Understanding Clinical Effectiveness and Safety Implications of Botulinum Toxin in Children: A Narrative Review of the Literature
Abstract
:1. Introduction
2. Clinical Effectiveness and Safety of Botulinum Toxin in Different Pediatric Therapeutic Indications
2.1. Cerebral Palsy
2.2. Dystonia
2.3. Strabismus
2.4. Pediatric Sialorrhea
2.5. Pediatric Neurogenic Detrusor Overactivity
2.6. Congenital Muscular Torticollis
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Münchau, A.; Bhatia, K.P. Uses of botulinum toxin injection in medicine today. BMJ 2000, 320, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Erbguth, F.J. From poison to remedy: The chequered history of botulinum toxin. J. Neural Transm. 2008, 115, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.-H.; Jin, R. Architecture of the botulinum neurotoxin complex: A molecular machine for protection and delivery. Curr. Opin. Struct. Biol. 2015, 31, 89–95. [Google Scholar] [CrossRef]
- Jin, R.; Rummel, A.; Binz, T.; Brunger, A.T. Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 2006, 444, 1092–1095. [Google Scholar] [CrossRef]
- Chai, Q.; Arndt, J.W.; Dong, M.; Tepp, W.H.; Johnson, E.A.; Chapman, E.R.; Stevens, R.C. Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 2006, 444, 1096–1100. [Google Scholar] [CrossRef]
- Benoit, R.M.; Frey, D.; Hilbert, M.; Kevenaar, J.T.; Wieser, M.M.; Stirnimann, C.U.; McMillan, D.; Ceska, T.; Lebon, F.; Jaussi, R.; et al. Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature 2014, 505, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Rossetto, O.; Benfenati, F.; Poulain, B.; Montecucco, C. Tetanus and botulinum neurotoxins are zinc proteases specific for components of the neuroexocytosis apparatus. Ann. N. Y. Acad. Sci. 1994, 710, 65–75. [Google Scholar] [CrossRef]
- Scott, A.B. Botulinum toxin injection of eye muscles to correct strabismus. Trans. Am. Ophthalmol. Soc. 1981, 79, 734–770. [Google Scholar]
- Botox—Referral|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/botox (accessed on 29 April 2024).
- Chen, S. Clinical uses of botulinum neurotoxins: Current indications, limitations and future developments. Toxins 2012, 4, 913–939. [Google Scholar] [CrossRef]
- Brin, M.F.; James, C.; Maltman, J. Botulinum toxin type A products are not interchangeable: A review of the evidence. Biol. Targets Ther. 2014, 8, 227–241. [Google Scholar] [CrossRef]
- Ferrari, A.; Manca, M.; Tugnoli, V.; Alberto, L. Pharmacological differences and clinical implications of various botulinum toxin preparations: A critical appraisal. Funct. Neurol. 2018, 33, 7–18. [Google Scholar] [CrossRef] [PubMed]
- Oleszek, J.L.; Kanallakan, A.S.; Powell, A.J. Out of the spasticity box: Off-label uses of botulinum toxin in children. J. Pediatr. Rehabil. Med. 2020, 13, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Molenaers, G.; Eyssen, M.; Desloovere, K.; Jonkers, I.; Cock, P.D. A multilevel approach to botulinum toxin type A treatment of the (ilio)psoas in spasticity in cerebral palsy. Eur. J. Neurol. 1999, 6, s59–s62. [Google Scholar] [CrossRef]
- Chung, C.-Y.; Chen, C.-L.; Wong, A.M.-K. Pharmacotherapy of spasticity in children with cerebral palsy. J. Formos. Med. Assoc. 2011, 110, 215–222. [Google Scholar] [CrossRef]
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.-P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Primer 2016, 2, 15082. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007, 109, 8–14. [Google Scholar]
- McIntyre, S.; Morgan, C.; Walker, K.; Novak, I. Cerebral palsy—Don’t delay. Dev. Disabil. Res. Rev. 2011, 17, 114–129. [Google Scholar] [CrossRef]
- Michael-Asalu, A.; Taylor, G.; Campbell, H.; Lelea, L.-L.; Kirby, R.S. Cerebral Palsy: Diagnosis, Epidemiology, Genetics, and Clinical Update. Adv. Pediatr. 2019, 66, 189–208. [Google Scholar] [CrossRef]
- Patel, D.R.; Neelakantan, M.; Pandher, K.; Merrick, J. Cerebral palsy in children: A clinical overview. Transl. Pediatr. 2020, 9, S125–S135. [Google Scholar] [CrossRef]
- Stavsky, M.; Mor, O.; Mastrolia, S.A.; Greenbaum, S.; Than, N.G.; Erez, O. Cerebral Palsy-Trends in Epidemiology and Recent Development in Prenatal Mechanisms of Disease, Treatment, and Prevention. Front. Pediatr. 2017, 5, 21. [Google Scholar] [CrossRef]
- Donald, K.A.; Samia, P.; Kakooza-Mwesige, A.; Bearden, D. Pediatric cerebral palsy in Africa: A systematic review. Semin. Pediatr. Neurol. 2014, 21, 30–35. [Google Scholar] [CrossRef]
- Khandaker, G.; Muhit, M.; Karim, T.; Smithers-Sheedy, H.; Novak, I.; Jones, C.; Badawi, N. Epidemiology of cerebral palsy in Bangladesh: A population-based surveillance study. Dev. Med. Child Neurol. 2019, 61, 601–609. [Google Scholar] [CrossRef]
- Kakooza-Mwesige, A.; Andrews, C.; Peterson, S.; Wabwire Mangen, F.; Eliasson, A.C.; Forssberg, H. Prevalence of cerebral palsy in Uganda: A population-based study. Lancet Glob. Health 2017, 5, e1275–e1282. [Google Scholar] [CrossRef]
