Modulation of Growth and Mycotoxigenic Potential of Pineapple Fruitlet Core Rot Pathogens during In Vitro Interactions
Abstract
:1. Introduction
2. Results
2.1. Dynamic Evolution of Fungal Colonies
2.2. Influence of FCR Pathogen Co-Cultivation on Growth and Inhibition Patterns
2.3. Modulation of Mycotoxin Production during Co-Culture Bioassays
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Microbial Material
5.1.1. Fungal Strains
DNA Extraction
Molecular Characterization
5.1.2. Co-Culture Bioassays
5.2. Mycotoxin Identification and Quantification
5.2.1. Extraction Procedure
5.2.2. Tandem Mass Spectrometry Assay
UHPLC MS/MS Analysis
UHPLC Conditions
MS/MS Conditions
Standard Solution
5.3. Computational Analysis
5.3.1. Calculations of Areas and Inhibition Ratios
5.3.2. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, H.; Zhan, R.L.; Zhang, L.B.; Gong, D.Q.; Jia, Z.W. First Report of Fusarium Ananatum Causing Pineapple Fruitlet Core Rot in China. Plant Dis. 2015, 99, 1653. [Google Scholar] [CrossRef]
- Jacobs, A.; Wyk, P.S.; Marasas, W.F.O.; Wingfield, B.D.; Wingfield, M.J.; Coutinho, T.A. Fusarium Ananatum Sp. Nov. in the Gibberella Fujikuroi Species Complex from Pineapples with Fruit Rot in South Africa. Fungal Biol. 2010, 114, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Barral, B.; Chillet, M.; Minier, J.; Léchaudel, M.; Schorr-Galindo, S. Evaluating the response to Fusarium ananatum inoculation and antifungal activity of phenolic acids in pineapple. Fungal Biol. 2017, 121, 1045–1053. [Google Scholar] [CrossRef]
- Barral, B.; Chillet, M.; Léchaudel, M.; Lartaud, M.; Verdeil, J.-L.; Conéjéro, G. An Imaging Approach to Identify Mechanisms of Resistance to Pineapple Fruitlet Core Rot. Front. Plant Sci. 2019, 10, 1065. [Google Scholar] [CrossRef] [PubMed]
- Mourichon, X. Pineapple Fruitlet Core Rot (Black Spot) and Leathery Pocket: Review and Prospects. Acta Hortic. 1997, 425, 501–508. [Google Scholar] [CrossRef]
- Vignassa, M.; Meile, J.-C.; Chiroleu, F.; Soria, C.; Leneveu-Jenvrin, C.; Schorr-Galindo, S. Pineapple Mycobiome Related to Fruitlet Core Rot Occurrence and the Influence of Fungal Species Dispersion Patterns. JoF 2021, 7, 175. [Google Scholar] [CrossRef]
- Li, Z.F.; He, C.L.; Wang, Y.; Li, M.J.; Dai, Y.J.; Wang, T. Enhancement of trichothecene mycotoxins of Fusarium oxysporum by ferulic acid aggravates oxidative damage in Rehmannia glutinosa Libosch. Sci. Rep. 2016, 6, 33962. [Google Scholar] [CrossRef]
- Gálvez, L.; Urbaniak, M.; Waśkiewicz, A.; Stępień, Ł.; Palmero, D. Fusarium proliferatum—Causal Agent of Garlic Bulb Rot in Spain: Genetic Variability and Mycotoxin Production. Food Microbiol. 2017, 67, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Gong, L.; Jiang, G.; Wang, Y.; Gupta, V.K.; Qu, H. Carbon sources influence fumonisin production in Fusarium proliferatum. Proteomics 2017, 17, 1700070. [Google Scholar] [CrossRef]
- Shao, C.; Xiang, D.; Wei, H.; Liu, S.; Yi, G.; Lyu, S. Predicting Virulence of Fusarium Oxysporum f. Sp. Cubense Based on the Production of Mycotoxin Using a Linear Regression Model. Toxins 2020, 12, 254. [Google Scholar] [CrossRef]
- Hussein, H.S.; Brasel, J.M. Toxicity, Metabolism, and Impact of Mycotoxins on Humans and Animals. Toxicology 2001, 167, 101–134. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority Mycotoxins. Available online: https://www.efsa.europa.eu/en/topics/topic/mycotoxins (accessed on 1 July 2024).
