The Effect of Botulinum Neurotoxin-A (BoNT-A) on Muscle Strength in Adult-Onset Neurological Conditions with Focal Muscle Spasticity: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Included Studies
2.2. Study Characteristics
2.3. Strength Outcomes
2.3.1. Strength Outcome Measurement
2.3.2. Strength Terminology and Units
2.4. Strength Results
2.4.1. Agonist Muscle Strength—Upper Limb (Table 3)
UL SPECIFIC MUSCLE GROUPS | Outcome Measure | Joint | Agonist | ≤6/52 | >6/52–≤3/12 | >3/12–≤6/12 | ||||||
Stronger | NS | Weaker | Stronger | NS | Weaker | Stronger | NS | Weaker | ||||
Isometric (Nm) | Elbow | Flexor | [30] N | [69] | [68] | |||||||
MRC (0–5) | [90] § [90] ∞ | |||||||||||
MRC (0–5) | Wrist | Flexor | [90] § [90] ∞ | [82] | ||||||||
MRC (0–5) | Finger | Flexor | [75] * | |||||||||
LL SPECIFIC MUSCLE GROUPS | MRC (0–5) | Hip | Adductor | [48] | ||||||||
Isokinetic—Peak torque 60°/s (Nm) | Knee | Extensors | [19] ª∆Ω | |||||||||
MVC—Isometric torque 40°/60° (Nm) | [33] | |||||||||||
MVC—Concentric torque 30°/s/60°/s/90°/s (Nm) | [33] | |||||||||||
MVC—Isokinetic—Concentric 60° (Nm) | Ankle | Plantar flexors | [32] C [32] E | [32] E | [32] C | |||||||
QMA (kg) | [70] | |||||||||||
MRC (0–5) | [70] | [48] [46] | [70] [46] [81] |
2.4.2. Agonist Muscle Strength—Lower Limb (Table 3)
2.4.3. Antagonist Muscle Strength—Upper Limb (Table 4)
UL SPECIFIC MUSCLE GROUPS | Outcome Measure | Joint | Antagonist | ≤6/52 | >6/52–≤3/12 | >3–≤6/12 | ||||||
Stronger | NS | Weaker | Stronger | NS | Weaker | Stronger | NS | Weaker | ||||
MVC—Isometric (Nm) | Elbow | Extensor | [30] N | |||||||||
MRC (0–5) | [90] § | [90] ∞ | ||||||||||
MRC (0–5) | Wrist | Extensor | [90] § [90] ∞ | [82] | ||||||||
MRC (0–5) | Finger | Extensor | [75] * | [82] | ||||||||
LL SPECIFIC MUSCLE GROUPS | MVC—Isometric torque 40°/60° (Nm) | Knee | Flexor | [33] | ||||||||
MVC—Concentric torque 30°/s 60°/s (Nm) | [33] | |||||||||||
MVC—Concentric torque 90°/s (Nm) | [33] | |||||||||||
MVC—Isokinetic torque 60° (Nm) | Ankle | Dorsiflexors | [32] E [32] C | [32] E | [32] C | |||||||
MRC (0–5) | [45] G1* [45] G2* [54] E*† [54] C*† [47] Ta # [47] Ca # [47] St # | [54] E † [54] C † [45] G1 [45] G2 [46] [47] Ta # [47] Ca # [47] St # | [83] R, L [46] |
2.4.4. Antagonist Muscle Strength—Lower Limb (Table 4)
2.4.5. Global Muscle Strength—Upper and Lower Limb (Table 5)
Movement | Outcome Measure | ≤6/52 | >6/52–≤3/12 | >3/12–≤6/12 | >6/12 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stronger | NS | Weaker | Stronger | NS | Weaker | Stronger | NS | Weaker | Stronger | NS | Weaker | ||
Global UL | MI | [44] G1 [44] G2 | [44] G1 [44] G2 | ||||||||||
Grip Strength | GSM (N) | [30] | |||||||||||
HHD (kg) | [75] * | [53] E [53] C | [52] E [52] C | ||||||||||
Global LL | MI | [32] E [32] C | [32] E [32] C |
2.5. Meta-Analysis
2.6. Spasticity Assessment Outcomes
2.7. BoNT-A and Adjunctive Therapies
2.8. Quality Assessment
3. Discussion
Limitations
4. Conclusions
5. Future Directions
6. Methods
6.1. Review of the Literature
6.2. Search Strategy
6.3. Eligibility Criteria
6.4. Selection of Articles
6.5. Data Extraction
6.6. Methodological Quality Assessment
6.6.1. The Modified Downs and Black Checklist
6.6.2. The PEDro Scale
6.7. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AbDM | Abductor Digiti Minimi |
AP | Adductor pollicis |
BB | Biceps Brachii |
BI | Brain injury |
BoNT-A | Botulinum neurotoxin-A |
BR | Brachioradialis |
BRA | Brachialis |
C | Control |
Ch | Chronic |
CP | Cerebral Palsy |
CVA | Cerebrovascular accident |
D | Deltoid |
DCD | Dynamic Computerized Dynamometry |
E | Experimental |
ECRB | Extensor Carpi Radialis Brevis |
ECRL | Extensor Carpi Radialis Longus |
ECUL | Extensor Carpi Ulnaris Longus |
ED | Extensor Digitorum |
EDM | Extensor Digiti Minimi |
EE | Elbow Extension |
EF | Elbow Flexion |
FCR | Flexor Carpi Radialis |
FCU | Flexor Carpi Ulnaris |
FDL | Flexor Digitorum Longus |
FDP | Flexor Digitorum Profundus |
FDS | Flexor Digitorum Superficialis |
FE | Finger Extension |
FF | Finger Flexion |
FPB | Flexor Pollicis Brevis |
FPL | Flexor Pollicis Longus |
G | Group |
GSM | Grip Strength Meter |
HHD | Handheld Dynamometry |
inj | injection |
ISCI | Incomplete Spinal Cord Injury |
kg | Kilograms |
lat | lateral |
LUM | Lumbricals |
Max | Maximum |
mD&B | Modified Downs and Black scale |
med | Medial |
MI | Motricity Index |
MRC | Medical Research Council scale |
MS | Multiple Sclerosis |
MVC | Maximal Voluntary Contraction |
MVP | Maximal Voluntary Power |
N | Newtons |
n | Sample |