- Hareb, F.; Bertoncelli, C.M.; Rosello, O.; Rampal, V.; Solla, F. Botulinum Toxin in Children with Cerebral Palsy: An Update. Neuropediatrics 2020, 51, 1–5. [Google Scholar] [CrossRef]
- Meunier, F.A.; Schiavo, G.; Molgó, J. Botulinum neurotoxins: From paralysis to recovery of functional neuromuscular transmission. J. Physiol. Paris 2002, 96, 105–113. [Google Scholar] [CrossRef]
- Heinen, F.; Kanovský, P.; Schroeder, A.S.; Chambers, H.G.; Dabrowski, E.; Geister, T.L.; Hanschmann, A.; Martinez-Torres, F.J.; Pulte, I.; Banach, M.; et al. IncobotulinumtoxinA for the treatment of lower-limb spasticity in children and adolescents with cerebral palsy: A phase 3 study. J. Pediatr. Rehabil. Med. 2021, 14, 183–197. [Google Scholar] [CrossRef]
- Heinen, F.; Desloovere, K.; Schroeder, A.S.; Berweck, S.; Borggraefe, I.; van Campenhout, A.; Andersen, G.L.; Aydin, R.; Becher, J.G.; Bernert, G.; et al. The updated European Consensus 2009 on the use of Botulinum toxin for children with cerebral palsy. Eur. J. Paediatr. Neurol. 2010, 14, 45–66. [Google Scholar] [CrossRef]
- Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society; Delgado, M.R.; Hirtz, D.; Aisen, M.; Ashwal, S.; Fehlings, D.L.; McLaughlin, J.; Morrison, L.A.; Shrader, M.W.; Tilton, A.; et al. Practice parameter: Pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology 2010, 74, 336–343. [Google Scholar] [CrossRef]
- Koman, L.A.; Mooney, J.F.; Smith, B.P.; Goodman, A.; Mulvaney, T. Management of spasticity in cerebral palsy with botulinum-A toxin: Report of a preliminary, randomized, double-blind trial. J. Pediatr. Orthop. 1994, 14, 299–303. [Google Scholar] [CrossRef]
- Lidman, G.; Nachemson, A.; Peny-Dahlstrand, M.; Himmelmann, K. Botulinum toxin A injections and occupational therapy in children with unilateral spastic cerebral palsy: A randomized controlled trial. Dev. Med. Child Neurol. 2015, 57, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Olesch, C.A.; Greaves, S.; Imms, C.; Reid, S.M.; Graham, H.K. Repeat botulinum toxin-A injections in the upper limb of children with hemiplegia: A randomized controlled trial. Dev. Med. Child Neurol. 2010, 52, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Copeland, L.; Edwards, P.; Thorley, M.; Donaghey, S.; Gascoigne-Pees, L.; Kentish, M.; Cert, G.; Lindsley, J.; McLennan, K.; Sakzewski, L.; et al. Botulinum toxin A for nonambulatory children with cerebral palsy: A double blind randomized controlled trial. J. Pediatr. 2014, 165, 140–146.e4. [Google Scholar] [CrossRef]
- Carranza-Del Río, J.; Dursun, N.; Cekmece, C.; Bonikowski, M.; Pyrzanowska, W.; Dabrowski, E.; Tilton, A.; Oleszek, J.; Volteau, M.; Page, S.; et al. Goal Attainment after Treatment with Abobotulinumtoxina and a Tailored Home Therapy Programme in Children with Upper Limb Spasticity: Descriptive, Exploratory Analysis of a Large Randomized, Controlled Study. J. Rehabil. Med. 2022, 54, jrm00349. [Google Scholar] [CrossRef]
- Delgado, M.R.; Tilton, A.; Russman, B.; Benavides, O.; Bonikowski, M.; Carranza, J.; Dabrowski, E.; Dursun, N.; Gormley, M.; Jozwiak, M.; et al. AbobotulinumtoxinA for Equinus Foot Deformity in Cerebral Palsy: A Randomized Controlled Trial. Pediatrics 2016, 137, e20152830. [Google Scholar] [CrossRef]
- Dabrowski, E.; Chambers, H.G.; Gaebler-Spira, D.; Banach, M.; Kaňovský, P.; Dersch, H.; Althaus, M.; Geister, T.L.; Heinen, F. IncobotulinumtoxinA Efficacy/Safety in Upper-Limb Spasticity in Pediatric Cerebral Palsy: Randomized Controlled Trial. Pediatr. Neurol. 2021, 123, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, R.; McCusker, E.; Gormley, M.; Fehlings, D.; Alter, K.E.; Greaves, S.; Liu, C.; Brin, M.F. Efficacy and safety of onabotulinumtoxinA with standardized occupational therapy for treatment of pediatric upper limb spasticity: Phase III placebo-controlled randomized trial. NeuroRehabilitation 2021, 49, 469–479. [Google Scholar] [CrossRef]
- Rameckers, E.a.A.; Speth, L.a.W.M.; Duysens, J.; Vles, J.S.H.; Smits-Engelsman, B.C.M. Botulinum toxin-a in children with congenital spastic hemiplegia does not improve upper extremity motor-related function over rehabilitation alone: A randomized controlled trial. Neurorehabil. Neural Repair 2009, 23, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Koman, L.A.; Mooney, J.F., 3rd; Smith, B.P.; Walker, F.; Leon, J.M. Botulinum toxin type A neuromuscular blockade in the treatment of lower extremity spasticity in cerebral palsy: A randomized, double-blind, placebo-controlled trial. BOTOX Study Group. J. Pediatr. Orthop. 2000, 20, 108. [Google Scholar] [CrossRef] [PubMed]
- Sutherland; Kaufman, K.; Wyatt, M.; Chambers, C.; Mubarak, S. Double-blind study of botulinum A toxin injections into the gastrocnemius muscle in patients with cerebral palsy. Gait Posture 1999, 10, 1–9. [Google Scholar] [CrossRef]
- Ubhi, T.; Bhakta, B.; Ives, H.; Allgar, V.; Roussounis, S. Randomised double blind placebo controlled trial of the effect of botulinum toxin on walking in cerebral palsy. Arch. Dis. Child. 2000, 83, 481–487. [Google Scholar] [CrossRef]
