Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models
Abstract
:1. Introduction
2. Results
2.1. NOR-1202 Prevented Death in KA-Induced Acute Model
2.2. NOR-1202 Prevented Deaths in Pilocarpine-Induced Seizures, Acute Model
2.3. NOR-1202 Effect in Pilocarpine-Induced Seizures, Chronic Model
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Peptides
5.2. Animals
5.3. Neurosurgery
5.4. Epilepsy Model
5.4.1. Acute Epileptic Induced Model
5.4.2. Epileptic Screening
5.4.3. Temporal Lobe Epilepsy (TLE) Model
5.4.4. Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beghi, E. The Epidemiology of Epilepsy. Neuroepidemiology 2020, 54, 185–191. [Google Scholar] [CrossRef]
- de Araujo Filho, G.M.; Rosa, V.P.; Lin, K.; Caboclo, L.O.S.F.; Sakamoto, A.C.; Yacubian, E.M.T. Psychiatric Comorbidity in Epilepsy: A Study Comparing Patients with Mesial Temporal Sclerosis and Juvenile Myoclonic Epilepsy. Epilepsy Behav. 2008, 13, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Ertem, D.H.; Dirican, A.C.; Aydın, A.; Baybas, S.; Sözmen, V.; Ozturk, M.; Altunkaynak, Y. Exploring Psychiatric Comorbidities and Their Effects on Quality of Life in Patients with Temporal Lobe Epilepsy and Juvenile Myoclonic Epilepsy. Psychiatry Clin. Neurosci. 2017, 71, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Chen, Z.; Zheng, H.; Zhang, Y.; Xu, H.; Bu, G.; Zheng, H.; Li, Y. Compensatory Mechanisms Modulate the Neuronal Excitability in a Kainic Acid-Induced Epilepsy Mouse Model. Front. Neural Circuits 2018, 12, 48. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, C.; Shi, Y.; Guan, L.; Li, H.; Li, S.; Li, Y.; Zhang, Y.; Lin, J. Abnormal Neuronal Damage and Inflammation in the Hippocampus of Kainic Acid-induced Epilepsy Mice. Cell Biochem. Funct. 2021, 39, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Lévesque, M.; Biagini, G.; de Curtis, M.; Gnatkovsky, V.; Pitsch, J.; Wang, S.; Avoli, M. The Pilocarpine Model of Mesial Temporal Lobe Epilepsy: Over One Decade Later, with More Rodent Species and New Investigative Approaches. Neurosci. Biobehav. Rev. 2021, 130, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Hakami, T. Neuropharmacology of Antiseizure Drugs. Neuropsychopharmacol. Rep. 2021, 41, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E. The Pharmacological Treatment of Epilepsy: Recent Advances and Future Perspectives. Acta Epileptol. 2021, 3, 22. [Google Scholar] [CrossRef]
- Lewis, R.J.; Garcia, M.L. Therapeutic Potential of Venom Peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef]
- Mortari, M.R.; Cunha, A.O.S.; Dos Anjos, L.C.; Amaral, H.O.; Quintanilha, M.V.T.; Gelfuso, E.A.; Homem-de-Mello, M.; de Almeida, H.; Rego, S.; Maigret, B. A New Class of Peptides from Wasp Venom: A Pathway to Antiepileptic/Neuroprotective Drugs. Brain Commun. 2023, 5, fcad016. [Google Scholar] [CrossRef]
- Foster, A.C.; Kemp, J.A. Glutamate-and GABA-Based CNS Therapeutics. Curr. Opin. Pharmacol. 2006, 6, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.O.S.; Mortari, M.R.; Liberato, J.L.; Dos Santos, W.F. Neuroprotective Effects of Diazepam, Carbamazepine, Phenytoin and Ketamine after Pilocarpine-induced Status Epilepticus. Basic Clin. Pharmacol. Toxicol. 