Nm | Newton Meters |
NR | Not Reported |
NS | Non-significant |
OP | Opponens Pollicis |
P | Pectoralis muscles |
PEDro | Physiotherapy Evidence Database scale |
PL | Palmaris Longus |
PM | Pectoralis Major |
PQ | Pronator Quadratus |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
Pron | Pronators |
PROSPERO | Prospective Register of Systematic Reviews |
PT | Pronator Teres |
QMA | Quantitative Muscle Assessment |
RCT | Randomised Controlled Trial |
SA | Subacute |
SC | Subscapularis |
Sh | Shoulder |
Sup | Supinators |
TBI | Traumatic Brain Injury |
TF | Thumb Flexion |
UL | Upper limb |
UMNS | Upper Motor Neuron Syndrome |
VI | Volar Interossei |
WF | Wrist Flexion |
y | Years |
References
- Rizzo, M.A.; Hadjimichael, O.C.; Preiningerova, J.; Vollmer, T.L. Prevalence and treatment of spasticity reported by multiple sclerosis patients. Mult. Scler. J. 2004, 10, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Thibaut, A.; Chatelle, C.; Ziegler, E.; Bruno, M.; Laureys, S.; Gosseries, O. Spasticity after stroke: Physiology, assessment and treatment. Brain. Inj. 2013, 27, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.P.; Morris, M.E.; Schache, A.; McCrory, P.R. Incidence of gait abnormalities after traumatic brain injury. Arch. Phys. Med. Rehabil. 2009, 90, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Lan, J.; Liu, Y.; Miao, J. Efficacy and safety of botulinum toxin type A in spasticity caused by spinal cord injury: A randomized, controlled trial. Med. Sci. Monit. 2018, 24, 8160. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, B.B.; Cozens, J.A.; Chamberlain, M.A.; Bamford, J.M. Impact of Botulinum Toxin Type A on Disability and Carer Burden due to Arm Spasticity after Stroke: A Randomised Double Blind Placebo Controlled Trial. J. Neurol. Neurosurg. Psychiatry 2000, 69, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Lindström, B.; Röding, J.; Sundelin, G. Positive attitudes and preserved high level of motor performance are important factors for return to work in younger persons after stroke: A national survey. J. Rehabil. Med. 2009, 41, 714–718. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.P.; Singer, B.J.; Ashford, S.; Brian, H.; Hastings-Ison, T.; Fheodoroff, K.; Berwick, S.; Sutherland, E.; Hill, B. A synthesis and appraisal of clinical practice guidelines, consensus statements and Cochrane systematic reviews for the management of focal spasticity in adults and children. Disabil. Rehabil. 2020, 44, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Lance, J.W. Pathophysiology of spasticity and clinical experience with baclofen. In Spasticity: Disordered Motor Control; Year Book Medical Publishers: Chicago, IL, USA, 1980; pp. 185–204. [Google Scholar]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef]
- Tardieu, G.; Shentoub, S.; Delarue, R. Research on a technic for measurement of spasticity. Rev. Neurol. 1954, 91, 143–144. [Google Scholar]
- Jethwa, A.; Mink, J.; Macarthur, C.; Knights, S.; Fehlings, T.; Fehlings, D. Development of the Hypertonia Assessment Tool (HAT): A discriminative tool for hypertonia in children. Dev. Med. Child. Neurol. 2010, 52, e83–e87. [Google Scholar] [CrossRef]
- Love, S.; Gibson, N.; Smith, N.; Bear, N.; Blair, E. Interobserver reliability of the Australian spasticity assessment scale (ASAS). Dev. Med. Child. Neurol. 2016, 58, 18–24. [Google Scholar] [CrossRef]
- Ashford, S.; Turner-Stokes, L.; Allison, R.; Duke, L.; Moore, P.; Bavikatte, G.; Kirker, S.; Ward, A.B.; Bilton, D. Spasticity in Adults: Management Using Botulinum Toxin; National Guidelines; Royal College of Physicians: London, UK, 2018. [Google Scholar]
- Gupta, A.D.; Chu, W.H.; Howell, S.; Chakraborty, S.; Koblar, S.; Visvanathan, R.; Cameron, I.; Wilson, D. A systematic review: Efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity. Syst. Rev. 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Olver, J.; Esquenazi, A.; Fung, V.S.; Singer, B.J.; Ward, A.B. Botulinum toxin assessment, intervention and aftercare for lower limb disorders of movement and muscle tone in adults: International consensus statement. Eur. J. Neurol. 2010, 17 (Suppl. 2), 57–73. [Google Scholar] [CrossRef] [PubMed]
- Esquenazi, A.; Novak, I.; Sheean, G.; Singer, B.J.; Ward, A.B. International consensus statement for the use of botulinum toxin treatment in adults and children with neurological impairments–introduction. Eur. Neurol. 2010, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hoare, B.J.; Wallen, M.A.; Imms, C.; Villanueva, E.; Rawicki, H.B.; Carey, L. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane Database Syst. Rev. 2010, CD003469. [Google Scholar] [CrossRef] [PubMed]