- Baker, R.; Jasinski, M.; Maciag-Tymecka, I.; Michalowska-Mrozek, J.; Bonikowski, M.; Carr, L.; MacLean, J.; Lin, J.; Lynch, B.; Theologis, T.; et al. Botulinum toxin treatment of spasticity in diplegic cerebral palsy: A randomized, double-blind, placebo-controlled, dose-ranging study. Dev. Med. Child Neurol. 2002, 44, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Wissel, J.; Heinen, F.; Schenkel, A.; Doll, B.; Ebersbach, G.; Müller, J.; Poewe, W. Botulinum toxin A in the management of spastic gait disorders in children and young adults with cerebral palsy: A randomized, double-blind study of “high-dose” versus “low-dose” treatment. Neuropediatrics 1999, 30, 120–124. [Google Scholar] [CrossRef]
- Polak, F.; Morton, R.; Ward, C.; Wallace, W.A.; Doderlein, L.; Siebel, A. Double-blind comparison study of two doses of botulinum toxin A injected into calf muscles in children with hemiplegic cerebral palsy. Dev. Med. Child Neurol. 2002, 44, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Hastings-Ison, T.; Blackburn, C.; Rawicki, B.; Fahey, M.; Simpson, P.; Baker, R.; Graham, K. Injection frequency of botulinum toxin A for spastic equinus: A randomized clinical trial. Dev. Med. Child Neurol. 2016, 58, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Kanovský, P.; Bares, M.; Severa, S.; Richardson, A.; Dysport Paediatric Limb Spasticity Study Group. Long-term efficacy and tolerability of 4-monthly versus yearly botulinum toxin type A treatment for lower-limb spasticity in children with cerebral palsy. Dev. Med. Child Neurol. 2009, 51, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, R.; Kim, H.; Meilahn, J.; Chambers, H.G.; Racette, B.A.; Bonikowski, M.; Park, E.S.; McCusker, E.; Liu, C.; Brin, M.F. Efficacy and safety of onabotulinumtoxinA with standardized physiotherapy for the treatment of pediatric lower limb spasticity: A randomized, placebo-controlled, phase III clinical trial. NeuroRehabilitation 2022, 50, 33–46. [Google Scholar] [CrossRef]
- Delgado, M.R.; Bonikowski, M.; Carranza, J.; Dabrowski, E.; Matthews, D.; Russman, B.; Tilton, A.; Velez, J.C.; Grandoulier, A.-S.; Picaut, P. Safety and Efficacy of Repeat Open-Label AbobotulinumtoxinA Treatment in Pediatric Cerebral Palsy. J. Child Neurol. 2017, 32, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.P.; Ade-Hall, R.A.; Smith, C.T.; Rosenbloom, L.; Walsh, H.P.J.; Mohamed, K.; Williamson, P.R. Two-year placebo-controlled trial of botulinum toxin A for leg spasticity in cerebral palsy. Neurology 2008, 71, 122–128. [Google Scholar] [CrossRef]
- Yang, H.; Chen, S.; Shen, J.; Chen, Y.; Lai, M.; Chen, L.; Fang, S. Safety and Efficacy of Botulinum Toxin Type A in Children with Spastic Cerebral Palsy Aged <2 Years: A Systematic Review. J. Child Neurol. 2023, 38, 454–465. [Google Scholar] [CrossRef]
- Tedroff, K.; Löwing, K.; Haglund-Akerlind, Y.; Gutierrez-Farewik, E.; Forssberg, H. Botulinum toxin A treatment in toddlers with cerebral palsy. Acta Paediatr. 2010, 99, 1156–1162. [Google Scholar] [CrossRef]
- Wang, J. Experience of botulinum toxin A in the treatment of children with cerebral palsy under 18 months. Mod. Chin. Doct. 2010, 48, 166–168. [Google Scholar]
- Bonfert, M.; Heinen, F.; Kaňovský, P.; Schroeder, A.S.; Chambers, H.G.; Dabrowski, E.; Geister, T.L.; Hanschmann, A.; Althaus, M.; Banach, M.; et al. Spasticity-related pain in children/adolescents with cerebral palsy. Part 2: IncobotulinumtoxinA efficacy results from a pooled analysis. J. Pediatr. Rehabil. Med. 2023, 16, 83–98. [Google Scholar] [CrossRef] [PubMed]
- Pavone, V.; Testa, G.; Restivo, D.A.; Cannavò, L.; Condorelli, G.; Portinaro, N.M.; Sessa, G. Botulinum Toxin Treatment for Limb Spasticity in Childhood Cerebral Palsy. Front. Pharmacol. 2016, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Strobl, W.; Theologis, T.; Brunner, R.; Kocer, S.; Viehweger, E.; Pascual-Pascual, I.; Placzek, R. Best Clinical Practice in Botulinum Toxin Treatment for Children with Cerebral Palsy. Toxins 2015, 7, 1629–1648. [Google Scholar] [CrossRef] [PubMed]
- Kuehn, B.M. FDA requires black box warnings on labeling for botulinum toxin products. JAMA 2009, 301, 2316. [Google Scholar] [CrossRef]
- Paget, S.P.; Swinney, C.M.; Burton, K.L.O.; Bau, K.; O’Flaherty, S.J. Systemic adverse events after botulinum neurotoxin A injections in children with cerebral palsy. Dev. Med. Child Neurol. 2018, 60, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, S.; Spina, S.; Picelli, A.; Baricich, A.; Francisco, G.E.; Molteni, F.; Wissel, J.; Santamato, A. The Role of Botulinum Toxin Type-A in Spasticity: Research Trends from a Bibliometric Analysis. Toxins 2024, 16, 184. [Google Scholar] [CrossRef]
- Kolaski, K.; Romeiser Logan, L.; Goss, K.D.; Butler, C. Quality appraisal of systematic reviews of interventions for children with cerebral palsy reveals critically low confidence. Dev. Med. Child Neurol. 2021, 63, 1316–1326. [Google Scholar] [CrossRef]
