 | - | [51] |
UK | 2014 | 42 pregnant women | FMV urine | total DON | 88 | 14.3 4 | - | LOD = 0.12 | [52,53] |
Italy | 2014 | 42 pregnant women | FMV urine | total DON | 43 | 1.96 4 | - | LOD = 0.25 | [53] |
Norway | 2014 | 40 pregnant women | FMV urine | total DON | 100 | 5.29 4 | - | LOD = 0.005 | [53] |
Germany | 1996–2021 | 180 females | 24-h urine | total DON | 99 | 3.54 | <LLOQ-26.4 | LLOQ = 0.3 | [46] |
Germany | 2013–2014 | 30 females | FMV urine | total ZEN total α-ZEL total β-ZEL | 100 100 100 | 0.07 0.12 0.03 | 0.04–0.23 0.09–0.45 0.01–0.20 | LOD = 0.01 LOD = 0.01 LOD = 0.01 | [63] |
2.3. Risk Assessment
2.3.1. DON
2.3.2. ZEN
2.3.3. OTA
2.4. Limitations and Future Recommendations
3. Conclusions
4. Materials and Methods
4.1. Study Participants
4.2. Chemicals
4.3. Sample Preparation and Analysis
4.3.1. Urine
4.3.2. Serum
4.3.3. LC-MS/MS
4.4. External Exposure Estimate Model
4.4.1. DON and ZEN
- EDI = estimated daily intake (µg/kg bw/day);
- C = urinary mycotoxin concentration (µg/L);
- V = 24-h urinary volume of each participant (L)
- BW = body weight measured for each participant (kg);
- FUE = mean urinary excretion fraction of DON 1 and ZEN 2 (0 < FUE < 1).
4.4.2. OTA
- EDI = estimated daily intake (ng/kg bw/day);
- CLtot = total body clearance (mL/day);
- Cav.ss = average OTA concentration in plasma at steady-state (ng/mL);
- BW = body weight measured for each participant (kg);
- F = fraction absorbed (0 < F <1).
4.5. Risk Assessment
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habschied, K.; Kanižai Šarić, G.; Krstanović, V.; Mastanjević, K. Mycotoxins-Biomonitoring and Human Exposure. Toxins 2021, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Ismaiel, A.; Papenbrock, J. Mycotoxins: Producing Fungi and Mechanisms of Phytotoxicity. Agriculture 2015, 5, 492–537. [Google Scholar] [CrossRef]
- Battilani, P.; Palumbo, R.; Giorni, P.; Dall’Asta, C.; Dellafiora, L.; Gkrillas, A.; Toscano, P.; Crisci, A.; Brera, C.; De Santis, B.; et al. Mycotoxin mixtures in food and feed: Holistic, innovative, flexible risk assessment modelling approach. EFSA Support. Publ. 2020, 17, 1757E. [Google Scholar] [CrossRef]
- Park, D.L.; Njapau, H.; Boutrif, E. Minimizing risks posed by mycotoxins utilizing the HACCP concept. FAO Food Nutr. Agric. J. 1999, 49–56. [Google Scholar]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global Mycotoxin Occurrence in Feed: A Ten-Year Survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Alvito, P.; Pereira-da-Silva, L. Mycotoxin Exposure during the First 1000 Days of Life and Its Impact on Children’s Health: A Clinical Overview. Toxins 2022, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Gönenç, İ.M.; Yilmaz Sezer, N.; Yilmaz, S. Mycotoxin exposure and pregnancy. Crit. Rev. Toxicol. 2020, 50, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Kyei, N.N.A.; Boakye, D.; Gabrysch, S. Maternal mycotoxin exposure and adverse pregnancy outcomes: A systematic review. Mycotoxin Res. 2020, 36, 243–255. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.E.; Prendergast, A.J.; Turner, P.C.; Humphrey, J.H.; Stoltzfus, R.J. Aflatoxin Exposure During Pregnancy, Maternal Anemia, and Adverse Birth Outcomes. Am. J. Trop. Med. Hyg. 2017, 96, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Allen, R.; Wilkinson, A.P.; Morgan, M.R. Transplacental transfer of aflatoxin in humans. Carcinogenesis 1990, 11, 1033–1035. [Google Scholar] [CrossRef]