- Corsalini, M.; Inchingolo, F.; Dipalma, G.; Wegierska, A.E.; Charitos, I.A.; Potenza, M.A.; Scarano, A.; Lorusso, F.; Inchingolo, A.D.; Montagnani, M. Botulinum neurotoxins (BoNTs) and their biological, pharmacological, and toxicological issues: A scoping review. Appl. Sci. 2021, 11, 8849. [Google Scholar] [CrossRef]
- Bernuz, B.; Genet, F.; Terrat, P.; Pradon, D.; Barbot, F.; Bussel, B.; Bensmail, D. Botulinum Toxin effect on Voluntary and Stretch Reflex-related Torque produced by the Quadriceps: An Isokinetic Pilot Study. Neurorehabilit. Neural Repair. 2012, 26, 542–547. [Google Scholar] [CrossRef]
- Eek, M.N.; Himmelmann, K. No Decrease in Muscle Strength after Botulinum Neurotoxin-A Injection in Children with Cerebral Palsy. Front. Hum. Neurosci. 2016, 10, 506. [Google Scholar] [CrossRef]
- Moore, E.J.; Banky, M.; Olver, J.; Bryant, A.L.; Williams, G. The effectiveness of therapy on outcome following (BoNT-A) injection for focal spasticity in adults with neurological conditions: A systematic review. Brain. Inj. 2015, 29, 676–687. [Google Scholar] [CrossRef]
- Ward, A.B. Spasticity treatment with botulinum toxins. J. Neural. Transm. 2008, 115, 607–616. [Google Scholar] [CrossRef]
- Andringa, A.; van de Port, I.; van Wegen, E.; Ket, J.; Meskers, C.; Kwakkel, G. Effectiveness of botulinum toxin treatment for upper limb spasticity poststroke over different ICF domains: A systematic review and meta-analysis. Arch. Phys. M. 2019, 100, 1703–1725. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Momosaki, R.; Niimi, M.; Yamada, N.; Hara, H.; Abo, M. Botulinum toxin therapy combined with rehabilitation for stroke: A systematic review of effect on motor function. Toxins 2019, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Elia, A.E.; Filippini, G.; Calandrella, D.; Albanese, A. Botulinum neurotoxins for post-stroke spasticity in adults: A Systematic Review. Mov. Disord. 2009, 24, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.B.; Klingenberg, S.; Dimintiyanova, K.P.; Wienecke, J.; Meehan, C.F. Intramuscular Botulinum toxin A injections induce central changes to axon initial segments and cholinergic boutons on spinal motoneurones in rats. Sci. Rep. 2020, 10, 893. [Google Scholar] [CrossRef] [PubMed]
- Pingel, J.; Hultborn, H.; Naslund-Koch, L.; Jensen, D.B.; Wienecke, J.; Nielsen, J.B. Muscle disuse caused by botulinum toxin injection leads to increased central gain of the stretch reflex in the rat. J. Neurophysiol. 2017, 118, 1962–1969. [Google Scholar] [CrossRef] [PubMed]
- Pingel, J.; Nielsen, M.S.; Lauridsen, T.; Rix, K.; Bech, M.; Alkjaer, T.; Andersen, I.T.; Nielsen, J.B.; Feidenhansl, R. Injection of high dose botulinum-toxin A leads to impaired skeletal muscle function and damage of the fibrilar and non-fibrilar structures. Sci. Rep. 2017, 7, 14746. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.S.; Hui-Chan, C.W. Ankle Dorsiflexion, Not Plantarflexion Strength, Predicts the Functional Modility of People with Spastic Hemiplegia. J. Rehabil. Med. 2013, 45, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Pandyan, A.D.; Vuadens, P.; van Wijck, F.M.J.; Stark, S.; Johnson, G.R.; Barnes, M.P. Are we underestimating the clinical efficacy of botulinum toxin (type A)? Quantifying changes in spasticity, strength and upper limb function after injections of Botox® to the elbow flexors in a unilateral stroke population. Clin. Rehabil. 2002, 16, 654–660. [Google Scholar] [CrossRef]
- Merino-Andrés, J.; Garcia de Mateos-Lopez, A.; Damiano, D.L.; Sánchez-Sierra, A. Effect of muscle strength training in children and adolescents with spastic cerebral palsy: A systematic review and meta-analysis. Clin. Rehabil. 2022, 36, 4–14. [Google Scholar] [CrossRef]
- Cinone, N.; Letizia, S.; Santoro, L.; Facciorusso, S.; Armiento, R.; Picelli, A.; Ranieri, M.; Santamato, A. Combined Effects of Isokinetic Training and Botulinum Toxin Type A on Spastic Equinus Foot in Patients with Chronic Stroke: A Pilot, Single-blind, Randomized Controlled Trial. Toxins 2019, 11, 210. [Google Scholar] [CrossRef]
- Hameau, S.; Bensmail, D.; Robertson, J.; Boudarham, J.; Roche, N.; Zory, R. Isokinetic assessment of the effects of botulinum toxin injection on spasticity and voluntary strength in patients with spastic hemiparesis. Eur. J. Phys. Rehabil. Med. 2014, 50, 515–523. [Google Scholar] [PubMed]