- Jinnah, H.A.; Factor, S.A. Diagnosis and treatment of dystonia. Neurol. Clin. 2015, 33, 77–100. [Google Scholar] [CrossRef]
- Albanese, A.; Bhatia, K.; Bressman, S.B.; Delong, M.R.; Fahn, S.; Fung, V.S.C.; Hallett, M.; Jankovic, J.; Jinnah, H.A.; Klein, C.; et al. Phenomenology and classification of dystonia: A consensus update. Mov. Disord. 2013, 28, 863–873. [Google Scholar] [CrossRef] [PubMed]
- Grütz, K.; Klein, C. Dystonia updates: Definition, nomenclature, clinical classification, and etiology. J. Neural Transm. 2021, 128, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.S.; Nguyen, M.X.; Hull, M.; van der Heijden, M.E.; Nguyen, K.; Thomas, S.P.; Sillitoe, R.V. Function and dysfunction of the dystonia network: An exploration of neural circuits that underlie the acquired and isolated dystonias. Dystonia 2023, 2, 11805. [Google Scholar] [CrossRef] [PubMed]
- Abu-Hadid, O.; Jimenez-Shahed, J. An overview of the pharmacotherapeutics for dystonia: Advances over the past decade. Expert Opin. Pharmacother. 2022, 23, 1927–1940. [Google Scholar] [CrossRef] [PubMed]
- Quartarone, A.; Hallett, M. Emerging concepts in the physiological basis of dystonia. Mov. Disord. 2013, 28, 958–967. [Google Scholar] [CrossRef] [PubMed]
- Stephen, C.D. The Dystonias. Continuum 2022, 28, 1435–1475. [Google Scholar] [CrossRef] [PubMed]
- Bledsoe, I.O.; Viser, A.C.; San Luciano, M. Treatment of Dystonia: Medications, Neurotoxins, Neuromodulation, and Rehabilitation. Neurotherapeutics 2020, 17, 1622–1644. [Google Scholar] [CrossRef] [PubMed]
- Wagle Shukla, A. Basis of movement control in dystonia and why botulinum toxin should influence it? Toxicon 2024, 237, 107251. [Google Scholar] [CrossRef]
- Choudhury, S.; Baker, M.R.; Chatterjee, S.; Kumar, H. Botulinum Toxin: An Update on Pharmacology and Newer Products in Development. Toxins 2021, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Wagle Shukla, A.; Malaty, I.A. Botulinum Toxin Therapy for Parkinson’s Disease. Semin. Neurol. 2017, 37, 193–204. [Google Scholar] [CrossRef]
- Ramirez-Castaneda, J.; Jankovic, J.; Comella, C.; Dashtipour, K.; Fernandez, H.H.; Mari, Z. Diffusion, spread, and migration of botulinum toxin. Mov. Disord. 2013, 28, 1775–1783. [Google Scholar] [CrossRef] [PubMed]
- Dressler, D.; Adib Saberi, F.; Rosales, R.L. Botulinum toxin therapy of dystonia. J. Neural Transm. 2021, 128, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Brin, M.F.; Lew, M.F.; Adler, C.H.; Comella, C.L.; Factor, S.A.; Jankovic, J.; O’Brien, C.; Murray, J.J.; Wallace, J.D.; Willmer-Hulme, A.; et al. Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-resistant cervical dystonia. Neurology 1999, 53, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Schwerin, A.; Berweck, S.; Fietzek, U.M.; Heinen, F. Botulinum toxin B treatment in children with spastic movement disorders: A pilot study. Pediatr. Neurol. 2004, 31, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Sanger, T.D.; Kukke, S.N.; Sherman-Levine, S. Botulinum toxin type B improves the speed of reaching in children with cerebral palsy and arm dystonia: An open-label, dose-escalation pilot study. J. Child Neurol. 2007, 22, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Moawad, E.M.I.; Abdallah, E.A.A. Botulinum Toxin in Pediatric Neurology: Switching Lanes from Death to Life. Glob. Pediatr. Health 2015, 2, 2333794X15590149. [Google Scholar] [CrossRef]
- Dutton, J.J.; Buckley, E.G. Long-term results and complications of botulinum a toxin in the treatment of blepharospasm. Ophthalmology 1988, 95, 1529–1534. [Google Scholar] [CrossRef]
- Truong, D.D.; Stenner, A.; Reichel, G. Current clinical applications of botulinum toxin. Curr. Pharm. Des. 2009, 15, 3671–3680. [Google Scholar] [CrossRef]
- Brin, M.F.; Blitzer, A.; Stewart, C. Laryngeal dystonia (spasmodic dysphonia): Observations of 901 patients and treatment with botulinum toxin. Adv. Neurol. 1998, 78, 237–252. [Google Scholar]
- Donnelly, U.M.; Stewart, N.M.; Hollinger, M. Prevalence and outcomes of childhood visual disorders. Ophthalmic Epidemiol. 2005, 12, 243–250. [Google Scholar] [CrossRef]
- Herron, M.S.; Wang, L.; von Bartheld, C.S. Prevalence and Types of Strabismus in Cerebral Palsy: A Global and Historical Perspective Based on a Systematic Review and Meta-Analysis. Ophthalmic Epidemiol. 2024, 1–18. [Google Scholar] [CrossRef]
- Rowe, F.J.; Noonan, C.P. Botulinum toxin for the treatment of strabismus. Cochrane Database Syst. Rev. 2017, 2017, CD006499. [Google Scholar] [CrossRef]
- Food and Drug Administation. FDA Drug Safety Communication: FDA Review Results in New Warnings about Using General Anesthetics and Sedation Drugs in Young Children and Pregnant Women. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-review-results-new-warnings-about-using-general-anesthetics-and#:~:text=%5B%2012%2D14%2D2016%20%5D,the%20development%20of%20children's%20brains (accessed on 28 April 2024).