- Abdulrazzaq, Y.M.; Osman, N.; Ibrahim, A. Fetal exposure to aflatoxins in the United Arab Emirates. Ann. Trop. Paediatr. 2002, 22, 3–9. [Google Scholar] [CrossRef]
- Abdulrazzaq, Y.M.; Osman, N.; Yousif, Z.M.; Trad, O. Morbidity in neonates of mothers who have ingested aflatoxins. Ann. Trop. Paediatr. 2004, 24, 145–151. [Google Scholar] [CrossRef]
- Turner, P.C.; Collinson, A.C.; Cheung, Y.B.; Gong, Y.; Hall, A.J.; Prentice, A.M.; Wild, C.P. Aflatoxin exposure in utero causes growth faltering in Gambian infants. Int. J. Epidemiol. 2007, 36, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- De Vries, H.R.; Maxwell, S.M.; Hendrickse, R.G. Foetal and neonatal exposure to aflatoxins. Acta Paediatr. Scand. 1989, 78, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Ruvalcaba Ledezma, J.C.; Leticia, I.; Efrain, F.; Miguel, R. Aflatoxigenic Feeding and its Possible Implications After Pregnancy. Biomed. Pharmacol. J. 2014, 7, 183–193. [Google Scholar] [CrossRef]
- Lauer, J.M.; Duggan, C.P.; Ausman, L.M.; Griffiths, J.K.; Webb, P.; Wang, J.S.; Xue, K.S.; Agaba, E.; Nshakira, N.; Ghosh, S. Maternal aflatoxin exposure during pregnancy and adverse birth outcomes in Uganda. Matern. Child Nutr. 2019, 15, e12701. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, F.M.; Jolly, P.E.; Ehiri, J.E.; Yatich, N.; Jiang, Y.; Funkhouser, E.; Person, S.D.; Wilson, C.; Ellis, W.O.; Wang, J.S.; et al. Association between birth outcomes and aflatoxin B1 biomarker blood levels in pregnant women in Kumasi, Ghana. Trop. Med. Int. Health 2010, 15, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Eze, U.A.; Huntriss, J.; Routledge, M.N.; Gong, Y.Y.; Connolly, L. The effect of individual and mixtures of mycotoxins and persistent organochloride pesticides on oestrogen receptor transcriptional activation using in vitro reporter gene assays. Food Chem. Toxicol. 2019, 130, 68–78. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the risks for public health related to the presence of zearalenone in food. EFSA J. 2011, 9, 2197. [Google Scholar] [CrossRef]
- EFSA. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016, 14, e04425. [Google Scholar] [CrossRef]
- Warth, B.; Preindl, K.; Manser, P.; Wick, P.; Marko, D.; Buerki-Thurnherr, T. Transfer and Metabolism of the Xenoestrogen Zearalenone in Human Perfused Placenta. Environ. Health Perspect. 2019, 127, 107004. [Google Scholar] [CrossRef] [PubMed]
- Bernhoft, A.; Behrens, G.H.G.; Ingebrigtsen, K.; Langseth, W.; Berndt, S.; Haugen, T.B.; Grotmol, T. Placental transfer of the estrogenic mycotoxin zearalenone in rats. Reprod. Toxicol. 2001, 15, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Sun, L.; Zhang, N.; Li, C.; Zhang, J.; Xiao, Z.; Qi, D. Gestational Zearalenone Exposure Causes Reproductive and Developmental Toxicity in Pregnant Rats and Female Offspring. Toxins 2017, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA J. 2018, 16, e05172. [Google Scholar] [CrossRef]