- Bhatia, K.P.; Münchau, A.; Thompson, P.D.; Houser, M.; Chauhan, V.S.; Hutchinson, M.; Shapira, A.H.V.; Marsden, C.D. Generalised Muscular Weakness after Botulinum Toxin Injections for Dystonia: A report of three cases. J. Neurol. Neurosurg. Psychiatry. 1999, 67, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Crowner, B.E.; Torres-Russotto, D.; Carter, A.R.; Racette, B.A. Systemic weakness after therapeutic injections of botulinum toxin a: A case series and review of the literature. Clin. Neuropharmacol. 2010, 33, 243. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.I.; Aksoy, S.N.; Demiryürek, A.T. Comparison of efficacy and side effects of oral baclofen versus tizanidine therapy with adjuvant botulinum toxin type A in children with cerebral palsy and spastic equinus foot deformity. J. Child. Neurol. 2016, 31, 184–189. [Google Scholar] [CrossRef]
- Thomas, A.M.; Simpson, D.M. Contralateral weakness following botulinum toxin for poststroke spasticity. Muscle Nerve 2012, 46, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Yaraskavitch, M.; Leonard, T.; Herzog, W. Botox produces functional weakness in non-injected muscles adjacent to the target muscle. J. Biomech. 2008, 41, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.; Albanese, A.; Heinen, F.; Molenaers, G.; Relja, M. Safety and efficacy of botulinum toxin type A following long-term use. Eur. J. Neurol. 2006, 13, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, D.; Rang, M.; Glazier, J.; Steele, C. An evaluation of botulinum-A toxin injections to improve upper extremity function in children with hemiplegic cerebral palsy. J. Pediatr. 2000, 137, 331–337. [Google Scholar] [CrossRef]
- Tenniglo, M.J.; Nederhand, M.J.; Prinsen, E.C.; Nene, A.V.; Rietman, J.S.; Buurke, J.H. Effect of chemodenervation of the rectus femoris muscle in adults with a stiff knee gait due to spastic paresis: A systematic review with a meta-analysis in patients with stroke. Arch. Phys. Med. Rehabil. 2014, 95, 576–587. [Google Scholar] [CrossRef]
- Lim, E.C.H.; Seet, R.C.S. Botulinum toxin: Description of injection techniques and examination of controversies surrounding toxin diffusion. Acta. Neuro. Scand. 2008, 117, 73–84. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [PubMed]
- Giray, E.; Gencer Atalay, K.; Eren, N.; Gunduz, O.H.; Karadag-Saygi, E. Effects of dynamic lycra orthosis as an adjunct to rehabilitation after botulinum toxin-A injection of the upper-limb in adults following stroke: A single-blinded randomized controlled pilot study. Top. Stroke Rehabil. 2020, 27, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Baricich, A.; Picelli, A.; Carda, S.; Smania, N.; Cisari, C.; Santamato, A.; de Sire, A.; Invernizzi, M. Electrical stimulation of antagonist muscles after botulinum toxin type A for post-stroke spastic equinus foot. A randomized single-blind pilot study. Ann. Phys. Rehabil. Med. 2019, 62, 214–219. [Google Scholar] [CrossRef]
- Bollens, B.; Gustin, T.; Stoquart, G.; Detrembleur, C.; Lejeune, T.; Deltombe, T. A Randomized Controlled trial of Selective Neurotomy versus Botulinum Toxin for Spastic Equinovarus Foot after Stroke. Neurorehabilit. Neural Repair. 2013, 27, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Carda, S.; Invernizzi, M.; Baricich, A.; Cisari, C. Casting, taping or stretching after botulinum toxin type A for spastic equinus foot: A single-blind randomized trial on adult stroke patients. Clin. Rehabil. 2011, 25, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Diniz de Lima, F.; Faber, I.; Servelhere, K.R.; Bittar, M.F.R.; Martinez, A.R.M.; Piovesana, L.G.; Martins, M.P.; Martins, C.R., Jr.; Benaglia, T.; de Sa Carvalho, B.; et al. Randomized Trial of Botulinum Toxin Type A in Hereditary Spastic Paraplegia—The SPASTOX Trial. Mov. Disord. 2021, 36, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, M.; Vale, N.; Dimitrova, E.K.; Mazzoleni, S.; Battini, E.; Filippetti, M.; Picelli, A.; Santamato, A.; Gravina, M.; Saltuari, L.; et al. Effectiveness of Robot-Assisted Upper Limb Training on Spasticity, Function and Muscle Activity in Chronic Stroke Patients Treated With Botulinum Toxin: A Randomized Single-Blinded Controlled Trial. Front. Neurol. 2019, 10, 41. [Google Scholar] [CrossRef]
- Gracies, J.M.; Lugassy, M.; Weisz, D.J.; Vecchio, M.; Flanagan, S.; Simpson, D.M. Botulinum toxin dilution and endplate targeting in spasticity: A double-blind controlled study. Arch. Phys. Med. Rehabil. 2009, 90, 9–16.e12. [Google Scholar] [CrossRef]