- Mayet, I.; Ally, N.; Alli, H.D.; Tikly, M.; Williams, S. Botulinum neurotoxin injections in essential infantile esotropia-a comparative study with surgery in large-angle deviations. Eye 2021, 35, 3071–3076. [Google Scholar] [CrossRef]
- Tejedor, J.; Rodríguez, J.M. Retreatment of children after surgery for acquired esotropia: Reoperation versus botulinum injection. Br. J. Ophthalmol. 1998, 82, 110–114. [Google Scholar] [CrossRef]
- Tejedor, J.; Rodríguez, J.M. Early retreatment of infantile esotropia: Comparison of reoperation and botulinum toxin. Br. J. Ophthalmol. 1999, 83, 783–787. [Google Scholar] [CrossRef]
- Issaho, D.C.; de Souza Carvalho, F.R.; Tabuse, M.K.U.; Carrijo-Carvalho, L.C.; de Freitas, D. The Use of Botulinum Toxin to Treat Infantile Esotropia: A Systematic Review with Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5468–5476. [Google Scholar] [CrossRef]
- Wan, M.J.; Mantagos, I.S.; Shah, A.S.; Kazlas, M.; Hunter, D.G. Comparison of Botulinum Toxin with Surgery for the Treatment of Acute-Onset Comitant Esotropia in Children. Am. J. Ophthalmol. 2017, 176, 33–39. [Google Scholar] [CrossRef]
- Mutaf, C.; Ocak, B.; Inal, A.; Hazar, L.; Gokyigit, B. Treatment of Infantile Esotropia—Comparison between Botulinum Toxin A and Bilateral Medial Rectus Recession. Beyoglu Eye J. 2024, 9, 20–25. [Google Scholar] [CrossRef]
- Bort-Martí, A.R.; Rowe, F.J.; Ruiz Sifre, L.; Ng, S.M.; Bort-Martí, S.; Ruiz Garcia, V. Botulinum toxin for the treatment of strabismus. Cochrane Database Syst. Rev. 2023, 3, CD006499. [Google Scholar] [CrossRef]
- Scully, C.; Limeres, J.; Gleeson, M.; Tomás, I.; Diz, P. Drooling. J. Oral Pathol. Med. 2009, 38, 321–327. [Google Scholar] [CrossRef]
- Dias, B.L.S.; Fernandes, A.R.; Maia Filho, H. de S. Sialorrhea in children with cerebral palsy. J. Pediatr. 2016, 92, 549–558. [Google Scholar] [CrossRef]
- Van der Burg, J.J.W.; Jongerius, P.H.; Van Hulst, K.; Van Limbeek, J.; Rotteveel, J.J. Drooling in children with cerebral palsy: Effect of salivary flow reduction on daily life and care. Dev. Med. Child Neurol. 2006, 48, 103–107. [Google Scholar] [CrossRef]
- Hockstein, N.G.; Samadi, D.S.; Gendron, K.; Handler, S.D. Sialorrhea: A management challenge. Am. Fam. Physician 2004, 69, 2628–2634. [Google Scholar]
- McGeachan, A.J.; Mcdermott, C.J. Management of oral secretions in neurological disease. Pract. Neurol. 2017, 17, 96–103. [Google Scholar] [CrossRef]
- Tan, E.-K. Botulinum toxin treatment of sialorrhea: Comparing different therapeutic preparations. Eur. J. Neurol. 2006, 13 (Suppl. S1), 60–64. [Google Scholar] [CrossRef]
- Sillanpää, S.; Sipilä, M.; Numminen, J.; Rautiainen, M. The Experience of Treating Drooling with Repeated Botulinum Toxin Injections. ORL J. Oto-Rhino-Laryngol. Its Relat. Spec. 2015, 77, 333–338. [Google Scholar] [CrossRef]
- Mazlan, M.; Rajasegaran, S.; Engkasan, J.P.; Nawawi, O.; Goh, K.-J.; Freddy, S.J. A Double-Blind Randomized Controlled Trial Investigating the Most Efficacious Dose of Botulinum Toxin-A for Sialorrhea Treatment in Asian Adults with Neurological Diseases. Toxins 2015, 7, 3758–3770. [Google Scholar] [CrossRef]
- Weikamp, J.G.; Schinagl, D.A.X.; Verstappen, C.C.P.; Schelhaas, H.J.; de Swart, B.J.M.; Kalf, J.G. Botulinum toxin-A injections vs radiotherapy for drooling in ALS. Acta Neurol. Scand. 2016, 134, 224–231. [Google Scholar] [CrossRef]
- Lagalla, G.; Millevolte, M.; Capecci, M.; Provinciali, L.; Ceravolo, M.G. Long-lasting benefits of botulinum toxin type B in Parkinson’s disease-related drooling. J. Neurol. 2009, 256, 563–567. [Google Scholar] [CrossRef]
- Food and Drug Administration. Xeomin (Incobotulinumtoxin A). Highlights of Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125360s073lbl.pdf (accessed on 28 April 2024).