- Stępień, Ł.; Koczyk, G.; Waśkiewicz, A. Diversity of Fusarium species and mycotoxins contaminating pineapple. J. Appl. Genet. 2013, 54, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Barral, B.; Chillet, M.; Doizy, A.; Grassi, M.; Ragot, L.; Léchaudel, M. Diversity and Toxigenicity of Fungi That Cause Pineapple Fruitlet Core Rot. Toxins 2020, 12, 339. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.S.; Al-Taher, F. Factors Affecting Mycotoxin Production in Fruits. In Mycotoxins in Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2008; pp. 75–104. [Google Scholar]
- Kumar, D.; Barad, S.; Sionov, E.; Keller, N.; Prusky, D. Does the Host Contribute to Modulation of Mycotoxin Production by Fruit Pathogens? Toxins 2017, 9, 280. [Google Scholar] [CrossRef]
- Fournier, P.; Benneveau, A.; Hardy, C.; Chillet, M.; Léchaudel, M. A Predictive Model Based on a Pluviothermic Index for Leathery Pocket and Fruitlet Core Rot of Pineapple cv. ‘Queen’. Eur. J. Plant Pathol. 2015, 142, 449–460. [Google Scholar] [CrossRef]
- Moss, M.O. Fungi, Quality and Safety Issues in Fresh Fruits and Vegetables. J. Appl. Microbiol. 2008, 104, 1239–1243. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Cruz, M.L.; Mansilla, M.L.; Tadeo, J.L. Mycotoxins in Fruits and Their Processed Products: Analysis, Occurrence and Health Implications. J. Adv. Res. 2010, 1, 113–122. [Google Scholar] [CrossRef]
- Spadaro, D.; Ciavorella, A.; Frati, S.; Garibaldi, A.; Gullino, M.L. Incidence and Level of Patulin Contamination in Pure and Mixed Apple Juices Marketed in Italy. Food Control 2007, 18, 1098–1102. [Google Scholar] [CrossRef]
- Puel, O.; Galtier, P.; Oswald, I. Biosynthesis and Toxicological Effects of Patulin. Toxins 2010, 2, 613–631. [Google Scholar] [CrossRef]
- Coton, M.; Bregier, T.; Poirier, E.; Debaets, S.; Arnich, N.; Coton, E. Production and Migration of Patulin in Penicillium Expansum Molded Apples during Cold and Ambient Storage. Int. J. Food Microbiol. 2020, 313, 108377. [Google Scholar] [CrossRef]
- Diamond, M.; Reape, T.J.; Rocha, O.; Doyle, S.M.; Kacprzyk, J.; Doohan, F.M. The Fusarium Mycotoxin Deoxynivalenol Can Inhibit Plant Apoptosis-like Programmed Cell Death. PLoS ONE 2013, 8, 69542. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Tahir, H.; Zhang, H.; Huang, H.; Ji, T.; Sun, X. Involvement of FvSet1 in Fumonisin B1 Biosynthesis, Vegetative Growth, Fungal Virulence, and Environmental Stress Responses in Fusarium Verticillioides. Toxins 2017, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Ridenour, J.B.; Bluhm, B.H. The Novel Fungal-specific Gene FUG1 Has a Role in Pathogenicity and Fumonisin Biosynthesis in Fusarium verticillioides. Mol. Plant Pathol. 2017, 18, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.-J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F. Fusarium Pathogenomics. Annu. Rev. Microbiol. 2013, 67, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Schlaeppi, K.; Heijden, M.G.A. Keystone Taxa as Drivers of Microbiome Structure and Functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Vinale, F.; Marra, R.; Scala, F.; Ghisalberti, E.L.; Lorito, M.; Sivasithamparam, K. Major Secondary Metabolites Produced by Two Commercial Trichoderma Strains Active against Different Phytopathogens. Lett. Appl. Microbiol. 2006, 43, 143–148. [Google Scholar] [CrossRef]
- You, F.; Han, T.; Wu, J.; Huang, B.; Qin, L. Antifungal Secondary Metabolites from Endophytic Verticillium sp. Biochem. Syst. Ecol. 2009, 37, 162–165. [Google Scholar] [CrossRef]