- Kaji, R.; Miyashiro, A.; Sato, N.; Furumoto, T.; Takeuchi, T.; Miyamoto, R.; Kohda, T.; Izumi, Y.; Kozaki, S. A Pilot Study of A2NTX, a Novel Low-Molecular-Weight Neurotoxin Derived from Subtype A2 for Post-Stroke Lower Limb Spasticity: Comparison with OnabotulinumtoxinA. Toxins 2022, 14, 739. [Google Scholar] [CrossRef]
- Lannin, N.A.; Ada, L.; English, C.; Ratcliffe, J.; Faux, S.; Palit, M.; Gonzalez, S.; Olver, J.; Schneider, E.; Crotty, M.; et al. Long-term effect of additional rehabilitation following botulinum toxin-A on upper limb activity in chronic stroke: The InTENSE randomised trial. BMC. Neurol. 2022, 22, 154. [Google Scholar] [CrossRef]
- Lannin, N.A.; Ada, L.; English, C.; Ratcliffe, J.; Faux, S.G.; Palit, M.; Gonzalez, S.; Olver, J.; Cameron, I.; Crotty, M.; et al. Effect of Additional Rehabilitation After Botulinum Toxin-A on Upper Limb Activity in Chronic Stroke: The InTENSE Trial. Stroke 2020, 51, 556–562. [Google Scholar] [CrossRef]
- Leung, J.; King, C.; Fereday, S. Effectiveness of a programme comprising serial casting, botulinum toxin, splinting and motor training for contracture management: A randomized controlled trial. Clin. Rehabil. 2019, 33, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Macher, S.; Unger, E.; Zalaudek, M.; Weber, M.; Kranz, G.; Kranz, G.; Kasprian, G.; Sycha, T. Denervation Dynamics After Intramuscular BNT Injection in Patients With Focal Spasticity Monitored by MRI and Dynamometry-a Blinded Randomized Controlled Pilot Study. Front. Neurol. 2021, 12, 719030. [Google Scholar] [CrossRef]
- Mancini, F.; Sandrini, G.; Moglia, A.; Nappi, G.; Pacchetti, C. A randomised, double-blind, dose-ranging study to evaluate efficacy and safety of three doses of botulinum toxin type A (Botox) for the treatment of spastic foot. Neurol. Sci. 2005, 26, 26–31. [Google Scholar] [CrossRef]
- Meythaler, J.M.; Vogtle, L.; Brunner, R.C. A preliminary assessment of the benefits of the addition of botulinum toxin a to a conventional therapy program on the function of people with longstanding stroke. Arch. Phys. Med. Rehabil. 2009, 90, 1453–1461. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.; Rodgers, H.; Price, C.; van Wijck, F.; Shackley, P.; Steen, N.; Barnes, M.; Ford, G.; Graham, L. BoTULS: A Multicentred Randomised Controlled Trial to Evaluate the Clinical Effectiveness and Cost-effectiveness of Treating Upper Limb Spasticity Due to Stroke with Botulinum Toxin Type A. Health. Technol. Assess. 2010, 14, 1–113. [Google Scholar] [CrossRef]
- Shaw, L.C.; Price, C.I.; van Wijck, F.M.; Shackley, P.; Steen, N.; Barnes, M.P.; Ford, G.A.; Graham, L.A.; Rodgers, H. Botulinum Toxin for the Upper Limb after Stroke (BoTULS) Trial: Effect on impairment, activity limitation, and pain. Stroke 2011, 42, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Turcu-Stiolica, A.; Subtirelu, M.S.; Bumbea, A.M. Can Incobotulinumtoxin-A Treatment Improve Quality of Life Better Than Conventional Therapy in Spastic Muscle Post-Stroke Patients? Results from a Pilot Study from a Single Center. Brain Sci. 2021, 11, 934. [Google Scholar] [CrossRef]
- Wallace, A.C.; Talelli, P.; Crook, L.; Austin, D.; Farrell, R.; Hoad, D.; O’Keeffe, A.G.; Marsden, J.F.; Fitzpatrick, R.; Greenwood, R. Exploratory randomized double-blind placebo-controlled trial of botulinum therapy on GRASP release after stroke (PrOMBiS). Neurorehabilit. Neural Repair. 2020, 34, 51–60. [Google Scholar] [CrossRef]
- Simpson, D.M.; Alexander, D.N.; O’brien, C.F.; Tagliati, M.; Aswad, A.S.; Leon, J.M.; Gibson, J.; Mordaunt, J.M.; Monaghan, E.P. Botulinum toxin type A in the treatment of upper extremity spasticity: A randomized, double-blind, placebo-controlled trial. Neurology 1996, 46, 1306. [Google Scholar] [CrossRef]
- Baguley, I.J.; Barden, H.L.; Byth, K. Investigating Inducible Muscle Overactivity in Acquired Brain Injury and the Impact of Botulinum Toxin A. Arch. Phys. Med. Rehabil. 2022, 103, 75–82.e71. [Google Scholar] [CrossRef] [PubMed]
- Barden, H.L.; Baguley, I.J.; Nott, M.T.; Chapparo, C. Measuring spasticity and fine motor control (pinch) change in the hand after botulinum toxin-A injection using dynamic computerized hand dynamometry. Arch. Phys. Med. Rehabil. 2014, 95, 2402–2409. [Google Scholar] [CrossRef] [PubMed]
- Barden, H.L.; Baguley, I.J.; Nott, M.T.; Chapparo, C. Dynamic computerised hand dynamometry: Measuring outcomes following upper limb botulinum toxin-A injections in adults with acquired brain injury. J. Rehabil. Med. 2014, 46, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Bumbea, A.M.; Rogoveanu, O.C.; Turcu-Stiolica, A.; Pirici, I.; Cioroianu, G.; Stanca, D.I.; Criciotoiu, O.; Biciusca, V.; Traistaru, R.M.; Caimac, D.V. Management of Upper-Limb Spasticity Using Modern Rehabilitation Techniques versus Botulinum Toxin Injections Following Stroke. Life 2023, 13, 2218. [Google Scholar] [CrossRef] [PubMed]
