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Abstract: Molecular imaging has revolutionised the field of biomedical research by providing a
non-invasive means to visualise and understand biochemical processes within living organisms.
Optical fluorescent imaging in particular allows researchers to gain valuable insights into the dynamic
behaviour of a target of interest in real time. Ion channels play a fundamental role in cellular signalling,
and they are implicated in diverse pathological conditions, making them an attractive target in the
field of molecular imaging. Many venom peptides exhibit exquisite selectivity and potency towards
ion channels, rendering them ideal agents for molecular imaging applications. In this review, we
illustrate the use of fluorescently-labelled venom peptides for disease diagnostics and intraoperative
imaging of brain tumours and peripheral nerves. Finally, we address challenges for the development
and clinical translation of venom peptides as nerve-targeted imaging agents.

Keywords: venom peptide; ion channel; molecular imaging; fluorophore; peripheral nerve injury

Key Contribution: Venom peptides offer a unique approach to molecular imaging, including during
surgical procedures, due to their exceptional selectivity and affinity towards ion channels.

1. Introduction

Living organisms orchestrate an incredibly complex medley of biochemical and cellular
events, which makes it challenging to unravel these processes. In the past, our progress
towards this goal had been hampered by the inability to study these processes without
perturbing their native environment. Molecular imaging has revolutionised the field by
allowing visualisation and characterisation of biological phenomena at the cellular level in
intact living subjects in real time [1,2]. This provides valuable anatomical information and
enables the detection of abnormalities, which can potentially facilitate earlier diagnosis and
better treatment of disease.

Ion channels constitute a diverse class of membrane proteins that control the pas-
sage of ions in and out of cells. Ion transport is a key component in many biological
processes such as nerve and muscle excitability, sensory and cognitive function, and signal
transduction [3,4]. Inherited or acquired dysfunctions of ion channels are associated with
a wide range of diseases, collectively known as channelopathies, across cardiovascular,
neuronal, neuromuscular, metabolic, and respiratory systems. Approximately 20% of
biologic and small-molecule drugs target ion channels, making them the most common
class of biologic drug targets and the second most common class of small-molecule drug
targets after G-protein coupled receptors [5,6]. There are more than 400 ion channel genes
in the human genome, but the repertoire of functional ion channels is much larger due
to alternative splicing. Despite this remarkable molecular diversity, only a few dozen ion
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channels are targeted by currently available drugs [7]. This highlights an underexploited
space for ion channels as therapeutic or theranostic targets.

Patch-clamp electrophysiology is considered the gold standard for the study of ion
channels as it allows control of the intra- and extracellular environment and the membrane
potential. However, it is difficult to implement in regions with limited accessibility to
patch pipettes, it requires specialised equipment and sophisticated skills, and it does not
provide information about the in vivo distribution of ion channels. Changes in ion channel
expression and distribution could underlie several neurological disorders such as nerve
injuries. With an appropriate imaging agent, molecular imaging offers a non-invasive
method to study the expression and localisation of ion channels in living cells, tissues,
experimental animals, or human patients in real time.

1.1. A Quick Look at Molecular Imaging Agents

Molecular imaging generally requires an imaging agent as the source of image contrast.
An imaging agent should have the following properties to accurately visualise the desired
target (e.g., an ion channel or neuronal receptor): high selectivity for the target of interest,
suitable pharmacokinetic profile, good in vivo stability, favourable safety profile, time-
and cost-effective production, and multiplexing capabilities [8]. Molecular imaging agents
typically comprise a reporter probe and a targeting component (Figure 1). In general, a
reporter probe is chemically linked to a targeting component that interacts with the target
of interest [8]. Common classes of targeting components include small molecules, peptides,
and monoclonal antibodies (mAbs).
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Figure 1. Schematic representation of a molecular imaging agent. An imaging agent typically
consists of a reporter probe and a targeting component. The optimal reporter probe is determined by
the imaging modality employed. Different imaging modalities exist, including magnetic resonance
imaging (MRI), optical fluorescence imaging (OI), positron emission tomography (PET), single-photon
emission computed tomography (SPECT), and ultrasound (US). Each of these imaging modalities has
its own strengths and limitations in terms of sensitivity, spatial resolution, tissue-penetration depth,
and cost [9].

Small molecules (typically <500 Da) offer good pharmacokinetic properties such as
rapid accumulation in the target tissues and fast clearance rate. However, their small size
also means that they often have poor specificity and are subject to limitations on the type
of reporter probe that can be attached [10]. Attachment of a large fluorescent dye can
alter the binding properties and pharmacokinetics of a small molecule. In contrast, mAbs
(~150 kDa) can accommodate large fluorophores without altering their specificity and
affinity towards their molecular target or their pharmacokinetics. However, mAbs have
biological half-lives of days to weeks, which are far from optimal for imaging purposes.
Prolonged exposure of labelled mAbs in non-target tissues can lead to low signal-to-
background ratio and poor imaging resolution [11]. Moreover, it has proven difficult
to identify antibodies for many ion channels due to the complexity of their membrane-
embedded structures [12,13]. For example, voltage-gated ion channels typically have
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very few extracellular regions that contain only a limited number of potential epitopes,
making them less accessible for antibody binding. Peptides offer the benefit of small
molecules, such as rapid clearance kinetics and high tissue-penetration depths, while
retaining target specificity and the low immunogenicity characteristic of mAbs [14,15].
In addition, peptides can be synthesised using solid-phase synthesis, and consequently,
they offer superior flexibility for introduction of chemical modifications to improve their
biological activity, solubility, and stability.