- Marasas, W.F.O.; Riley, R.T.; Hendricks, K.A.; Stevens, V.L.; Sadler, T.W.; Gelineau-van Waes, J.; Missmer, S.A.; Cabrera, J.; Torres, O.; Gelderblom, W.C.A.; et al. Fumonisins Disrupt Sphingolipid Metabolism, Folate Transport, and Neural Tube Development in Embryo Culture and In Vivo: A Potential Risk Factor for Human Neural Tube Defects among Populations Consuming Fumonisin-Contaminated Maize. J. Nutr. 2004, 134, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Lumsangkul, C.; Chiang, H.I.; Lo, N.W.; Fan, Y.K.; Ju, J.C. Developmental Toxicity of Mycotoxin Fumonisin B1 in Animal Embryogenesis: An Overview. Toxins 2019, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, K. Fumonisins and neural tube defects in South Texas. Epidemiology 1999, 10, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Missmer, S.A.; Suarez, L.; Felkner, M.; Wang, E.; Merrill, A.H., Jr.; Rothman, K.J.; Hendricks, K.A. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 2006, 114, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Melnick, M.; Marazita, M.L. Neural tube defects, methylenetetrahydrofolate reductase mutation, and north/south dietary differences in China. J. Craniofac. Genet. Dev. Biol. 1998, 18, 233–235. [Google Scholar] [PubMed]
- EFSA. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA J. 2017, 15, e04718. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Risk assessment of ochratoxin A in food. EFSA J. 2020, 18, e06113. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.K.; Vikström, A.C.; Turner, P.; Knudsen, L.E. Deoxynivalenol transport across the human placental barrier. Food Chem. Toxicol. 2011, 49, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.S.J.; Partanen, H.; Myllynen, P.; Vähäkangas, K.; El-Nezami, H. Fate of the teratogenic and carcinogenic ochratoxin A in human perfused placenta. Toxicol. Lett. 2012, 208, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Postupolski, J.; Karłowski, K.; Kubik, P. Ochratoxin a in maternal and foetal blood and in maternal milk. Rocz Panstw Zakl. Hig. 2006, 57, 23–30. [Google Scholar] [PubMed]
- Gromadzka, K.; Pankiewicz, J.; Beszterda, M.; Paczkowska, M.; Nowakowska, B.; Kocyłowski, R. The Presence of Mycotoxins in Human Amniotic Fluid. Toxins 2021, 13, 409. [Google Scholar] [CrossRef] [PubMed]
- Minervini, F.; Giannoccaro, A.; Nicassio, M.; Panzarini, G.; Lacalandra, G.M. First evidence of placental transfer of ochratoxin A in horses. Toxins 2013, 5, 84–92. [Google Scholar] [CrossRef] [PubMed]
- De Santis, B.; Raggi, M.E.; Moretti, G.; Facchiano, F.; Mezzelani, A.; Villa, L.; Bonfanti, A.; Campioni, A.; Rossi, S.; Camposeo, S.; et al. Study on the Association among Mycotoxins and other Variables in Children with Autism. Toxins 2017, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Jonsyn, F.; Maxwell, S.; Hendrickse, R. Human fetal exposure to ochratoxin A and aflatoxins. Ann. Trop. Paediatr. 1995, 15, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Lemming, E.W.; Montes, A.M.; Schmidt, J.; Cramer, B.; Humpf, H.U.; Moraeus, L.; Olsen, M. Mycotoxins in blood and urine of Swedish adolescents-possible associations to food intake and other background characteristics. Mycotoxin Res. 2020, 36, 193–206. [Google Scholar] [CrossRef] [PubMed]