- Caty, G.D.; Detrembleur, C.; Bleyenheuft, C.; Deltombe, T.; Lejeune, T.M. Effect of upper limb botulinum toxin injections on impairment, activity, participation, and quality of life among stroke patients. Stroke 2009, 40, 2589–2591. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Liu, Y.; Zhang, C.; Magat, E.; Zhou, P.; Zhang, Y.; Li, S. Comprehensive Assessment of the Time Course of Biomechanical, Electrophysiological and Neuro-Motor Effects after Botulinum Toxin Injections in Elbow Flexors of Chronic Stroke Survivors with Spastic Hemiplegia: A Cross Sectional Observation Study. Toxins 2022, 14, 104. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Zhang, C.; Liu, Y.; Magat, E.; Verduzco-Gutierrez, M.; Francisco, G.E.; Zhou, P.; Zhang, Y.; Li, S. The Effects of Botulinum Toxin Injections on Spasticity and Motor Performance in Chronic Stroke with Spastic Hemiplegia. Toxins 2020, 12, 492. [Google Scholar] [CrossRef] [PubMed]
- de Niet, M.; de Bot, S.T.; van de Warrenburg, B.P.; Weerdesteyn, V.; Geurts, A.C. Functional effects of botulinum toxin type-A treatment and subsequent stretching of spastic calf muscles: A study in patients with hereditary spastic paraplegia. J. Rehabil. Med. 2015, 47, 147–153. [Google Scholar] [CrossRef]
- Fawzi, S.M.; Hamdan, F.B.; Jaafar, I.F.; Al Gawwam, G.A.A.S. Botulinum neurotoxin-A in a patient with post-stroke spasticity: A neurophysiological study. Folia Neuropathol. 2023, 61, 412–418. [Google Scholar] [CrossRef]
- Franck, J.A.; Smeets, R.J.E.M.; Elmanowski, J.; Renders, K.; Seelen, H.A.M. Added-value of spasticity reduction to improve arm-hand skill performance in sub-acute stroke patients with a moderately to severely affected arm-hand. Neuro Rehabil. 2021, 48, 321–336. [Google Scholar] [CrossRef]
- Intiso, D.; Simone, V.; Di Rienzo, F.; Iarossi, A.; Pazienza, L.; Santamato, A.; Maruzzi, G.; Basciani, M. High doses of a new botulinum toxin type A (NT-201) in adult patients with severe spasticity following brain injury and cerebral palsy. Neuro Rehabil. 2014, 34, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, J. Efficacy of botulinum toxin for spasticity management in neurorehabilitation. Int. J. Ther. Rehabil. 2004, 11, 211–218. [Google Scholar] [CrossRef]
- Lee, J.M.; Gracies, J.M.; Park, S.B.; Lee, K.H.; Lee, J.Y.; Shin, J.H. Botulinum Toxin Injections and Electrical Stimulation for Spastic Paresis Improve Active Hand Function Following Stroke. Toxins 2018, 10, 426. [Google Scholar] [CrossRef] [PubMed]
- Lopez de Munain, L.; Valls-Sole, J.; Garcia Pascual, I.; Maisonobe, P. Botulinum Toxin Type A Improves Function According to Goal Attainment in Adults with Poststroke Lower Limb Spasticity in Real Life Practice. Eur. Neurol. 2019, 82, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Marque, P.; Denis, A.; Gasq, D.; Chaleat-Valayer, E.; Yelnik, A.; Colin, C.; Group, B.; Pérennou, D. Botuloscope: 1-year follow-up of upper limb post-stroke spasticity treated with botulinum toxin. Ann. Phys. Rehabil. Med. 2019, 62, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Miscio, G.; Del Conte, C.; Pianca, D.; Colombo, R.; Panizza, M.; Schieppati, M.; Pisano, F. Botulinum toxin in post-stroke patients: Stiffness modifications and clinical implications. J. Neurol. 2004, 251, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Paolucci, T.; Agostini, F.; Mangone, M.; Bernetti, A.; Pezzi, L.; Liotti, V.; Recubini, E.; Cantarella, C.; Bellomo, R.G.; D’Aurizio, C.; et al. Robotic rehabilitation for end-effector device and botulinum toxin in upper limb rehabilitation in chronic post-stroke patients: An integrated rehabilitative approach. Neurol. Sci. 2021, 42, 5219–5229. [Google Scholar] [CrossRef] [PubMed]
- Picelli, A.; Santamato, A.; Cosma, M.; Baricich, A.; Chisari, C.; Millevolte, M.; Prete, C.D.; Mazzu, I.; Girardi, P.; Smania, N. Early Botulinum Toxin Type A Injection for Post-Stroke Spasticity: A Longitudinal Cohort Study. Toxins 2021, 13, 374. [Google Scholar] [CrossRef] [PubMed]
- Rousseaux, M.; Compère, S.; Launay, M.J.; Kozlowski, O. Variability and predictability of functional efficacy of botulinum toxin injection in leg spastic muscles. J. Neurol. Sci. 2005, 232, 51–57. [Google Scholar] [CrossRef]