- Oad, H.; Maltezeanu, A.; da Silva, S.D.; Daniel, S.J. Onabotulinum Toxin A (BoNT-A) for Drooling in Children: A Systematic Review and Meta-Analysis. Laryngoscope 2024, 134, 3012–3017. [Google Scholar] [CrossRef]
- Yu, Y.-C.; Chung, C.-C.; Tu, Y.-K.; Hong, C.-T.; Chen, K.-H.; Tam, K.-W.; Kuan, Y.-C. Efficacy and safety of botulinum toxin for treating sialorrhea: A systematic review and meta-analysis. Eur. J. Neurol. 2022, 29, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Heikel, T.; Patel, S.; Ziai, K.; Shah, S.J.; Lighthall, J.G. Botulinum Toxin A in the Management of Pediatric Sialorrhea: A Systematic Review. Ann. Otol. Rhinol. Laryngol. 2023, 132, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.-A.N.; Shih, M.C.; Lambert, E.M. Comparing botulinum toxin and 4-duct ligation for Sialorrhea in children—A systematic review. Am. J. Otolaryngol. 2024, 45, 104119. [Google Scholar] [CrossRef] [PubMed]
- Hung, S.-A.; Liao, C.-L.; Lin, W.-P.; Hsu, J.C.; Guo, Y.-H.; Lin, Y.-C. Botulinum Toxin Injections for Treatment of Drooling in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. Children 2021, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.S.; Faria, L.V.; Almeida, R.C.; Medeiros, Y.L.; Guimarães, L.D.A. Effectiveness and safety of botulinum toxin in comparison with surgery for drooling in paediatric patients with neurological disorders: A systematic review. Br. J. Oral Maxillofac. Surg. 2022, 60, e691–e701. [Google Scholar] [CrossRef] [PubMed]
- Nordgarden, H.; Østerhus, I.; Møystad, A.; Asten, P.; Johnsen, U.L.-H.; Storhaug, K.; Loven, J.Ø. Drooling: Are botulinum toxin injections into the major salivary glands a good treatment option? J. Child Neurol. 2012, 27, 458–464. [Google Scholar] [CrossRef]
- Sales, H.F.; Cerqueira, C.; Vaz, D.; Medeiros-Rios, D.; Armani-Franceschi, G.; Lucena, P.H.; Sternberg, C.; Nóbrega, A.C.; Luz, C.; Fonseca, D.; et al. The impact of botulinum toxin type A in the treatment of drooling in children with cerebral palsy secondary to Congenital Zika Syndrome: An observational study. Neurol. Res. 2021, 43, 54–60. [Google Scholar] [CrossRef]
- Tiigimäe-Saar, J.; Leibur, E.; Kolk, A.; Talvik, I.; Tamme, T. Use of botulinum neurotoxin A in uncontrolled salivation in children with cerebral palsy: A pilot study. Int. J. Oral Maxillofac. Surg. 2012, 41, 1540–1545. [Google Scholar] [CrossRef]
- Wilken, B.; Aslami, B.; Backes, H. Successful treatment of drooling in children with neurological disorders with botulinum toxin A or B. Neuropediatrics 2008, 39, 200–204. [Google Scholar] [CrossRef]
- Rodwell, K.; Edwards, P.; Ware, R.S.; Boyd, R. Salivary gland botulinum toxin injections for drooling in children with cerebral palsy and neurodevelopmental disability: A systematic review. Dev. Med. Child Neurol. 2012, 54, 977–987. [Google Scholar] [CrossRef]
- Gerlinger, I.; Szalai, G.; Hollódy, K.; Németh, A. Ultrasound-guided, intraglandular injection of botulinum toxin A in children suffering from excessive salivation. J. Laryngol. Otol. 2007, 121, 947–951. [Google Scholar] [CrossRef]
- Jongerius, P.H.; Joosten, F.; Hoogen, F.J.A.; Gabreels, F.J.M.; Rotteveel, J.J. The treatment of drooling by ultrasound-guided intraglandular injections of botulinum toxin type A into the salivary glands. Laryngoscope 2003, 113, 107–111. [Google Scholar] [CrossRef]
- Hassin-Baer, S.; Scheuer, E.; Buchman, A.S.; Jacobson, I.; Ben-Zeev, B. Botulinum toxin injections for children with excessive drooling. J. Child Neurol. 2005, 20, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Nitti, V.; Haag-Molkenteller, C.; Kennelly, M.; Chancellor, M.; Jenkins, B.; Schurch, B. Treatment of neurogenic detrusor overactivity and overactive bladder with Botox (onabotulinumtoxinA): Development, insights, and impact. Medicine 2023, 102, e32377. [Google Scholar] [CrossRef]
- Peard, L.M.; Pope, J.C.; Dmochowski, R. An evaluation of onobotulinumtoxinA as a therapeutic option for pediatric neurogenic detrusor overactivity. Expert Rev. Neurother. 2023, 23, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Haab, F. Chapter 1: The conditions of neurogenic detrusor overactivity and overactive bladder. Neurourol. Urodyn. 2014, 33 (Suppl. S3), S2–S5. [Google Scholar] [CrossRef]
- Food and Drug Administration. Botox (Onabotulinumtoxin A). Highlights of Prescribing Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/103000s5232lbl.pdf (accessed on 28 April 2024).