1.2. Animal Venoms: A Rich Source of Imaging Agents

It has been estimated that ~15% of extant animal species are venomous [16], ranging
from minute flies and pseudoscorpions to large snakes and venomous mammals such as
the platypus and solenodons. This incredible diversity of venomous animals has resulted
in a vast number of venom components with extremely diverse pharmacology [17]. The
primary components of most arthropod venoms are disulfide-constrained peptides. These
peptides primarily target ion channels and neuroreceptors. Disulfide-constrained venom
peptides are attractive leads for drug discovery owing to their high selectivity, potency,
and stability [16,18]. With advances in high-throughput screening techniques and com-
prehensive transcriptomic and proteomic analyses, venom peptides have expanded our
understanding of the physiological roles of ion channels in their native cellular environment.
As of today, there are six venom-derived active ingredients approved for clinical use by
the U.S. FDA, with many more undergoing clinical trials and preclinical development [17].
One example is ziconotide, an analgesic used for the treatment of intractable chronic pain.
This 25-residue peptide from venom of the cone snail Conus magus is an antagonist of the
N-type voltage-gated calcium channel (CaV2.2) [19].

Many naturally occurring venom peptides have high affinity and specificity for their
cognate target, rendering them ideal targeting components for imaging applications. Ra-
diolabelling and fluorescent labelling are the two primary methods of adapting venom
peptides for imaging applications. The former was widely used in the 1980s to 1990s [20–22]
prior to the development of fluorescent techniques. For example, radiolabelled charybdo-
toxin and apamin, peptides from venoms of the scorpion Leiurus quinquestriatus hebraeus
and the honeybee Apis mellifera, respectively, were utilised to map the distribution of
large-conductance and small-conductance calcium-activated potassium (KCa) channel in
rat brain [23]. Alternatively, venom peptides can be conjugated with a fluorophore in a
site-specific manner using a wide range of chemical strategies such as amine labelling and
click-chemistry-based approaches [24,25]. Fluorescently labelled venom peptides have
played an important role in defining the functional characteristics of ion channels in living
cells and tissues (Table 1). For example, fluorescent derivatives of HgTx1, a peptide isolated
from venom of the scorpion Centruroides limbatus, were used to examine the localisation of
KV1 family channels in rat cerebellum using fluorescence microscopy [26].

Table 1. Fluorescently labelled venom peptides that target ion channels.

Animal Source Peptide Molecular Target Fluorophore Reference

Cone snail

α-conotoxin TxID α3β4 nAChR 5-TAMRA [27]
α-conotoxin ArIB α7 nAChR Cy3, Alexa Fluor 546 [28,29]
α-conotoxin RgIA α9α10 nAChR Cy5 [30]

ω-CgTx CaV2.2 TexasRed, fluorescein, Cy3 [31–33]

Snake
α-cobratoxin

α7 and α9/α10 nAChR Enhanced GFP [34]
α1β3γ2 GABAA receptor Alexa Fluor 546 [35]

α-bungarotoxin α7 nAChR Cy5 [36]
Mambalgin-2 ASIC1a CF647 [37]
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Table 1. Cont.

Animal Source Peptide Molecular Target Fluorophore Reference

Scorpion

ShK KV1.3 F6CA [38]
HgTx1 KV family channels Cy3, Cy5, Alexa Fluor family [26]
IbTx KCa1.1 Alexa Fluor 488 [39]

OSK1 KV1.1–1.3 Enhanced GFP [40]
AgTx2 KV1.1–1.3, 1.6 RFP [40]
CTX Cl– channels Cy5.5, IR800, ICG [41–43]
TsTx NaV channels Alexa Fluor 488 [44]

TiTx-γ NaV channels Alexa Fluor 568 [44]
LqqV NaV channels DACA [45]

Spider

GsTx KV2.1 DyLight 550 [46]
DkTx TRPV1 Fluorescein [47]

ProTx-II NaV1.2, 1.5, 1.7, 1.8 ATTO488 [48]
Hs1a NaV1.1–1.3, 1.6, 1.7 Cy7.5, bacteriochlorin [49,50]
Tsp1a NaV1.7 BODIPY, chlorin, IR800 [49,51–53]

ASIC1a, acid-sensing ion channel 1a; BODIPY, boron-dipyrromethene; Cl–, chloride ion channel; Cy, cyanine;
DACA, 7-dimethylaminocoumarin-4-acetate; F6CA, fluorescein-6-carboxyl; GABAA, γ-aminobutyric acid type
A; GFP, green fluorescent protein; ICG, indocyanine green; KV, voltage-gated potassium channel; NaV, voltage-
gated sodium channel; nAChR, nicotinic acetylcholine receptor; RFP, red fluorescent protein; TAMRA, 5-
carboxytetramethylrhodamine; TRPV1, transient receptor potential vanilloid 1.

1.3. Near-Infrared Fluorescent Imaging

Alongside the development of fluorescent labelling approaches and imaging instru-
mentation, several macroscopic optical imaging methods provide whole-body imaging
of living small animals. Near-infrared (NIR) fluorescent imaging has become popular in
preclinical and clinical settings because of its excellent sensitivity, high spatial resolution,
ease of use, low cost, and multiplexing capabilities (Figure 2) [54,55]. This technique relies
on fluorophores that emit light when excited by a specific wavelength of light within the
NIR spectral window (~650–1700 nm) [56]. This approach takes advantage of the fact
that absorption of light by endogenous biomolecules such as water, cytochromes, and
haemoglobin is lower in the NIR window. Thus, imaging performance can be enhanced by
reducing the extent of tissue scattering and autofluorescence (i.e., fluorescent signal from
tissues where the imaging agent is not present [57]).
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the process of interest, followed by selection of an appropriate molecular imaging agent that has
a NIR fluorophore attached to a targeting component. Subsequent in vitro and in vivo studies are
required to evaluate the specificity and affinity of the imaging agent. During imaging, the subject is
illuminated with excitation light of an appropriate wavelength, and the subsequent light emission
is detected by a charge-coupled device (CCD) camera. The signal is then converted into an image
that indicates the location of the emitted light (i.e., from the imaging agent) within the subject. After
validation, the imaging agent enters early-stage clinical trials. The imaging agent might lead to new
insights during clinical trials and cause the cycle to begin again.

There has been an explosion over the past decade of proof-of-principle studies in the
fluorescent imaging of biomarkers, blood vessels, and nerves. There is also growing interest
in the use of fluorescence-guided surgery, an intraoperative imaging method that provides
non-invasive assessment of normal and diseased tissues [58]. It can be used to define
tumour location [59,60] and ensure the preservation of nerve structures during surgical
procedures [61]. In this review, we highlight a selection of in vivo imaging applications
using venom-derived peptides and discuss the promise and challenges associated with
clinical translation of venom peptides as imaging agents.