- Rousseaux, M.; Kozlowski, O.; Froger, J. Efficacy of botulinum toxin A in upper limb function of hemiplegic patients. J. Neurol. 2002, 249, 76–84. [Google Scholar] [CrossRef]
- Rousseaux, M.; Launay, M.J.; Kozlowski, O.; Daveluy, W. Botulinum toxin injection in patients with hereditary spastic paraparesis. Eur. J. Neurol. 2007, 14, 206–212. [Google Scholar] [CrossRef]
- Sarzyńska-Długosz, I.; Szczepańska-Szerej, A.; Drużdż, A.; Łukomski, T.; Ochudło, S.; Fabian, A.; Sobolewski, P.; Mariańska, K.; Maciejewska, J.; Mulek, E. Real-world effectiveness of abobotulinumtoxinA (Dysport®) in adults with upper limb spasticity in routine clinical practice: An observational study. Pol. J. Neurol. Neurosurg. 2020, 54, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Servelhere, K.R.; Faber, I.; Martinez, A.; Nickel, R.; Moro, A.; Germiniani, F.M.B.; Moscovich, M.; Blume, T.R.; Munhoz, R.P.; Teive, H.A.G.; et al. Botulinum toxin for hereditary spastic paraplegia: Effects on motor and non-motor manifestations. Arq. Neuropsiquiatr. 2018, 76, 183–188. [Google Scholar] [CrossRef]
- Slawek, J.; Bogucki, A.; Reclawowicz, D. Botulinum toxin type A for upper limb spasticity following stroke: An open-label study with individualised, flexible injection regimens. Neurol. Sci. 2005, 26, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, M.; Morita, A.; Hara, Y. Effect of dual therapy with botulinum toxin A injection and electromyography-controlled functional electrical stimulation on active function in the spastic paretic hand. J. Nippon. Med. Sch. 2016, 83, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Hsieh, L.F.; Chi, W.C.; Lou, S.M. Effect of intramuscular botulinum toxin injection on upper limb spasticity in stroke patients. Am. J. Phys. Med. Rehabil. 2002, 81, 272–278. [Google Scholar] [CrossRef]
- Woldag, H.; Hummelsheim, H. Is the reduction of spasticity by botulinum toxin a beneficial for the recovery of motor function of arm and hand in stroke patients? Eur. Neurol. 2003, 50, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Choi, E.H.; Lim, J.Y. Comparison of Effects of Botulinum Toxin Injection Between Subacute and Chronic Stroke Patients: A Pilot Study. Medicine 2016, 95, e2851. [Google Scholar] [CrossRef] [PubMed]
- Reiter, F.; Danni, M.; Ceravolo, M.G.; Provinciali, L. Disability changes after treatment of upper limb spasticity with botulinum toxin. J. Neurol. Rehabil. 1996, 10, 47–52. [Google Scholar] [CrossRef]
- Trompetto, C.; Bove, M.; Avanzino, L.; Francavilla, G.; Berardelli, A.; Abbruzzese, G. Intrafusal effects of botulinum toxin in post-stroke upper limb spasticity. Eur. J. Neurol. 2008, 15, 367–370. [Google Scholar] [CrossRef]
- Deeks, J.J.; Higgins, J.P.T.; Altman, D.G. Chapter 10. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions, Version 6.4 (Updated August 2023); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane: Calgary, AB, Canada, 2023; Available online: http://www.training.cochrane.org/handbook (accessed on 5 May 2024).
- O’Connor, S.R.; Tully, M.A.; Ryan, B.; Bradley, J.M.; Baxter, G.D.; McDonough, S.M. Failure of a numerical quality assessment scale to identify potential risk of bias in a systematic review: A comparison study. BMC Res. Notes 2015, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2019, 66, 59. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.L.; Potter, K.; Blankshain, K.; Kaplan, S.L.; O’Dwyer, L.C.; Sullivan, J.E. A core set of outcome measures for adults with neurologic conditions undergoing rehabilitation: A Clinical Practice guideline. J. Neurol. Phys. Ther. 2018, 42, 174–220. [Google Scholar] [CrossRef]
- Kwakkel, G.; Lannin, N.A.; Borschmann, K.; English, C.; Ali, M.; Churilov, L.; Saposnik, G.; Winstein, C.; Van Wegen, E.E.; Wolf, S.L. Standardized measurement of sensorimotor recovery in stroke trials: Consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int. J. Stroke 2017, 12, 451–461. [Google Scholar] [CrossRef]
- Li, Z.M. The influence of wrist position on individual finger forces during forceful grip. J. Hand. Surg. 2002, 27, 886–896. [Google Scholar] [CrossRef]
- Kiper, P.; Rimini, D.; Falla, D.; Baba, A.; Rutkowski, S.; Maistrello, L.; Turolla, A. Does the Score on the MRC Strength Scale Reflect Instrumented Measures of Maximal Torque and Muscle Activity in Post-Stroke Survivors? Sensors 2021, 21, 8175. [Google Scholar] [CrossRef]