2009, 104, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Sarnowska, A.; Beręsewicz, M.; Zabłocka, B.; Domańska-Janik, K. Diazepam Neuroprotection in Excitotoxic and Oxidative Stress Involves a Mitochondrial Mechanism Additional to the GABAAR and Hypothermic Effects. Neurochem. Int. 2009, 55, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Pilipenko, V.; Narbute, K.; Pupure, J.; Rumaks, J.; Jansone, B.; Klusa, V. Neuroprotective Action of Diazepam at Very Low and Moderate Doses in Alzheimer’s Disease Model Rats. Neuropharmacology 2019, 144, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, D.; Ronald, A.K. A Review of the Effects of Diazepam on Cognitive and Psychomotor Performance. J. Nerv. Ment. Dis. 1975, 161, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Boddu, S.H.S.; Kumari, S. A Short Review on the Intranasal Delivery of Diazepam for Treating Acute Repetitive Seizures. Pharmaceutics 2020, 12, 1167. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; White, H.S. Animal Models of Drug-Resistant Epilepsy as Tools for Deciphering the Cellular and Molecular Mechanisms of Pharmacoresistance and Discovering More Effective Treatments. Cells 2023, 12, 1233. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W. Animal Models of Seizures and Epilepsy: Past, Present, and Future Role for the Discovery of Antiseizure Drugs. Neurochem. Res. 2017, 42, 1873–1888. [Google Scholar] [CrossRef] [PubMed]
- Ordu, E.B.; Yelboğa, E.; Secundo, F.; Sessions, R.B.; Karagüler, N.G. The Effect of Methionine to Cysteine Substitution on the Stability of Formate Dehydrogenase from Candida Methylica. J. Mol. Catal. B Enzym. 2012, 82, 109–114. [Google Scholar] [CrossRef]
- Oh, K.-H.; Nam, S.-H.; Kim, H.-S. Improvement of Oxidative and Thermostability of N-Carbamyl-D-Amino Acid Amidohydrolase by Directed Evolution. Protein Eng. 2002, 15, 689–695. [Google Scholar] [CrossRef]
- Ju, S.-S.; Lin, L.-L.; Chien, H.R.; Hsu, W.-H. Substitution of the Critical Methionine Residues in Trigonopsis Variabilis D-Amino Acid Oxidase with Leucine Enhances Its Resistance to Hydrogen Peroxide. FEMS Microbiol. Lett. 2000, 186, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Radchenko, D.S.; Kattge, S.; Kara, S.; Ulrich, A.S.; Afonin, S. Does a Methionine-to-Norleucine Substitution in PGLa Influence Peptide-Membrane Interactions? Biochim. Biophys. Acta (BBA)-Biomembr. 2016, 1858, 2019–2027. [Google Scholar] [CrossRef] [PubMed]
- Keck, R.G. The Use of T-Butyl Hydroperoxide as a Probe for Methionine Oxidation in Proteins. Anal. Biochem. 1996, 236, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Stadtman, E.R. Protein Oxidation and Aging. Science 1992, 257, 1220–1224. [Google Scholar] [CrossRef] [PubMed]
- Gozes, I.; Reshef, A.; Salah, D.; Rubinraut, S.; Fridkin, M. Stearyl-Norleucine-Vasoactive Intestinal Peptide (VIP): A Novel VIP Analog for Noninvasive Impotence Treatment. Endocrinology 1994, 134, 2121–2125. [Google Scholar] [CrossRef] [PubMed]
- Gozes, I.; Bachar, M.; Bardea, A.; Davidson, A.; Rubinraut, S.; Fridkin, M. Protection against Developmental Deficiencies by a Lipophilic VIP Analogue. Neurochem. Res. 1998, 23, 689–693. [Google Scholar] [CrossRef]
- Goursaud, S.; Schäfer, S.; Dumont, A.O.; Vergouts, M.; Gallo, A.; Desmet, N.; Deumens, R.; Hermans, E. The Anti-Inflammatory Peptide Stearyl-Norleucine-VIP Delays Disease Onset and Extends Survival in a Rat Model of Inherited Amyotrophic Lateral Sclerosis. Exp. Neurol. 2015, 263, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Eger, M.; Liron, T.; Hiram-Bab, S.; Awida, Z.; Giladi, E.; Dangoor, D.; Fridkin, M.; Kohavi, D.; Gozes, I.; Gabet, Y. Therapeutic Potential of Vasoactive Intestinal Peptide and Its Derivative Stearyl-Norleucine-Vip in Inflammation-Induced Osteolysis. Front. Pharmacol. 2021, 12, 638128. [Google Scholar] [CrossRef] [PubMed]
- Lopes, K.S.; Quintanilha, M.V.T.; de Souza, A.C.B.; Zamudio-Zuñiga, F.; Possani, L.D.; Mortari, M.R. Antiseizure Potential of Peptides from the Venom of Social Wasp Chartergellus Communis against Chemically-Induced Seizures. Toxicon 2021, 194, 23–36. [Google Scholar] [CrossRef]