- Combès, A.; Ndoye, I.; Bance, C.; Bruzaud, J.; Djediat, C.; Dupont, J. Chemical Communication between the Endophytic Fungus Paraconiothyrium Variabile and the Phytopathogen Fusarium Oxysporum. PLoS ONE 2012, 7, 47313. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.L.; Raja, H.A.; Wright, A.J.; Lee, A.M.L.; Caesar, L.K.; Cech, N.B. Mapping the Fungal Battlefield: Using in Situ Chemistry and Deletion Mutants to Monitor Interspecific Chemical Interactions between Fungi. Front. Microbiol. 2019, 10, 285. [Google Scholar] [CrossRef]
- Sarrocco, S.; Mauro, A.; Battilani, P. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins 2019, 11, 701. [Google Scholar] [CrossRef]
- Pellan, L.; Durand, N.; Martinez, V.; Fontana, A.; Schorr-Galindo, S.; Strub, C. Commercial biocontrol agents reveal contrasting comportments against two mycotoxigenic fungi in cereals: Fusarium graminearum and Fusarium verticillioides. Toxins 2020, 12, 152. [Google Scholar] [CrossRef] [PubMed]
- Wicklow, D.T. The Fungal Community: Its Organization and Role in the Ecosystem. In Supplied by U.S. Department of Agriculture, National Center 624 for Agricultural Utilization Research; CRC Press: Peoria, IL, USA, 1992; p. 11. [Google Scholar]
- Ghoul, M.; Mitri, S. The Ecology and Evolution of Microbial Competition. Trends Microbiol. 2016, 24, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.R.; Doohan, F.M. Bacterium-Mediated Control of Fusarium Head Blight Disease of Wheat and Barley and Associated Mycotoxin Contamination of Grain. Biol. Control 2009, 48, 42–47. [Google Scholar] [CrossRef]
- Müller, M.E.H.; Steier, I.; Köppen, R.; Siegel, D.; Proske, M.; Korn, U. Cocultivation of Phytopathogenic Fusarium and Alternaria Strains Affects Fungal Growth and Mycotoxin Production. J. Appl. Microbiol. 2012, 113, 874–887. [Google Scholar] [CrossRef] [PubMed]
- Milles, J.; Krämer, J.; Prange, A. In vitro competitive interactions of Fusarium graminearum with Aspergillus ochraceus and Penicillium verrucosum with regard to mycotoxin production. J. Food Agric. Environ. 2007, 5, 384–388. [Google Scholar]
- Ridout, M.E.; Godfrey, B.; Newcombe, G. Effects of Antagonists on Mycotoxins of Seedborne Fusarium spp. in Sweet Corn. Toxins 2019, 11, 438. [Google Scholar] [CrossRef] [PubMed]
- López-Berges, M.S.; Hera, C.; Sulyok, M.; Schäfer, K.; Capilla, J.; Guarro, J. The Velvet Complex Governs Mycotoxin Production and Virulence of Fusarium oxysporum on Plant and Mammalian Hosts: Velvet Governs Mycotoxins and Virulence in Fusarium. Mol. Microbiol. 2013, 87, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Bärenstrauch, M.; Mann, S.; Jacquemin, C.; Bibi, S.; Sylla, O.-K.; Baudouin, E. Molecular Crosstalk between the Endophyte Paraconiothyrium variabile and the Phytopathogen Fusarium oxysporum—Modulation of Lipoxygenase Activity and Beauvericin Production during the Interaction. Fungal Genet. Biol. 2020, 139, 103383. [Google Scholar] [CrossRef]
- Marmann, A.; Aly, A.; Lin, W.; Wang, B.; Proksch, P. Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms. Mari. Drugs 2014, 12, 1043–1065. [Google Scholar] [CrossRef]
- Barral, B. Maladie des Taches Noires de L’ananas: Étude des Relations Hôte-Pathogène et Compréhension des Mécanismes Physiologiques de Résistance; Université de Montpellier: Saint-Pierre, France, 2017. [Google Scholar]
- Wigmann, É.F.; Behr, J.; Vogel, R.F.; Niessen, L. MALDI-TOF MS Fingerprinting for Identification and Differentiation of Species within the Fusarium fujikuroi Species Complex. Appl. Microbiol. Biotechnol. 2019, 103, 5323–5337. [Google Scholar] [CrossRef]