2. Chlorotoxin: An Intraoperative Agent for Imaging Brain Tumours

Gliomas are the primary tumours that originate from glial cells. They are known for
their fast proliferation rate and tendency to invade normal brain tissues [62,63]. Current
therapy involves surgical resection, followed by radiation with adjuvant chemotherapy [64].
The success of resection has a significant impact on the prognosis of brain cancers, as more
than 80% of malignant tumours recur due to unresected residual tumours [65]. One of
the challenges of surgical removal is to identify and visualise the brain tumour tissues
from normal cortex. Accurate margin delineation is crucial, particularly in delicate regions,
as broader resection in such areas leads to patient morbidity and loss of functionality.
Balancing aggressive resection against the necessity to preserve surrounding healthy tissues
and minimise functional impairment is the goal of brain tumour surgery. It would, therefore,
be beneficial to develop tumour-targeted agents that distinguish between tumours and
normal brain tissue. This would potentially preclude the need for invasive procedures such
as biopsies.

2.1. Chlorotoxin: From Primary to Tertiary Structure

Chlorotoxin (CTX) from venom of the Israeli scorpion Leiurus quinquestraitus is one
of the most well-studied venom peptides. It has emerged as an imaging agent due to its
preferential binding to glioma cells in the brain and other tumours of neuroectodermal
origin [66]. CTX has 36 amino acid residues that are cross-linked by four disulfide bridges
(Figure 3a). Its tertiary structure conforms to the cystine-stabilised α-helix/β-sheet (Csαβ)
motif [67]. This scaffold is characterised by an α-helix anchored to a double-stranded
antiparallel β-sheet via two disulfide bonds (highlighted in magenta; Figure 3b). The
majority of Csαβ peptides contain a third disulfide bond that connects the N-terminal
region of the α-helix to the second β-strand (highlighted in red for CTX, Figure 3b) [68].
Comparison of the structure of CTX with other Csαβ peptides shows that it has a unique
Csαβ fold, making it the canonical member of the ‘chlorotoxin-like peptide’ family. This
family is characterised by a fourth disulfide bridge linking the N-terminal region (i.e., in
the first β-strand) and the last segment of the α-helix (highlighted in green; Figure 3b).
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Figure 3. Structure of chlorotoxin (CTX). (a) Primary structure of CTX. Cysteine residues characteristic
of CSαβ peptides are shown in bold. The disulfide connectivities are colour-coded and illustrated
above the sequence. The secondary structural elements of CTX are shown below the sequence.
(b) Ribbon representation of the solution structure of CTX (PDB: 1CHL) with the corresponding
secondary structure topology shown at right. The N- and C-termini are labelled. The disulfide
connectivities are coloured according to (a).

2.2. Chlorotoxin: A Biological Chameleon

CTX was first identified as a blocker of small-conductance chloride ion channel cur-
rents in rat epithelia and embryonic rat brain [69,70]. These findings were subsequently
confirmed by patch-clamp electrophysiology studies, where CTX inhibited chloride ion
channels expressed in cultured glioma cell lines and patient biopsies [71–73]. In 1998,
Soroceanu and co-workers made a major breakthrough in understanding the tumour-
binding properties of CTX. Intracranial injection of radiolabelled CTX led to accumulation
in gliomas but not surrounding normal tissues in xenograft mouse models (i.e., mice
harbouring human glioma cells) [74]. Later, a recombinant polyhistidine-tagged version
of CTX was shown to inhibit matrix metalloproteinase-2 [75], which is upregulated in
gliomas but not expressed in normal brain tissues [76]. Annexin A2, a calcium-dependent
phospholipid binding protein present on the extracellular side of the plasma membrane of
tumours and vascular endothelial cells, has also been proposed as a target for CTX [77].
siRNA knockdown of annexin A2 in pancreatic tumour cells abolished the binding of CTX
to the cell surface. While studying the molecular targets for CTX has not been straightfor-
ward, the above targets are involved in malignant cell migration and invasion [78]. These
findings suggest that inhibiting neural targets that are expressed by gliomas could provide
a potential therapeutic strategy to restrict glioma invasion.

2.3. Chlorotoxin: Imaging Applications

A variety of CTX-conjugated analogues have been evaluated in preclinical and clinical
trials [79,80]. One such molecule is 131I-TM-601, an 131I-labelled synthetic version of CTX,
which has been utilised both as an imaging tool to assess the extent of glioma invasion and
as a radiotherapy agent to control tumour progression [81,82]. In a Phase I clinical trial
on 18 adult patients with recurrent high-grade gliomas, a single dose of 131I-TM-601 was
delivered directly into the patient’s brain via an intracavitary reservoir after the surgical
resection of gliomas, and it was shown to be well tolerated with no significant toxicity [82].
131I-TM-601 was bound to the gliomas during the five-day monitoring period with no
appreciable binding elsewhere in the body, while the remaining unbound peptide was
eliminated from the body within 24 to 48 h after administration (clinical trial identifier
number: NCT00114309). Unfortunately, this study and a subsequent Phase II trial failed to
demonstrate patient survival advantage to justify further trials [81].



Toxins 2024, 16, 307 7 of 22

Since the discovery of CTX, tremendous efforts have been made to develop CTX-based
imaging agents using NIR fluorophores in order to enable precise tumour identification and
localisation in real time. CTX was developed into a fluorescent imaging agent by the Olson
group through conjugation with a Cy5.5 NIR dye (CTX-Cy5.5) [43]. In a transgenic mouse
model of medulloblastoma, CTX-Cy5.5 was shown to selectively bind to gliomas one day
after tail vein injection, indicating its ability to permeate the blood–brain barrier (BBB) [43].
CTX-Cy5.5 also delineated tumour margins in mouse models of medulloblastoma, sarcoma,
lung metastases, prostate cancer, and intestinal cancer. The unbound CTX-Cy5.5 was
rapidly distributed in the mouse body, particularly in the kidney and liver [43]. CTX
contains three Lys residues at positions 15, 23, and 27 that serve as reactive sites for the
conjugation of Cy5.5 via amine-NHS (N-hydroxysuccinimide) ester coupling, resulting in
a mixture of mono-, di-, and tri-labelled peptides. To simplify production of the mono-
labelled form, CTX was modified by substituting Lys15 and Lys23 with Ala or Arg [83]. In
this way, only Lys27 was labelled with Cy5.5 dye, and the product retained the tumour-
binding activity and in vivo stability of native CTX, with ~30% of the peptide degraded
over 24 h in human serum.