- De Ruyck, K.; Huybrechts, I.; Yang, S.; Arcella, D.; Claeys, L.; Abbeddou, S.; De Keyzer, W.; De Vries, J.; Ocke, M.; Ruprich, J.; et al. Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling. Environ. Int. 2020, 137, 105539. [Google Scholar] [CrossRef] [PubMed]
- Vidal, A.; Claeys, L.; Mengelers, M.; Vanhoorne, V.; Vervaet, C.; Huybrechts, B.; De Saeger, S.; De Boevre, M. Humans significantly metabolize and excrete the mycotoxin deoxynivalenol and its modified form deoxynivalenol-3-glucoside within 24 hours. Sci. Rep. 2018, 8, 5255. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of multi-mycotoxin exposure in southern Italy by urinary multi-biomarker determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Schmied, A.; Marske, L.; Berger, M.; Kujath, P.; Weber, T.; Kolossa-Gehring, M. Human biomonitoring of deoxynivalenol (DON)—Assessment of the exposure of young German adults from 1996–2021. Int. J. Hyg. Environ. Health 2023, 252, 114198. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaal, B.A.; Jaganjac, M.; Barcaru, A.; Horvatovich, P.; Latiff, A. Aflatoxin, fumonisin, ochratoxin, zearalenone and deoxynivalenol biomarkers in human biological fluids: A systematic literature review, 2001–2018. Food Chem. Toxicol. 2019, 129, 211–228. [Google Scholar] [CrossRef] [PubMed]
- Marín-Sáez, J.; Hernández-Mesa, M.; Gallardo-Ramos, J.A.; Gámiz-Gracia, L.; García-Campaña, A.M. Assessing human exposure to pesticides and mycotoxins: Optimization and validation of a method for multianalyte determination in urine samples. Anal. Bioanal. Chem. 2024, 416, 1935–1949. [Google Scholar] [CrossRef] [PubMed]
- Šarkanj, B.; Warth, B.; Uhlig, S.; Abia, W.A.; Sulyok, M.; Klapec, T.; Krska, R.; Banjari, I. Urinary analysis reveals high deoxynivalenol exposure in pregnant women from Croatia. Food Chem. Toxicol. 2013, 62, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Klapec, T.; Sarkanj, B.; Banjari, I.; Strelec, I. Urinary ochratoxin A and ochratoxin alpha in pregnant women. Food Chem. Toxicol. 2012, 50, 4487–4492. [Google Scholar] [CrossRef]
- Hepworth, S.J.; Hardie, L.J.; Fraser, L.K.; Burley, V.J.; Mijal, R.S.; Wild, C.P.; Azad, R.; McKinney, P.A.; Turner, P.C. Deoxynivalenol exposure assessment in a cohort of pregnant women from Bradford, UK. Food Addit. Contam. Part A 2012, 29, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Wells, L.; Hardie, L.; Williams, C.; White, K.; Liu, Y.; De Santis, B.; Debegnach, F.; Moretti, G.; Greetham, S.; Brera, C.; et al. Determination of Deoxynivalenol in the Urine of Pregnant Women in the UK. Toxins 2016, 8, 306. [Google Scholar] [CrossRef] [PubMed]
- Brera, C.; de Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Lanzone, A.; Del Sordo, G.; Buonsenso, D.; Chiaretti, A.; Hardie, L.; et al. Experimental study of deoxynivalenol biomarkers in urine. EFSA Support. Publ. 2015, 12, 818E. [Google Scholar] [CrossRef]
- Voss, K.A.; Smith, G.W.; Haschek, W.M. Fumonisins: Toxicokinetics, mechanism of action and toxicity. Anim. Feed. Sci. Technol. 2007, 137, 299–325. [Google Scholar] [CrossRef]