- Hassouna, T.; Gleason, J.M.; Lorenzo, A.J. Botulinum toxin A’s expanding role in the management of pediatric lower urinary tract dysfunction. Curr. Urol. Rep. 2014, 15, 426. [Google Scholar] [CrossRef] [PubMed]
- Marte, A.; Borrelli, M.; Sabatino, M.D.; Balzo, B.D.; Prezioso, M.; Pintozzi, L.; Nino, F.; Parmeggiani, P. Effectiveness of botulinum-A toxin for the treatment of refractory overactive bladder in children. Eur. J. Pediatr. Surg. 2010, 20, 153–157. [Google Scholar] [CrossRef]
- Scheepe, J.R.; Blok, B.F.M.; ’t Hoen, L.A. Applicability of botulinum toxin type A in paediatric neurogenic bladder management. Curr. Opin. Urol. 2017, 27, 14–19. [Google Scholar] [CrossRef]
- Wu, S.-Y.; Chang, S.-J.; Yang, S.S.-D.; Hsu, C.-K. Botulinum Toxin Injection for Medically Refractory Neurogenic Bladder in Children: A Systematic Review. Toxins 2021, 13, 447. [Google Scholar] [CrossRef]
- Austin, P.F.; Franco, I.; Dobremez, E.; Kroll, P.; Titanji, W.; Geib, T.; Jenkins, B.; Hoebeke, P.B. OnabotulinumtoxinA for the treatment of neurogenic detrusor overactivity in children. Neurourol. Urodyn. 2021, 40, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Franco, I.; Hoebeke, P.B.; Dobremez, E.; Titanji, W.; Geib, T.; Jenkins, B.; Yushmanova, I.; Austin, P.F. Long-term Safety and Tolerability of Repeated Treatments with OnabotulinumtoxinA in Children with Neurogenic Detrusor Overactivity. J. Urol. 2023, 209, 774–784. [Google Scholar] [CrossRef] [PubMed]
- Płomiński, J.; Olesińska, J.; Kamelska-Sadowska, A.M.; Nowakowski, J.J.; Zaborowska-Sapeta, K. Congenital Muscular Torticollis-Current Understanding and Perinatal Risk Factors: A Retrospective Analysis. Healthcare 2023, 12, 13. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.L.; Coulter, C.; Sargent, B. Physical Therapy Management of Congenital Muscular Torticollis: A 2018 Evidence-Based Clinical Practice Guideline from the APTA Academy of Pediatric Physical Therapy. Pediatr. Phys. Ther. 2018, 30, 240–290. [Google Scholar] [CrossRef]
- Sargent, B.; Kaplan, S.L.; Coulter, C.; Baker, C. Congenital Muscular Torticollis: Bridging the Gap between Research and Clinical Practice. Pediatrics 2019, 144, e20190582. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Ahn, H.S.; Yim, S.-Y. Effectiveness of Surgical Treatment for Neglected Congenital Muscular Torticollis: A Systematic Review and Meta-Analysis. Plast. Reconstr. Surg. 2015, 136, 67e–77e. [Google Scholar] [CrossRef]
- Joyce, M.B.; de Chalain, T.M.B. Treatment of recalcitrant idiopathic muscular torticollis in infants with botulinum toxin type a. J. Craniofac. Surg. 2005, 16, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Cui, Z.; Tang, G.; Deng, H.; Xiong, Z.; Han, S.; Tang, S. The Effectiveness and Safety of Botulinum Toxin Injections for the Treatment of Congenital Muscular Torticollis. J. Craniofac. Surg. 2020, 31, 2160–2166. [Google Scholar] [CrossRef] [PubMed]
- Limpaphayom, N.; Kohan, E.; Huser, A.; Michalska-Flynn, M.; Stewart, S.; Dobbs, M.B. Use of Combined Botulinum Toxin and Physical Therapy for Treatment Resistant Congenital Muscular Torticollis. J. Pediatr. Orthop. 2019, 39, e343–e348. [Google Scholar] [CrossRef]
- Oleszek, J.L.; Chang, N.; Apkon, S.D.; Wilson, P.E. Botulinum toxin type a in the treatment of children with congenital muscular torticollis. Am. J. Phys. Med. Rehabil. 2005, 84, 813–816. [Google Scholar] [CrossRef]
- Jefferson, R.J. Botulinum toxin in the management of cerebral palsy. Dev. Med. Child Neurol. 2004, 46, 491–499. [Google Scholar] [CrossRef]
- Bjornson, K.; Hays, R.; Graubert, C.; Price, R.; Won, F.; McLaughlin, J.F.; Cohen, M. Botulinum toxin for spasticity in children with cerebral palsy: A comprehensive evaluation. Pediatrics 2007, 120, 49–58. [Google Scholar] [CrossRef]
- Sapienza, M.; Kapoor, R.; Alberghina, F.; Maheshwari, R.; McCracken, K.L.; Canavese, F.; Johari, A.N. Adverse effects following botulinum toxin A injections in children with cerebral palsy. J. Pediatr. Orthop. B 2023, 32, 435–451. [Google Scholar] [CrossRef]
- Bellows, S.; Jankovic, J. Immunogenicity Associated with Botulinum Toxin Treatment. Toxins 2019, 11, 491. [Google Scholar] [CrossRef]
- Henschel, A.D.; Rothenberger, L.G.; Boos, J. Randomized clinical trials in children—Ethical and methodological issues. Curr. Pharm. Des. 2010, 16, 2407–2415. [Google Scholar] [CrossRef]
- Beasant, L.; Brigden, A.; Parslow, R.M.; Apperley, H.; Keep, T.; Northam, A.; Wray, C.; King, H.; Langdon, R.; Mills, N.; et al. Treatment preference and recruitment to pediatric RCTs: A systematic review. Contemp. Clin. Trials Commun. 2019, 14, 100335. [Google Scholar] [CrossRef]
- Coelho, D.R.A.; Gersten, M.; Jimenez, A.S.; Fregni, F.; Cassano, P.; Vieira, W.F. Treating neuropathic pain and comorbid affective disorders: Preclinical and clinical evidence. Pain Pract. 2024. [Google Scholar] [CrossRef]
- Rasetti-Escargueil, C.; Popoff, M.R. Antibodies and Vaccines against Botulinum Toxins: Available Measures and Novel Approaches. Toxins 2019, 11, 528. [Google Scholar] [CrossRef]
- Duchesne de Lamotte, J.; Perrier, A.; Martinat, C.; Nicoleau, C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int. J. Mol. Sci. 2021, 22, 7524. [Google Scholar] [CrossRef]
Therapeutic Indication | Available Evidence | Main Study Limitations | Knowledge Gaps |
---|---|---|---|