CTX has also been conjugated to cyanine-based fluorescent dyes, including IR800
and indocyanine green (CTX-IR800 and BLZ-100, respectively). IR800 has been used in
early-phase clinical trials [57], whereas indocyanine green (ICG) is an FDA-approved
fluorophore for several oncological applications, including tumour or sentinel lymph node
localisation [84], coronary angiography [85], and metastasectomy [86]. Both CTX-IR800
and BLZ-100 were shown to localise to human glioblastoma cells implanted in mice [41,42],
recapitulating the activity of CTX-Cy5.5. BLZ-100 has undergone extensive preclinical
studies in small and large animal models harbouring tumours [87,88]. Recent evaluation of
BLZ-100 (tozuleristide) in a Phase I clinical trial indicated that it was well-tolerated with
no toxicity at doses up to 30 mg (NCT02234297 and NCT02462629) [89]. The fluorescent
signals were detected in both low- and high-grade tumours [89], breast carcinomas [90],
and skin tumours [91]. A Phase II/III trial evaluating BLZ-100 for fluorescence-guided
imaging of paediatric brain tumours (NCT03579602) was completed in June 2022, but the
results have not been published.

Overall, CTX-based imaging agents have proven effective for tumour diagnosis and
improving tumour resection, which are cornerstones of cancer therapy. However, there is
still much to be understood about the mechanism by which CTX breaches the BBB and
binds to brain tumours. Several minimised versions of CTX have been designed and evalu-
ated, with the aim of reducing its structural complexity while increasing its BBB shuttle
activity [92]. These gaps in knowledge present opportunities for the rational design of
peptide variants and optimisation based on the structural scaffold of CTX. The ongoing de-
velopment of CTX-based imaging agents holds significant promise for improving outcomes
for cancer patients.

3. Peripheral Nerve Injury

The nervous system coordinates the functions of tissues and organs by processing
information from the surrounding environment and governing the responses of organisms
to stimuli or stresses. The peripheral nervous system (PNS) is a highly heterogenous entity
that provides communication between the brain and the body. Each peripheral nerve
has several main components: an outer epineural layer enveloping multiple fascicles, a
perineural layer consisting bundles of individual axons, and an inner endoneurial layer
covering individual axons (Figure 4a) [93]. Peripheral nerve fibres, particularly at axonal
sites distant from the neuronal cell bodies, are filigree structures that are susceptible to
damage from compression, trauma, or medical disorders [94,95]. As a result of damage to
motor and sensory nerves, the affected individuals experience various clinical manifesta-
tions, including allodynia, chronic neuropathy, and prolonged loss of muscle movement
and/or sensations [96].
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Figure 4. Schematic diagram of peripheral nerve anatomy. (a) Myelinated or unmyelinated axons
are the basic unit of a peripheral nerve. Neuron axons are supported by three connective tissue
sheaths. The innermost sheath is the endoneurium, whereas the outer border is the perineurium.
The epineurium is the outermost sheath that envelops the fascicles and blood vessels within adipose
tissue. NaV1.7 is highly expressed in the peripheral neurons and is mostly restricted to the peripheral
nervous system for the transmission of nociceptive signals. For the sake of clarity, the insert shows
only NaV1.7 channels found at nodes of Ranvier in myelinated axons. (b) Structure of endoneurial
blood vessels. The blood–nerve barriers are composed of a physical barrier at endoneurial vessels
within the fascicle and the investing perineurium. These two barriers act as protective interfaces to
allow the entry of nutrients and prevent toxic substances from entering the endoneurial space.

During oncological surgery or after traumatic injury, surgeons often face difficulties
in precisely locating and preserving vital nerve structures due to tissue distortion and
poor visibility. This can lead to unintended nerve injuries that impose significant physical,
psychological, and economic burdens on individuals and their families. While most periph-
eral nerve injuries are of traumatic origin, approximately 25% of patients attribute their
neuropathic pain to surgical intervention [97–99]. For example, a common postoperative
complication after thyroid surgery is injuries to the recurrent laryngeal nerves, leading to
changes or loss of voice or respiratory complications [100]. A common problem with prosta-
tectomy is damage to nerves of the prostatic plexus, which can lead to urinary incontinence
or erectile dysfunction [101].

3.1. Intraoperative Preservation of Peripheral Nerve Tissues

Intraoperative nerve visualisation is an unmet clinical need. The existing intraop-
erative tools, such as loupes and light microscopes, are only effective for nerves close
to the tissue surface and they are applicable only to certain types of interventions [102].
Electromyography (EMG) is an alternative approach to identify motor nerves before direct
surgical exposure, in which stimulating electrodes are placed in the muscle innervated by
the target nerve, and muscle activity is monitored [103]. However, EMG does not offer
direct visual guidance for surgeons, and it is ineffective if the axonal or neuromuscular
transmission distal to the recording sites is blocked. Advanced magnetic resonance imaging
(MRI) and ultrasound have also been used to identify large nerve bundles in an intraop-
erative setting [104,105]. However, these imaging modalities could interrupt the normal
surgical workflow and lengthen anaesthesia times, and their use is limited by several
factors, including equipment availability and cost. In contrast, nerve-imaging agents have
the potential to provide a visual clue for surgeons to delineate peripheral nerves in real
time during surgery, thereby reducing surgical morbidity.