- Riley, R.T.; Torres, O.; Showker, J.L.; Zitomer, N.C.; Matute, J.; Voss, K.A.; Gelineau-van Waes, J.; Maddox, J.R.; Gregory, S.G.; Ashley-Koch, A.E. The kinetics of urinary fumonisin B1 excretion in humans consuming maize-based diets. Mol. Nutr. Food Res. 2012, 56, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- van der Westhuizen, L.; Shephard, G.S.; Burger, H.M.; Rheeder, J.P.; Gelderblom, W.C.; Wild, C.P.; Gong, Y.Y. Fumonisin B1 as a urinary biomarker of exposure in a maize intervention study among South African subsistence farmers. Cancer Epidemiol. Biomark. Prev. 2011, 20, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Souto, P.; Jager, A.V.; Tonin, F.G.; Petta, T.; Di Gregório, M.C.; Cossalter, A.M.; Pinton, P.; Oswald, I.P.; Rottinghaus, G.E.; Oliveira, C.A.F. Determination of fumonisin B(1) levels in body fluids and hair from piglets fed fumonisin B(1)-contaminated diets. Food Chem. Toxicol. 2017, 108 Pt A, 1–9. [Google Scholar] [CrossRef]
- Scott, P.M. Biomarkers of human exposure to ochratoxin A. Food Addit. Contam. 2005, 22 (Suppl. S1), 99–107. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.; Brereton, P.; MacDonald, S. Assessment of dietary exposure to ochratoxin A in the UK using a duplicate diet approach and analysis of urine and plasma samples. Food Addit. Contam. 2001, 18, 1088–1093. [Google Scholar] [CrossRef]
- Malir, F.; Ostry, V.; Pfohl-Leszkowicz, A.; Malir, J.; Toman, J. Ochratoxin A: 50 Years of Research. Toxins 2016, 8, 191. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, K.; Blaszkewicz, M.; Degen, G.H. Simultaneous analysis of ochratoxin A and its major metabolite ochratoxin alpha in plasma and urine for an advanced biomonitoring of the mycotoxin. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2623–2629. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, G.S.; Knutsen, H.K.; Sandvik, M.; Brantsæter, A.-L. Urinary deoxynivalenol as a biomarker of exposure in different age, life stage and dietary practice population groups. Environ. Int. 2021, 157, 106804. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Degen, G.H. Urinary biomarkers of exposure to the mycoestrogen zearalenone and its modified forms in German adults. Arch. Toxicol. 2018, 92, 2691–2700. [Google Scholar] [CrossRef] [PubMed]
- Mengelers, M.J.B.; van den Brand, A.D.; Zhao, S.; Hoogenveen, R.; Ougier, E. Human Biomonitoring Guidance Values for Deoxynivalenol Derived under the European Human Biomonitoring Initiative (HBM4EU). Toxins 2024, 16, 139. [Google Scholar] [CrossRef] [PubMed]
- Sprong, R.C.; de Wit-Bos, L.; te Biesebeek, J.D.; Alewijn, M.; Lopez, P.; Mengelers, M.J.B. A mycotoxin-dedicated total diet study in the Netherlands in 2013: Part III—Exposure and risk assessment. World Mycotoxin J. 2016, 9, 109–128. [Google Scholar] [CrossRef]
- Mirocha, C.J.; Pathre, S.V.; Robison, T.S. Comparative metabolism of zearalenone and transmission into bovine milk. Food Cosmet. Toxicol. 1981, 19, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Metzler, M.; Pfeiffer, E.; Hildebrand, A.A. Zearalenone and its metabolites as endocrine disrupting chemicals. World Mycotoxin J. 2010, 3, 385–401. [Google Scholar] [CrossRef]