- Yilmaz, N.; Houbraken, J.; Hoekstra, E.S.; Frisvad, J.C.; Visagie, C.M.; Samson, R.A. Delimitation and Characterisation of Talaromyces purpurogenus and Related Species. Pers.-Int. Mycol. J. 2012, 29, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, S.; Schumpp, O.; Bohni, N.; Bujard, A.; Azzollini, A.; Monod, M. Detection of Metabolite Induction in Fungal Co-Cultures on Solid Media by High-Throughput Differential Ultra-High Pressure Liquid Chromatography–Time-of-Flight Mass Spectrometry Fingerprinting. J. Chromatogr. A 2013, 1292, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Losada, L.; Ajayi, O.; Frisvad, J.C.; Yu, J.; Nierman, W.C. Effect of Competition on the Production and Activity of Secondary Metabolites in Aspergillus Species. Med. Mycol. 2009, 47, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Fox, E.M.; Howlett, B.J. Secondary Metabolism: Regulation and Role in Fungal Biology. Curr. Opin. Microbiol. 2008, 11, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Costa Souza, P.; Luiza Bim Grigoletto, T.; Moraes, L.; Abreu, L.M.; Henrique Souza Guimarães, L.; Santos, C. Production and Chemical Characterization of Pigments in filamentous fungi. Microbiology 2016, 162, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muñoz, S.; Mariano-Silva, G.; Leite, M.O.; Mura, F.B.; Verma, M.L.; Silva, S.S. Production of Fungal and Bacterial Pigments and Their Applications. In Biotechnological Production of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–361. ISBN 978-0-444-64323-0. [Google Scholar]
- Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014, 78, 175–341. [Google Scholar] [CrossRef]
- Lebeau, J.; Petit, T.; Clerc, P.; Dufossé, L.; Caro, Y. Isolation of Two Novel Purple Naphthoquinone Pigments Concomitant with the Bioactive Red Bikaverin and Derivates Thereof Produced by Fusarium oxysporum. Biotechnol. Prog. 2019, 35, 2738. [Google Scholar] [CrossRef]
- Lebeau, J.; Petit, T.; Dufossé, L.; Caro, Y. Putative Metabolic Pathway for the Bioproduction of Bikaverin and Intermediates Thereof in the Wild Fusarium oxysporum LCP531 Strain. AMB Express 2019, 9, 186. [Google Scholar] [CrossRef]
- Gasser, K.; Sulyok, M.; Spangl, B.; Krska, R.; Steinkellner, S.; Hage-Ahmed, K. Fusarium proliferatum Secondary Metabolite Profile in Vitro Depends on the Origin of the Isolates and Is Clearly Reduced in Stored Garlic. Postharvest Biol. Technol. 2023, 200, 112312. [Google Scholar] [CrossRef]
- Studt, L.; Wiemann, P.; Kleigrewe, K.; Humpf, H.-U.; Tudzynski, B. Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl. Environ. Microbiol. 2012, 78, 4468–4480. [Google Scholar] [CrossRef]
- Lagashetti, A.C.; Dufossé, L.; Singh, S.K.; Singh, P.N. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 2019, 7, 604. [Google Scholar] [CrossRef]
- Son, S.W.; Kim, H.Y.; Choi, G.J.; Lim, H.K.; Jang, K.S.; Lee, S.O. Bikaverin and Fusaric Acid from Fusarium oxysporum Show Antioomycete Activity against Phytophthora infestans. J. Appl. Microbiol. 2008, 104, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Dullah, S.; Hazarika, D.J.; Goswami, G.; Borgohain, T.; Ghosh, A.; Barooah, M.; Bhattacharyya, A.; Boro, R.C. Melanin Production and Laccase Mediated Oxidative Stress Alleviation during Fungal-Fungal Interaction among Basidiomycete Fungi. IMA Fungus 2021, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Stępień, Ł.; Waśkiewicz, A. Sequence Divergence of the Enniatin Synthase Gene in Relation to Production of Beauvericin and Enniatins in Fusarium Species. Toxins 2013, 5, 537–555. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.F.; Mohd, M.H.; Mohamed Nor, N.M.I.; Zakaria, L. Mycotoxigenic Potential of Fusarium Species Associated with Pineapple Diseases. Arch. Phytopathol. Plant Prot. 2020, 53, 217–229. [Google Scholar] [CrossRef]
- Venkatesh, N.; Keller, N.P. Mycotoxins in Conversation with Bacteria and Fungi. Front. Microbiol. 2019, 10, 403. [Google Scholar] [CrossRef]