An ideal nerve-targeted agent should possess the following properties: high speci-
ficity for peripheral nerves, impermeability to the BBB, low systemic toxicity, minimal
accumulation in non-target tissues, and fast clearance rate. Fluorescein and ICG are the
two FDA-approved fluorophores for indirectly visualising nerves by highlighting the adja-
cent small blood vessels known as vasa nervorum (Figure 4b). Recently, fluorescein has
been used to visualise abnormal cystic peroneal nerves in ganglion cyst excision [106] and
to delineate the boundary between tumour tissues and surrounding nerves in neurofibro-
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mas and schwannomas [107]. Several clinical trials demonstrated that ICG could be used to
identify facial nerves during mastoidectomy [108], neurovascular bundles during radical
prostatectomy [109], and pelvic nerves during hysterectomy [110]. These neurovascular
dyes remain confined to the vascular space due to the lack of nerve-targeting proper-
ties. One of the drawbacks of such an approach is that visualisation is inadequate when
the nerves are buried by surrounding tissues, particularly in highly vascular anatomic
regions [111], thus restricting widespread use of these dyes in a surgical setting.

To date, three binding sites within nerve fibres have been identified for nerve-imaging
agents, including the axon, myelin sheath, and endoneurium [112]. Axon-targeted agents,
including neurotropic viral and nonviral tracers, rely on axonal transport mechanisms and
require local administration due to their inability to cross the blood–nerve barrier (BNB;
Figure 4b) [113]. These tracers also require an extended incubation period due to their slow
axonal transport, which presents practical challenges for intraoperative use. Several small
molecules and oligopeptides have been designed and reported to bind to the myelin sheath
and endoneurium, in which the myelin basic protein and proteoglycans are the potential
molecular targets, respectively [114–117]. An example is NP41, a 12-residue peptide, which
is localised to the endoneurium of the nerves in mice after systemic injection, as well as
resected human recurrent laryngeal nerves [118]. In addition, NP41 has been used to
highlight facial nerves in mice [119] and autonomic nerves within the rat prostate [120].
Importantly, NP41 cannot bypass the BBB, therefore avoiding potential issues of central
toxicity and accumulation [118].

3.2. NaV1.7: Contribution of Peripheral Nerves

Voltage-gated sodium (NaV) channels play a fundamental role in normal neurologi-
cal function, especially in the initiation and propagation of action potentials in neurons,
muscles, and other fast signalling tissues [121]. Nine NaV channel subtypes have been
identified in mammals, denoted NaV1.1–1.9. The main subtypes expressed in normal adult
peripheral sensory neurons are NaV1.1, NaV1.6, NaV1.7, NaV1.8, and NaV1.9. The latter
three are crucial in generating and transmitting nociceptive signals. Among these three
isoforms, NaV1.7 can be found in small diameter dorsal root ganglion neurons [122,123].
Neurons expressing NaV1.7 are capable of amplifying slowly developing subthreshold
depolarising inputs, and hence, this channel subtype directly modulates the action potential
threshold in nociceptors [124,125].

The NaV channel α-subunit is a single polypeptide chain that organises into four
non-identical domains (DI to IV), each containing six transmembrane segments (S1–S6).
The S1 to S4 segments in each domain constitute a voltage-sensing domain, wherein S4
contains positively-charged residues essential for voltage sensing in response to changes in
membrane potential. The S5 and S6 segments from each domain come together in a circular
arrangement to form the channel pore and the selectivity filter that determines sodium ion
selectivity. A number of high-resolution cryoEM structures of human (h) NaV channels
have been reported [126–133]. Taken together, structures of the resting-state, open-state,
and multiple ligand-bound states have provided fundamental insights into the molecular
mechanisms of voltage-sensing, fast inactivation, sodium permeation, and modulation of
channel activity by diverse ligands.

The fundamental role of NaV1.7 in pain processing was revealed by seminal human
genetic studies. First, gain-of-function mutations in the gene SCN9A that encodes the α-
subunit of NaV1.7 were shown to underlie inherited pain disorders such as erythromelalgia
and paroxysmal extreme pain disorder [134,135]; these syndromes are characterised by
burning pain and redness in the extremities. Then, in 2006, it was shown that loss-of-
function mutations in SCN9A lead to a congenital inability to sense pain [136]. The loss of
NaV1.7 function does not cause intellectual disability or any sensory impairments aside
from anosmia. Thus, NaV1.7 has received a tremendous amount of attention as a potential
analgesic drug target [137]. Unfortunately, many NaV1.7-targeted drug candidates showed
efficacy in preclinical animal models but failed to translate to the clinic. There are many
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reasons that possibly contribute to this failure, including the lack of selectivity of some
compounds for NaV1.7 over other NaV channel subtypes, the absence of pharmacology-
altering β-subunits in pharmacological assays [138], and the use of rodent pain models
with limited relevance to human chronic pain to assess analgesic efficacy [139]. However,
regardless of its therapeutic relevance, NaV1.7 is an ideal target for imaging purposes as it
is selectively expressed on most peripheral neurons.

3.3. Spider-Venom Peptides as Nerve-Targeted Agents

Spider-venom peptides have proven to be excellent pharmacological tools for structure-
function analysis of NaV channels and dissection of their (patho)physiological roles. There
are twelve families of spider-venom peptides that modulate NaV channels (known as
NaSpTx), based on their primary structures and disulfide-bond connectivities [140]. Most
spider-venom peptides are allosteric modulators known as gating modifiers that bind
to one or more of the voltage-sensing domains in order to alter channel activation or
inactivation. An example is the 35-residue peptide HwTx-IV, a member of NaSpTx family 1,
which acts as a channel inhibitor by interacting with the voltage-sensing domain in DII to
stabilise a resting conformation of NaV1.7 [141]. The majority of spider-venom peptides
range in size from 3.0–4.5 kDa. They typically adopt a stable inhibitor cystine knot fold,
wherein one of the disulfide bonds bisects a loop formed by the other two disulfides and
the intervening sections of the peptide backbone [142]. This so-called knottin framework
greatly enhances resistance to chemical, thermal, and proteolytic degradation. Below
we discuss two spider-venom peptides that target NaV1.7 and that have been used for
peripheral nerve visualisation.