- Warth, B.; Sulyok, M.; Berthiller, F.; Schuhmacher, R.; Krska, R. New insights into the human metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone. Toxicol. Lett. 2013, 220, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Gambacorta, S.; Solfrizzo, H.; Visconti, A.; Powers, S.K.; Cossalter, A.-M.; Pinton, P.; Oswald, I.P. Validation study on urinary biomarkers of exposure for aflatoxin B1, ochratoxin A, fumonisin B1, deoxynivalenol and zearalenone in piglets. World Mycotoxin J. 2013, 6, 299–308. [Google Scholar] [CrossRef]
- Wallin, S.; Gambacorta, L.; Kotova, N.; Warensjö Lemming, E.; Nälsén, C.; Solfrizzo, M.; Olsen, M. Biomonitoring of concurrent mycotoxin exposure among adults in Sweden through urinary multi-biomarker analysis. Food Chem. Toxicol. 2015, 83, 133–139. [Google Scholar] [CrossRef]
- Föllmann, W.; Ali, N.; Blaszkewicz, M.; Degen, G.H. Biomonitoring of Mycotoxins in Urine: Pilot Study in Mill Workers. J. Toxicol. Environ. Health-Part A Curr. Issues 2016, 79, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Franco, L.T.; Petta, T.; Rottinghaus, G.E.; Bordin, K.; Gomes, G.A.; Alvito, P.; Assuncao, R.; Oliveira, C.A.F. Assessment of mycotoxin exposure and risk characterization using occurrence data in foods and urinary biomarkers in Brazil. Food Chem. Toxicol. 2019, 128, 21–34. [Google Scholar] [CrossRef] [PubMed]
- De Santis, B.; Debegnach, F.; Toscano, P.; Crisci, A.; Battilani, P.; Brera, C. Overall exposure of european adult population to mycotoxins by statistically modelled biomonitoring data. Toxins 2021, 13, 695. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Catala, D.M.; Wang, Q.; Rietjens, I. PBK Model-Based Prediction of Intestinal Microbial and Host Metabolism of Zearalenone and Consequences for its Estrogenicity. Mol. Nutr. Food Res. 2021, 65, e2100443. [Google Scholar] [CrossRef] [PubMed]
- Health Council of the Netherlands. Dietary Recommendations for Pregnant Women. 2021. Available online: https://www.healthcouncil.nl/documents/advisory-reports/2021/06/22/dietary-recommendations-for-pregnant-women (accessed on 16 May 2024).
- Khaneghah, A.M.; Fakhri, Y.; Abdi, L.; Coppa, C.F.S.C.; Franco, L.T.; de Oliveira, C.A.F. The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol. 2019, 123, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Mengelers, M.; Zeilmaker, M.; Vidal, A.; De Boevre, M.; De Saeger, S.; Hoogenveen, R. Biomonitoring of Deoxynivalenol and Deoxynivalenol-3-glucoside in Human Volunteers: Renal Excretion Profiles. Toxins 2019, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Studer-Rohr, I.; Schlatter, J.; Dietrich, D.R. Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Arch. Toxicol. 2000, 74, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Studer-Rohr, I. Ochratoxin A in Humans: Exposure, Kinetics and Risk Assessment. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 1995. Available online: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/142115/eth-22417-02.pdf (accessed on 16 May 2024).