- Ahn, Y.-J.; Shin, H.-J.; Jeong, E.-A.; An, H.-S.; Lee, J.-Y.; Jang, H.-M.; Kim, K.-E.; Lee, J.; Shin, M.-C.; Roh, G.-S. Exendin-4 Pretreatment Attenuates Kainic Acid-Induced Hippocampal Neuronal Death. Cells 2021, 10, 2527. [Google Scholar] [CrossRef]
- Paxinos, G.; Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates; Academic Press: San Diego, CA, USA, 2001; 296p. [Google Scholar]
- Clifford, D.B.; Olney, J.W.; Maniotis, A.; Collins, R.C.; Zorumski, C.F. The Functional Anatomy and Pathology of Lithium-Pilocarpine and High-Dose Pilocarpine Seizures. Neuroscience 1987, 23, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Racine, R.J. Modification of Seizure Activity by Electrical Stimulation: II. Motor Seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef] [PubMed]
- Shibley, H.; Smith, B.N. Pilocarpine-Induced Status Epilepticus Results in Mossy Fiber Sprouting and Spontaneous Seizures in C57BL/6 and CD-1 Mice. Epilepsy Res. 2002, 49, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Pinel, J.P.J.; Rovner, L.I. Experimental Epileptogenesis: Kindling-Induced Epilepsy in Rats. Exp. Neurol. 1978, 58, 190–202. [Google Scholar] [CrossRef] [PubMed]
Group | Treatment | Chemical Induction |
---|---|---|
Vehicle (n = 8) | 0.9% saline + 10%DMSO | |
DZP (n = 8) | 4 mg/kg, i.p. | KA (i.c.v.) |
NOR-1202 (n = 8/group) | 6 μg/mouse, i.c.v. | |
3 μg/mouse, i.c.v. | ||
0.3 μg/mouse, i.c.v. | ||
DZP (n = 8) | 4 mg/kg, i.p. | Pilocarpine (i.p.) |
NOR-1202 (n = 8/group) | 6 μg/mouse i.c.v. | |
3 μg/mouse i.c.v. | ||
0.3 μg/mouse i.c.v. | ||
4 mg/kg i.p. | ||
8 mg/kg i.p. | ||
4 mg/kg s.c. |
Scale | Evaluation |
---|---|
1 and 2 | Facial automatism, tail stiffness, short-term tremors, freezing before previous behaviors |
3 | Low-intensity tonic-clonic seizures, unilateral myoclonic of limbs |
4 | Bilateral myoclonic of limbs |
5 | General seizures |
Scale | Evaluation |
---|---|
1 and 2 | Orofacial movement and myoclonic of head |
3 | Myoclonic of anterior paws |
4 and 5 | Elevation and fall |
6 | All of the above in sequence |
7 | Vocalization, rolling and repeated violent jumps, in addition to a period of hypertonus |
Group | Treatment | Chemical Induction |
---|---|---|
Sham (n = 5) | 0.9% saline + 10%DMSO (1 μL; i.c.v.) | No induction |
Epileptic (n = 5) | 0.9% saline + 10%DMSO (1 μL; i.c.v.) | Pilocarpine (i.p.) |
NOR-1202 (n = 8) | ED50 dose (0.8722 μg/mouse; i.c.v.) | Pilocarpine (i.p.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quintanilha, M.V.T.; Gobbo, G.d.A.M.; Pinheiro, G.B.; Souza, A.C.B.d.; Camargo, L.C.; Mortari, M.R. Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models. Toxins 2024, 16, 342. https://doi.org/10.3390/toxins16080342
Quintanilha MVT, Gobbo GdAM, Pinheiro GB, Souza ACBd, Camargo LC, Mortari MR. Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models. Toxins. 2024; 16(8):342. https://doi.org/10.3390/toxins16080342
Chicago/Turabian StyleQuintanilha, Maria Varela Torres, Giovanna de Azevedo Mello Gobbo, Gabriela Beserra Pinheiro, Adolfo Carlos Barros de Souza, Luana Cristina Camargo, and Marcia Renata Mortari. 2024. "Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models" Toxins 16, no. 8: 342. https://doi.org/10.3390/toxins16080342
APA StyleQuintanilha, M. V. T., Gobbo, G. d. A. M., Pinheiro, G. B., Souza, A. C. B. d., Camargo, L. C., & Mortari, M. R. (2024). Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models. Toxins, 16(8), 342. https://doi.org/10.3390/toxins16080342