Cerebral palsy | BoNT-A was proven to be effective and safe for the treatment of cerebral palsy [30,31,32,33,34,35,36,37,38,40,41,42,43,44,45,46,47,48,49,50]. The therapeutic effects of BoNT-A typically last 3–4 months, thus necessitating repeated treatments [26,27]. BoNT-A dosage depends on various factors such as muscle volume, level of spasticity, and extent of muscle involvement in the pathological pattern [14,28]. Adverse reactions are generally mild-to-moderate and local. Systemic adverse reactions are less common and potentially related to the distant spread of the toxin [57,58,137]. | Most studies had a small sample size and a low statistical power [30,31,32,33,34,35,36,37,38,39]. Several RCTs had a partially blinded or no blinded study design [32,33]. Some RCTs did not adequately select the study outcomes or used fixed doses and injections on fixed muscles, thus not being generalizable to every type of cerebral palsy [38,48]. | Long-term sustainability of BoNT-A effects. Long-term safety of BoNT-A. The combined effect of BoNT-A and other therapies (e.g., occupational therapy or physiotherapy) on cerebral palsy-related spasticity is still uncertain. Lack of evidence on the use of BoNT-A in children aged <2 years is lacking. Head-to-head comparison between different BoNT-formulation is lacking. |
Dystonia | BoNT was proved to be effective for achieving improvement of the motor function and the speed of outward reaching in children with arm dystonia [76]. Side effects may vary depending on the area affected by the disease, and they are generally mild and transient [77,78,79,80]. | Evidence in children is still sparce, as most clinical studies mainly involved adult patients with specific dystonic phenotypes. | Lack of robust evidence in children, particularly in those aged <12 years. |
Strabismus | BoNT chemodenervation is generally less effective than surgery in children with long-standing esotropia and those with large-angle esotropia, while it could be a valid alternative in children with small to moderate angle deviations [88]. The main disadvantages over surgery include a prolonged time of misalignment and a possible ptosis after injection [85,86,87,88]. | Evidence coming from both RCTs and observational studies is controversial [85,86,87,89,90]. Most RCTs had a small sample size and a low statistical power [85,86,87]. | It is still uncertain whether BoNT could serve as an independent treatment option for certain types of strabismus, potentially replacing the need for surgery. Head-to-head comparison between different BoNT formulation is lacking. |
Sialorrhea | BoNT is effective and safe in relieving sialorrhea symptoms in children [103,104,105,106,107,108]. BoNT was found to be less effective than surgery in reducing the severity of drool, but with an overall lower risk of adverse effects [106,108]. Side effects mostly include dry mouth, pain and swelling, dysphagia, probably due to toxin diffusion into adjacent musculature and soft tissues leading to subsequent muscle weakness [109,110,111,112]. | Lack of worldwide consensus concerning the primary assessment tool to quantify drooling, and the follow-up duration. | Head-to-head comparison between different BoNT formulation is lacking. |
Neurogenic detrusor overactivity | BoNT-A injection is safe and effective for the treatment of neurogenic bladder in children, leading to consistent improvement in daytime urinary incontinence episodes [121,122,123,124,125,126]. Side effects following BoNT injection mainly include localized pain, tenderness and/or bruising associated with the injection, hematuria, and urinary tract infections [124,126]. | Lack of placebo-controlled trials and with long-term follow-up periods. | Head-to-head comparison between different BoNT formulation is lacking. |
Congenital muscular torticollis | BoNT treatment led to improvements in range of motion and head tilt, especially when combined with conservative treatment [132]. Adverse events most commonly reported included bruising, neck pain, transient dysphagia, neck weakness, erythema at the injection site, and fever of unknown origin [132]. | Evidence comes from studies with a small number of patients [132]. Lack of data regarding the number and frequency of repeated BoNT injections. | Lack of RCTs evaluating BoNT safety in children. Lack of consensus concerning the number of injections needed. Need of longitudinal studies to ascertain the effects of referral and intervention timing on body structure and functional outcomes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisafulli, S.; Ciccimarra, F.; Khan, Z.; Maccarrone, F.; Trifirò, G. Understanding Clinical Effectiveness and Safety Implications of Botulinum Toxin in Children: A Narrative Review of the Literature. Toxins 2024, 16, 306. https://doi.org/10.3390/toxins16070306
Crisafulli S, Ciccimarra F, Khan Z, Maccarrone F, Trifirò G. Understanding Clinical Effectiveness and Safety Implications of Botulinum Toxin in Children: A Narrative Review of the Literature. Toxins. 2024; 16(7):306. https://doi.org/10.3390/toxins16070306
Chicago/Turabian StyleCrisafulli, Salvatore, Francesco Ciccimarra, Zakir Khan, Francesco Maccarrone, and Gianluca Trifirò. 2024. "Understanding Clinical Effectiveness and Safety Implications of Botulinum Toxin in Children: A Narrative Review of the Literature" Toxins 16, no. 7: 306. https://doi.org/10.3390/toxins16070306
APA StyleCrisafulli, S., Ciccimarra, F., Khan, Z., Maccarrone, F., & Trifirò, G. (2024). Understanding Clinical Effectiveness and Safety Implications of Botulinum Toxin in Children: A Narrative Review of the Literature. Toxins, 16(7), 306. https://doi.org/10.3390/toxins16070306