3.3.1. µ-theraphotoxin-Hs1a

A recombinant version of µ-theraphotoxin-Hs1a (henceforth Hs1a; Figure 5a,b), which
is found in venom of the Chinese tarantula Cyriopagopus schmidti, was conjugated to NIR dye
Cy7.5 to monitor the distribution of NaV1.7 in mouse sciatic nerves ex vivo, as confirmed
by immunohistochemistry [49]. A recent paper by Hernández-Gil and co-workers reported
the labelling of Hs1a with a bacteriochlorin fluorophore (Hs1a-Bac) [50]. Bacteriochlorin is
a member of the porphyrin family; it has two diagonally opposed pyrrole rings that can
chelate radionuclides for use with different imaging modalities. Intravenous (IV) injection
of Hs1a-Bac leads to high uptake in the peripheral nerves of mice. Biodistribution studies
revealed that the resulting probe accumulated in the spleen, liver, and kidney but not other
organs such as the muscles, heart, and brain [50].

Radiolabelling Hs1a-Bac with 64Cu provides a strategy for rapid assessment of nerve
damage and intraoperative surgical intervention by positron emission tomography/
computed tomography (PET-CT) and Cerenkov luminescence (CL) imaging, respectively.
The inherent Cerenkov radiation produced by 64Cu allows intraoperative nerve identifica-
tion using optical imaging. This multimodal approach maximises comparability between
PET-CT and optical imaging, thus minimising the number of injections. IV injection of
64Cu-labelled Hs1a-Bac produced adequate fluorescent signals in the brachial plexus and
sciatic nerves in whole-body CL images (Figure 5c) [50]. Clinically, brachial plexus in-
juries commonly occur during coronary bypass procedures and shoulder debridement,
whereas sciatic nerve injuries pose a risk to patients undergoing hip or knee replacement
surgery [112]. Together, this study demonstrated the feasibility of using a NaV1.7-targeted
venom peptide as a NIR multimodal imaging agent and validated the neural specificity
and fluorescent imaging properties of 64Cu-labelled Hs1a-Bac. In addition to providing
a starting point for nerve visualisation, Hs1a offers valuable insights into the complex
anatomy and function of the PNS. Despite these promising data, little is known about the
overall safety of 64Cu-labelled Hs1a-Bac. Future directions should include evaluation of
its clearance rate (pharmacokinetics), in vivo metabolism, and whether it exerts any toxic
effects in mice over extended periods of time.
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Figure 5. Use of Hs1a for intraoperative nerve imaging. (a) Primary structure of Hs1a. Cysteine
residues characteristic of the inhibitor cystine knot motif are shown in bold. A non-native N-terminal
Gly residue (highlighted in red) was added to the Hs1a coding sequence to optimise its cleavage from
the fusion protein used to facilitate recombinant expression of the peptide. For imaging studies, a
Cy7.5 dye or bacteriochlorin was attached to Lys14 (highlighted in green). (b) Ribbon representation
of Hs1a (PDB: 2MT7). The N- and C-termini are labelled. The antiparallel β strands are coloured
orange, whereas the three disulfide bonds are shown in yellow. (c) Cerenkov luminescence images
of mice injected with a ‘blocking’ formulation (unlabelled Hs1a and 64Cu-labelled Hs1a-Bac; left)
or 64Cu-labelled Hs1a-Bac (right) showing the non-invasive visualisation of brachial plexus and
sciatic nerves, as indicated by the orange arrows. [Figures from [50] Copyright 2023, American
Chemical Society].

Electrophysiological studies revealed that Hs1a inhibits multiple hNaV channel sub-
types at low nanomolar potency, including NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7 [49].
Both NaV1.4 and NaV1.5 are critical off-targets for a peripherally administered nerve-
imaging agent, as inhibition of these subtypes would alter the contractility of skeletal and
cardiac muscles with potentially fatal consequences. Inhibition of NaV1.2 is not of major
concern as it is exclusively expressed in the brain [143] and Hs1a should not penetrate
the BBB after IV administration, as demonstrated by previous biodistribution studies [50].
NaV1.3 is prominent in embryonic neurons but its expression is significantly attenuated dur-
ing postnatal development and is, therefore, not present in healthy adults [144]. Conversely,
both NaV1.1 and NaV1.6 are broadly distributed throughout the nervous system. NaV1.1
is expressed in peripheral Aδ sensory neurons, which are involved in the transduction
of mechanical pain [145]. NaV1.6 is primarily localised to nodes of Ranvier in myeli-
nated axons, along the full axon in unmyelinated neurons, and in dendrites of projection
neurons [146,147]. Consequently, inhibiting NaV1.6 poses the risk of blocking nerve trans-
duction, resulting in paralysis. Thus, a crucial step in the development pathway for Hs1a as
a nerve-targeted agent would involve the rational engineering of more selective analogues.

3.3.2. µ-theraphotoxin-Tsp1a

While conducting a screen to identify venom components that inhibit hNaV1.1 channel,
Jiang and co-workers discovered a 28-residue peptide known as µ-theraphotoxin-Tsp1a
(henceforth Tsp1a; Figure 6a,b) from the venom of a Peruvian tarantula (Thrixopelma spec.)
that potently inhibits NaV1.7 [148]. Electrophysiological studies on a panel of hNaV channel
subtypes revealed that Tsp1a is one of the most potent and selective peptide antagonists
of NaV1.7 reported to date (IC50 10 nM), with 24-fold selectivity over NaV1.2, 45-fold
selectivity over NaV1.1, and 100-fold selectivity over NaV1.3−NaV1.6. Sequence alignments
revealed that Tsp1a belongs to NaSpTx family 3. Tsp1a decreases NaV1.7 peak currents
and induces a hyperpolarising shift in the voltage dependence of steady-state inactivation
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without altering the conductance–voltage relationship [148], presumably by interacting
with neurotoxin binding site 3 (i.e., DIV S3–S4) and stabilising the voltage-sensing S4 helix
in a non-conducting inactivated state.
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residues characteristic of the inhibitor cystine knot motif are shown in bold. Propargylglycine (Pra)
was added to the N-terminus of Tsp1a for copper-catalysed click chemistry, whereas the NHS
fluorophore was attached to Lys4 (highlighted in green) via amine-NHS ester coupling. (b) Ribbon
representation of Tsp1a (PDB: 7A64). The N- and C-termini are labelled. The antiparallel β strands
are coloured blue, whereas the three disulfide bonds are shown in yellow.