- Zheng, H.; Kim, J.; Liew, M.; Yan, J.K.; Herrera, O.; Bok, J.W. Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr. Biol. 2015, 25, 29–37. [Google Scholar] [CrossRef]
- Camardo Leggieri, M.; Giorni, P.; Pietri, A.; Battilani, P. Aspergillus flavus and Fusarium verticillioides Interaction: Modeling the Impact on Mycotoxin Production. Front. Microbiol. 2019, 10, 2653. [Google Scholar] [CrossRef]
- Lee, K.; Pan, J.J.; May, G. Endophytic Fusarium Verticillioides Reduces Disease Severity Caused by Ustilago Maydis on Maize. FEMS Microbiol. Lett. 2009, 299, 31–37. [Google Scholar] [CrossRef]
- Rodriguez Estrada, A.E.; Hegeman, A.; Corby Kistler, H.; May, G. In Vitro Interactions between Fusarium verticillioides and Ustilago maydis through Real-Time PCR and Metabolic Profiling. Fungal Genet. Biol. 2011, 48, 874–885. [Google Scholar] [CrossRef]
- Jonkers, W.; Rodriguez Estrada, A.E.; Lee, K.; Breakspear, A.; May, G.; Kistler, H.C. Metabolome and Transcriptome of the Interaction between Ustilago maydis and Fusarium verticillioides In Vitro. Appl. Environ. Microbiol. 2012, 78, 3656–3667. [Google Scholar] [CrossRef] [PubMed]
- Perincherry, L.; Lalak-Kańczugowska, J.; Stępień, Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins 2019, 11, 664. [Google Scholar] [CrossRef]
- Baldwin, T.T.; Zitomer, N.C.; Mitchell, T.R.; Zimeri, A.-M.; Bacon, C.W.; Riley, R.T. Maize Seedling Blight Induced by Fusarium verticillioides: Accumulation of Fumonisin B1 in Leaves without Colonization of the Leaves. J. Agric. Food Chem. 2014, 62, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Parnell, S.; Gottwald, T.R.; Gilligan, C.A.; Cunniffe, N.J.; Bosch, F. The effect of landscape pattern on the optimal eradication zone of an invading epidemic. Phytopathology® 2010, 100, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Almaguer, M.; Aira, M.-J.; Rodríguez-Rajo, F.J.; Rojas, T.I. Temporal Dynamics of Airborne Fungi in Havana (Cuba) during Dry and Rainy Seasons: Influence of Meteorological Parameters. Int. J. Biometeorol. 2014, 58, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, A.C.; Castroverde, C.D.M.; He, S.Y. Plant–Pathogen Warfare under Changing Climate Conditions. Curr. Biol. 2018, 28, 619–634. [Google Scholar] [CrossRef]
- Picot, A.; Hourcade-Marcolla, D.; Barreau, C.; Pinson-Gadais, L.; Caron, D.; Richard-Forget, F. Interactions between Fusarium verticillioides and Fusarium graminearum in Maize Ears and Consequences for Fungal Development and Mycotoxin Accumulation: Fusarium spp. Interactions in Maize Ears. Plant Pathol. 2012, 61, 140–151. [Google Scholar] [CrossRef]
- Dita, M.; Barquero, M.; Heck, D.; Mizubuti, E.S.G.; Staver, C.P. Fusarium Wilt of Banana: Current Knowledge on Epidemiology and Research Needs toward Sustainable Disease Management. Front. Plant Sci. 2018, 9, 1468. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.; Penton, C.R.; Geisen, S.; Shen, Z.; Sun, Y.; Lv, N. Deciphering underlying drivers of disease suppressiveness against pathogenic Fusarium oxysporum. Front. Microbiol. 2019, 10, 2535. [Google Scholar] [CrossRef]
- Leneveu-Jenvrin, C.; Quentin, B.; Assemat, S.; Hoarau, M.; Meile, J.-C.; Remize, F. Changes of Quality of Minimally-Processed Pineapple (Ananas Comosus, Var. ‘Queen Victoria’) during Cold Storage: Fungi in the Leading Role. Microorganisms 2020, 8, 185. [Google Scholar] [CrossRef]
- O’Donnell, K.; Cigelnik, E.; Nirenberg, H.I. Molecular Systematics and Phylogeography of the Gibberella fujikuroi Species Complex. Mycologia 1998, 90, 465–493. [Google Scholar] [CrossRef]