- EFSA. Guidance on the use of the benchmark dose approach in risk assessment. EFSA J. 2022, 20, e07584. [Google Scholar] [CrossRef] [PubMed]
Mycotoxin | Geometric Mean 1 | Average ± SD | Median | 95th Percentile | Range | % >LOD/LOQ 6 |
---|---|---|---|---|---|---|
Urine (μg/L) | ||||||
AFM1 | <LOD | <LOD | <LOD | <LOD | - | 0/0 |
total DON 2 | 5.27 | 6.67 ± 5.02 | 4.75 | 18.3 | 1.26–21.6 | 100/100 |
DOM-1 | 0.0419 | 0.0457 ± 0.0237 | 0.0350 | 0.0925 | <LOD-0.130 | 19/0 |
total ZEN 3 | 0.0371 | 0.0458 ± 0.0309 | 0.0413 | 0.106 | 0.01–0.138 | 100/100 |
total α-ZEL 3 | 0.0326 | 0.0397 ± 0.0253 | 0.0379 | 0.0821 | <LOD-0.115 | 75/22 |
total β-ZEL 3 | 0.0218 | 0.0260 ± 0.0156 | 0.0189 | 0.0569 | <LOD-0.058 | 50/11 |
total ZAN 3 | <LOD | <LOD | <LOD | <LOD | - | 0/0 |
∑ZEN 4 | 0.101 | 0.118 ± 0.0677 | 0.105 | 0.239 | 0.0417–0.3115 | - |
Serum (μg/L) | ||||||
FB1 | <LOD | <LOD | <LOD | <LOD | - | 0/0 |
OTA | 0.132 | 0.192 ± 0.360 5 | 0.121 | 0.291 | 0.0586–2.26 | 100/100 |
EDI (μg/kg bw/day) | |
---|---|
Average ± SD | 0.257 ± 0.127 |
Median | 0.233 |
95th percentile | 0.476 |
Range | 0.0695–0.654 |
EDI (μg/kg bw/day) | ||
---|---|---|
Worst-Case (FUE = 0.094) | Best-Case (FUE = 0.368) | |
Average ± SD | 0.0367 ± 0.0184 | 0.00937 ± 0.00469 |
Median | 0.0331 | 0.00846 |
95th percentile | 0.0661 | 0.0169 |
Range | 0.0156–0.0790 | 0.00399–0.0202 |
EDI (ng/kg bw/day) | |
---|---|
Average ± SD | 0.810 ± 1.48 |
Median | 0.550 |
95th percentile | 1.02 |
Range | 0.197–9.36 |
Mycotoxin | Mean Recovery 1 (%) | Repeatability (%) | LOD/LOQ (μg/L) |
---|---|---|---|
AFM1 | 111 | 9.6 | 0.002/0.005 |
DON | 104 | 1.9 | 0.07/0.20 |
DOM-1 | 107 | 2.8 | 0.07/0.20 |
ZEN | 88 | 14.5 | 0.005/0.01 |
α-ZEL | 91 | 12.1 | 0.025/0.05 |
β-ZEL | 102 | 25.7 | 0.025/0.05 |
ZAN | 116 | 15.2 | 0.013/0.025 |
FB1 | 119 | 14.3 | 0.01/0.01 |
OTA | 100 | 4.8 | 0.05/0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKeon, H.P.; Schepens, M.A.A.; van den Brand, A.D.; de Jong, M.H.; van Gelder, M.M.H.J.; Hesselink, M.L.; Sopel, M.M.; Mengelers, M.J.B. Assessment of Mycotoxin Exposure and Associated Risk in Pregnant Dutch Women: The Human Biomonitoring Approach. Toxins 2024, 16, 278. https://doi.org/10.3390/toxins16060278
McKeon HP, Schepens MAA, van den Brand AD, de Jong MH, van Gelder MMHJ, Hesselink ML, Sopel MM, Mengelers MJB. Assessment of Mycotoxin Exposure and Associated Risk in Pregnant Dutch Women: The Human Biomonitoring Approach. Toxins. 2024; 16(6):278. https://doi.org/10.3390/toxins16060278
Chicago/Turabian StyleMcKeon, Hannah P., Marloes A. A. Schepens, Annick D. van den Brand, Marjolein H. de Jong, Marleen M. H. J. van Gelder, Marijn L. Hesselink, Marta M. Sopel, and Marcel J. B. Mengelers. 2024. "Assessment of Mycotoxin Exposure and Associated Risk in Pregnant Dutch Women: The Human Biomonitoring Approach" Toxins 16, no. 6: 278. https://doi.org/10.3390/toxins16060278
APA StyleMcKeon, H. P., Schepens, M. A. A., van den Brand, A. D., de Jong, M. H., van Gelder, M. M. H. J., Hesselink, M. L., Sopel, M. M., & Mengelers, M. J. B. (2024). Assessment of Mycotoxin Exposure and Associated Risk in Pregnant Dutch Women: The Human Biomonitoring Approach. Toxins, 16(6), 278. https://doi.org/10.3390/toxins16060278