The exquisite selectivity of Tsp1a for NaV1.7 raises the question of whether it could
be developed as a nerve-targeted agent for intraoperative imaging. A synthetic version
of Tsp1a has been conjugated to a BODIPY fluorophore and a chlorin moiety (Tsp1a-
BODIPY and Tsp1a-ChL, respectively) [52,53]. While the toxicity of Tsp1a-BODIPY was
not determined, no changes in behaviour or apparent toxicity (oxygen level and heart
rate) were observed following IV injection of Tsp1a-ChL in mice, indicating a good safety
profile [53]. Both Tsp1a-BODIPY and Tsp1a-ChL produced strong fluorescent signals in
sciatic nerves after IV injection in mice. Traditionally, in vitro fluorescent imaging relies
on dyes with the emission within the visible light range, which can be detected by the
human eye. In contrast, for in vivo fluorescent imaging, wavelengths below ~600 nm
(i.e., orange to red) encounter limited tissue penetration and high autofluorescence, owing
to strong tissue scattering and strong absorbance of haemoproteins (e.g., haemoglobin
and cytochromes) [58]. Thus, the BODIPY fluorophore, which emits in the visible range
(~510 nm), is not suitable for whole-body imaging, particularly in large mammals such
as humans.

Recently, Gonzales and co-workers constructed a library of fluorescently labelled Ts1pa
derivatives and evaluated their potential for in vivo imaging [149]. Five NIR fluorophores
(IR800, Janelia669, BODIPY665, DY684, and Cy7.5) were selected and conjugated to Tsp1a
either via NHS ester coupling to the Lys4 residue or by using copper-catalysed click
chemistry to attach the fluorophore to an unnatural propargylglycine amino acid added
to the N-terminus (denoted Tsp1a-Pra). Among these analogues, Tsp1a-Pra-IR800 not
only retained the inhibitory effect on NaV1.7 but also produced the highest fluorescent
signal in the sciatic nerves of mice following IV injection. Subsequent biodistribution
studies revealed that Tsp1a-Pra-IR800 localises primarily to nerves, with weak fluorescence
detected in the liver and other organs. Extensive toxicity experiments were also performed
for two weeks after injection, and no toxicity was observed.
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The imaging performance, safety, and pharmacokinetic profile of Tsp1a-Pra-IR800
were further evaluated in non-human primates. Immunochemical studies of the peripheral
nerves of grivets (Chlorocebus aethiops) confirmed the localisation of NaV1.7 in the PNS,
including dorsal root ganglions, recurrent laryngeal nerves, and vagus nerves. A neck
dissection mimicking human thyroidectomy was performed in these primates to simulate
a real surgical scenario for intraoperative nerve imaging. A single bolus IV administration
of Tsp1a-Pra-IR800 was well-tolerated with a serum half-life of ~15 min. No change in
behaviour or activity (oxygen saturation, heart rate, and body temperature) was observed
during thyroid surgery. Tsp1a-Pra-IR800 produced the strongest fluorescent signals in the
carotid arteries and jugular veins, followed by the recurrent laryngeal nerves and vagus
nerves [149]. The excellent contrast between nerves and adjacent tissues lasted for at least
30 min.

In addition to its role in nociception, NaV1.7 is expressed in olfactory sensory neurons
where it plays a key role in olfaction [150]. Loss-of-function mutations in NaV1.7 have been
found in patients with olfactory dysfunction, including anosmia and hyposmia [136,151].
The expression of Nav1.7 in olfactory tissues presents an opportunity to develop a NaV1.7-
targeted imaging tool for the diagnosis of smell disorders, which, in turn, detects the tissue
damage caused by viral infections or inflammation. Immunohistochemical studies in mice
revealed an enrichment of NaV1.7 in the olfactory nerve bundles located in the lamina
propria [152]. Fluorescent imaging after IV injection of Tsp1a-Pra-IR800 showed that the
majority of the fluorescence accumulated in the olfactory bulb and epithelium of wild-type
mice but not olfactory-ablated mice [51]. Overall, Tsp1a-Pra-IR800 could be used as a
non-invasive diagnostic tool to assess the extent of damage in the nasal cavity.

In summary, Tsp1a-Pra-IR800 demonstrates remarkable nerve specificity, exceptional
contrast, and an absence of side effects in animal models. Clinical translation of this probe
might help to minimise nerve damage during surgery.

3.4. Development of Nerve-Targeted Imaging Agents

Several recent proof-of-concept studies reported the use of NaV1.7-targeted spider-
venom peptides to highlight the peripheral nerves in animal models. From a clinical
perspective, two major concerns that need to be considered for NaV1.7-targeted venom
peptides (and by extension, other nerve-targeted agents) are the route of administration and
dosage. In general, nerve-imaging agents can be administered locally or systemically [153].
Local administration involves the direct injection of the agent either into the distal target
of nerves, allowing it to travel in a retrograde manner and label the nerves, or into the
target nerve fibres in retrograde and anterograde directions. This approach minimises the
overall dose and the risk of systemic toxicity. Nonetheless, the target nerve needs to be
well-exposed, and adjacent tissues may be unintentionally labelled by the fluorophore. In
contrast, systemic administration provides wide coverage of nerve fibres throughout the
body. IV injection of nerve-imaging agents prior to surgery allows more time to develop
contrast in the target tissue and wash out nonspecific fluorescence. The relative ease of IV
injection in a preoperative setting makes it attractive for the delivery of imaging agents.
Given that the whole body is exposed to the injected probe, it is crucial to evaluate the long-
term retention and safety (e.g., biodistribution, pharmacokinetic clearance, and metabolism)
before clinical translation.