- O’Donnell, K.; Kistler, H.C.; Cigelnik, E.; Ploetz, R.C. Multiple Evolutionary Origins of the Fungus Causing Panama Disease of Banana: Concordant Evidence from Nuclear and Mitochondrial Gene Genealogies. Proc. Natl. Acad. Sci. USA 1998, 95, 2044–2049. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xing, M.; Kong, C.; Fang, Z.; Yang, L.; Zhang, Y. Genetic Diversity, Virulence, Race Profiling, and Comparative Genomic Analysis of the Fusarium oxysporum f. sp. conglutinans Strains Infecting Cabbages in China. Front. Microbiol. 2019, 10, 1373. [Google Scholar] [CrossRef]
- Glass, N.L.; Donaldson, G.C. Development of Primer Sets Designed for Use with the PCR to Amplify Conserved Genes from filamentous ascomycetes. Appl. Environ. Microbiol. 1995, 61, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar]
- Gardes, M.; Bruns, T.D. ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, S.; Azzollini, A.; Schumpp, O.; Bohni, N.; Schrenzel, J.; Monod, M. Multi-Well Fungal Co-Culture for de Novo Metabolite-Induction in Time-Series Studies Based on Untargeted Metabolomics. Mol. BioSyst. 2014, 10, 2289–2298. [Google Scholar] [CrossRef] [PubMed]
- Capodanno, E.; Moreau, S.; Levi, M.; Shimadzu Corporation. Rapid Simultaneous Assay of 23 Mycotoxines in a Variety of Food Samples by UHPLC-MS/MS Using Fast Polarity Switching. PO-CON1350E. 2013. [Google Scholar]
- Moreau, S.; Levi, M.; Shimadzu Corporation. Highly Sensitive and Rapid Simultaneous Method for 45 Mycotoxins in Baby Food Samples by HPLC-MS/MS Using Fast Polarity Switching. PO-CON1480E. 2014. [Google Scholar]
- Abràmoff, M.D.; Magalhães, P.J.; Ram, S.J. Image Processing with ImageJ. Biophotonics Int. 2004, 11, 36–42. [Google Scholar]
- Hamzah, T.N.T.; Lee, S.Y.; Hidayat, A.; Terhem, R.; Faridah-Hanum, I.; Mohamed, R. Diversity and Characterization of Endophytic Fungi Isolated from the Tropical Mangrove Species, Rhizophora Mucronata, and Identification of Potential Antagonists against the Soil-Borne Fungus, Fusarium solani. Front. Microbiol. 2018, 9, 1707. [Google Scholar] [CrossRef]
Sequence ID of Primer Pair | Target Locus | Forward Sequence (5′→3′) | Reverse Sequence (5′→3′) | Product Length (bp) | References |
---|---|---|---|---|---|
ef1/ef2 | Translation Elongation Factor-1α | ATGGGTAAGGAAGACAAGAC | GGAAGTACCAGTGATCATGTT | 380–680 | [76,77,78] |
Bt2a/Bt2b | β-Tubulin | GGTAACCAAATCGGTGCTGCTTTC | ACCCTCAGTGTAGTGACCCTTGGC | 250–500 | [79] |
ITS1F/ITS4 | Entire Internal Transcribed Spacer | CTTGGTCATTTAGAGGAAGTAA | TCCTCCGCTTATTGATATGC | 600–800 | [80,81] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vignassa, M.; Soria, C.; Durand, N.; Poss, C.; Meile, J.-C.; Chillet, M.; Schorr-Galindo, S. Modulation of Growth and Mycotoxigenic Potential of Pineapple Fruitlet Core Rot Pathogens during In Vitro Interactions. Toxins 2024, 16, 344. https://doi.org/10.3390/toxins16080344
Vignassa M, Soria C, Durand N, Poss C, Meile J-C, Chillet M, Schorr-Galindo S. Modulation of Growth and Mycotoxigenic Potential of Pineapple Fruitlet Core Rot Pathogens during In Vitro Interactions. Toxins. 2024; 16(8):344. https://doi.org/10.3390/toxins16080344
Chicago/Turabian StyleVignassa, Manon, Christian Soria, Noël Durand, Charlie Poss, Jean-Christophe Meile, Marc Chillet, and Sabine Schorr-Galindo. 2024. "Modulation of Growth and Mycotoxigenic Potential of Pineapple Fruitlet Core Rot Pathogens during In Vitro Interactions" Toxins 16, no. 8: 344. https://doi.org/10.3390/toxins16080344
APA StyleVignassa, M., Soria, C., Durand, N., Poss, C., Meile, J. -C., Chillet, M., & Schorr-Galindo, S. (2024). Modulation of Growth and Mycotoxigenic Potential of Pineapple Fruitlet Core Rot Pathogens during In Vitro Interactions. Toxins, 16(8), 344. https://doi.org/10.3390/toxins16080344