Determining the optimal dose depends on several factors, including the optical prop-
erties of the probe, the route of administration, the imaging instrument, and the type of
surgery. In contrast to the therapeutic utility of NaV1.7 inhibitors, which are typically dosed
repeatedly over extended periods of time, a single dose of imaging agent is sufficient at the
time of surgery. It is important that NaV1.7-targeted imaging agents do not cause acute
or chronic pharmacodynamic effects. This is achieved by administering a lower dose of
imaging agent that produces sufficient fluorescent contrast relative to the background and
lasts for the duration of the surgery while simultaneously not inhibiting large portions
of the channel to maintain its normal neuronal function in patients. The use of brighter
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fluorophores offers the advantages of performing fluorescent imaging at lower doses and
reducing the duration of exposure.

One of the challenges for developing fluorescently labelled probes is that the addition
of the fluorophore can alter the selectivity and affinity of the targeting component. The large
hydrophobic π-conjugated systems in most fluorophores are susceptible to aggregation in
aqueous solutions; this can cause nonspecific hydrophobic stickiness, which might affect its
migration along nerve fibres. In addition, fluorophores with high lipophilicity might lead to
nonspecific uptake and thereby decrease fluorescent contrast. Due to the inability to predict
how modifications will affect the probe’s activity, researchers often face a trial-and-error
process to explore various fluorophores and labelling methods in order to minimise loss of
activity while achieving the desired fluorescent properties. This unpredictability signifi-
cantly hampers the efficiency and progress of developing fluorescently labelled imaging
agents for the clinical translation. Overcoming these barriers might lead to the validation
and regulatory approval of a wider range of fluorescent probes for image-guided surgery.

4. Potential Applications of Molecular Imaging

Neurodegeneration is a process in which cells in the brain or spinal cord deteriorate
over time, resulting in irreversible neuronal damage. There are numerous factors that
cause this process, such as infections, free radical production, and apoptosis [154,155].
Neurodegeneration is common to many disorders such as Alzheimer’s disease (AD), mul-
tiple sclerosis (MS), and Parkinson’s disease. The neurodegenerative process occurs in
different brain regions with varying degrees of clinical manifestations, most of which
have catastrophic consequences for affected individuals. In the case of AD, there is an
accumulation of abnormal proteins that aggregate within the brain’s limbic, paralimbic,
and neocortical regions [156]. These areas are responsible for memory function. As a result,
individuals experience a gradual deterioration of memory and cognitive abilities, disorien-
tation concerning time and space, and impaired decision-making. MS is an autoimmune
disease characterised by immune-mediated demyelination and axonal damage in the brain
and spinal cord, leading to progressive motor, sensory, and cognitive disabilities [157].
As the disease progresses, individuals become paralysed and require assistance with
daily activities.

A wide range of PET-based molecular imaging agents are currently available for
the diagnosis and assessment of treatment efficacy for AD [158]. Meanwhile, various
molecular imaging agents have been developed for preclinical research to investigate the
underlying molecular deficit related to neurodegeneration, particularly neuroinflammation,
which plays a key role in the initial onset of degenerative conditions. One promising
target is the peripheral benzodiazepine receptor (PBR), which is found at high levels in
activated microglial cells associated with neuroinflammation [159]. [11C]PK11195 is a
selective PET radioligand for PBR, and [11C]PK11195 labelling correlates with microglial
activation in transgenic mice with AD [160]. Thus, PBR represents an in vivo marker for
neuroinflammatory and neurodegenerative conditions, and [11C]PK11195 has been used to
visualise increased PBR expression in patients with MS and AD [161,162].

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated sodium channel that con-
tributes to various physiological process in the central nervous system, including neuronal
excitability and synaptic transmission. The primary function of ASIC1a is to sense and
respond to changes in extracellular pH. ASIC1a is activated by acidic conditions, and
thus the tissue acidosis that occurs during pathological processes such as tissue damage,
inflammation, and ischemia can activate ASIC1a [163]. ASIC1a is present in heart muscle
cells (cardiomyocytes) where it plays a central role in ischemic injuries of the heart such
as that which occurs during myocardial infarction (MI) [164]. The most potent known
inhibitor of this ion channel is peptide Hi1a from the venom of an Australian funnel-web
spider [165], and it was recently shown that following MI, fluorescently labelled Hi1a
(Hi1a-AF700) binds in an ASIC1a-dependent manner to the injured myocardium rather
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than healthy tissue [166]. This suggests that Hi1a could be used as tracer to monitor infarct
development during MI and possibly ischemic injuries of other organs.

Traditional methods for detecting and studying MS have involved lumbar puncture
and a range of imaging techniques such as MRI and PET. However, these approaches do
not provide information about anatomical and physiological changes at the molecular level.
Fluorescently-labelled venom peptides such as Hi1a that specifically bind ASIC1a might
allow visualisation of the expression levels and distribution of ASIC1a in MS patients, which
might provide insights into the underlying mechanisms of MS. In this way, researchers
could track the activation and involvement of ASIC1a in neuroinflammatory processes
in the brain. This could help elucidate the specific molecular pathways through which
ASIC1a modulates inflammation and identify potential targets for therapeutic intervention.
However, the poor BBB penetrability of most venom peptides presents a major challenge
for imaging receptors and ion channels in the CNS.

5. Conclusions

During hundreds of millions of years of evolution, natural selection has favoured the
accumulation of venom toxins that modulate the function of membrane receptors and ion
channels with high potency and selectivity. Venom-derived peptides have long been used
as imaging tools for elucidating the role of ion channels within complex biological systems.
Recent advances in optical imaging techniques and the increasing availability of clinically
approved fluorophores have expanded our ability to visualise targets of interest. Although
venom-derived peptides have shown promise in preclinical studies, they have not yet
achieved the same level of validation and acceptance as existing imaging agents. Despite
their numerous advantages, further research and development are needed to optimise
the design and clinical translation of venom-derived peptides for intraoperative imaging.
Nevertheless, the typical challenges associated with peptide-drug development, such
as large-scale manufacture and investigational new drug-enabling preclinical toxicology
studies, seem readily surmountable for venom-derived imaging agents because they are
used once-off in small amounts for in vivo imaging applications. A larger challenge will
be their application to CNS targets, but the success of CTX shows that even this barrier is
not insurmountable.
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