- Dupépé, E.B.; Davis, M.; Elsayed, G.A.; Agee, B.; Kirksey, K.; Gordon, A.; Pritchard, P.R. Inter-rater reliability of the modified Medical Research Council scale in patients with chronic incomplete spinal cord injury. J. Neurosurg. Spine 2019, 30, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Fayazi, M.; Dehkordi, S.N.; Dadgoo, M.; Salehi, M. Test-retest reliability of Motricity Index strength assessments for lower extremity in post stroke hemiparesis. Med. J. Islam. Repub. Iran 2012, 26, 27–30. [Google Scholar]
- Akshintala, S.; Khalil, N.; Yohay, K.; Muzikansky, A.; Allen, J.; Yaffe, A.; Gross, A.M.; Fisher, M.J.; Blakeley, J.O.; Oberlander, B. Reliability of Handheld Dynamometry to Measure Focal Muscle Weakness in Neurofibromatosis Types 1 and 2. Neurology 2021, 97, S99–S110. [Google Scholar] [CrossRef]
- Gregson, J.M.; Leathley, M.J.; Moore, A.P.; Smith, T.L.; Sharma, A.K.; Watkins, C.L. Reliability of measurements of muscle tone and muscle power in stroke patients. Age Ageing 2000, 29, 223–228. [Google Scholar] [CrossRef]
- Paternostro-Sluga, T.; Grim-Stieger, M.; Posch, M.; Schuhfried, O.; Vacariu, G.; Mittermaier, C.; Bittner, C.; Fialka-Moser, V. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J. Rehabilitation Med. 2008, 40, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Van der Woude, D.R.; Ruyten, T.; Bartels, B. Reliability of muscle strength and muscle power assessments using isokinetic dynamometry in neuromuscular diseases: A systematic review. Phys. Ther. 2022, 102, pzac099. [Google Scholar] [CrossRef] [PubMed]
- Conable, K.M.; Rosner, A.L. A narrative review of manual muscle testing and implications for muscle testing research. J. Chiropr. Med. 2011, 10, 157–165. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reliability of Manual Muscle Testing: A Systematic Review. Isokinet. Exerc. Sci. 2018, 26, 245–252. [Google Scholar] [CrossRef]
- MacAvoy, M.C.; Green, D.P. Critical reappraisal of Medical Research Council muscle testing for elbow flexion. J. Hand Surg. 2007, 32, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Measuring Muscle Strength in Neurological Disorders. Fiz. Rehabil. 2005, 16, 120. [Google Scholar]
- Peek, K. Muscle strength in adults with spinal cord injury: A systematic review of manual muscle testing, isokinetic and hand held dynamometry clinimetrics. JBI Evid. Synth. 2014, 12, 349–429. [Google Scholar] [CrossRef]
- Kluding, P.; Gajewski, B. Lower-extremity strength differences predict activity limitations in people with chronic stroke. Phys. Ther. 2009, 89, 73–81. [Google Scholar] [CrossRef]
- Sutherland, E.; Hill, B.; Singer, B.J.; Ashford, S.; Hoare, B.J.; Hastings-Ison, T.; Fheodoroff, K.; Berwick, S.; Dobson, F.; Williams, G. Do randomised controlled trials evaluating functional outcomes following botulinum neurotoxin-A align with focal spasticity guidelines? A systematic review. Disabil. Rehabil. 2022, 44, 8515–8523. [Google Scholar] [CrossRef]
- Baude, M.; Nielsen, J.B.; Gracies, J.M. The Neurophysiology of Deforming Spastic Paresis: A Revised Taxonomy. Ann. Rehabil. Med. 2019, 62, 426–430. [Google Scholar] [CrossRef]
- Burke, D.; Wissel, J.; Donnan, G.A. Pathophysiology of Spasticity in Stroke. Neurology 2013, 80, S20–S26. [Google Scholar] [CrossRef] [PubMed]
- Sutton, A.J. Publication Bias. The Handbook of Research Synthesis and Meta-Analysis; Cooper, H., Hedges, L.V., Valentine, J.C., Eds.; Sage: New York, NY, USA, 2009; Volume 2, pp. 435–452. [Google Scholar]
- Haddaway, N.R.; Collins, A.M.; Coughlin, D.; Kirk, S. The role of Google Scholar in evidence reviews and its applicability to grey literature searching. PLoS ONE 2015, 10, e0138237. [Google Scholar] [CrossRef] [PubMed]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Aubut, J.L.; Marshall, S.; Bayley, M.; Teasell, R.W. A comparison of the PEDro and Downs and Black quality assessment tools using the acquired brain injury intervention literature. NeuroRehabilitation 2013, 32, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Moseley, A.M.; Herbert, R.D.; Sherrington, C.; Maher, C.G. Evidence for physiotherapy practice: A survey of the Physiotherapy Evidence Database (PEDro). Aust. J. Physiother. 2002, 48, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Olivo, S.A.; Macedo, L.G.; Gadotti, I.C.; Fuentes, J.; Stanton, T.; Magee, D.J. Scales to assess the quality of Randomized Controlled Trials: A Systematic Review. Phys. Ther. 2008, 88, 156–175. [Google Scholar] [CrossRef]
- Teasell, R.W.; Bayona, N.; Marshall, S.; Cullen, N.; Bayley, M.; Chundamala, J.; Villamere, J.; Mackie, D.; Rees, L.; Hartridge, C. A systematic review of the rehabilitation of moderate to severe acquired brain injuries. Brain. Inj. 2007, 21, 107–112. [Google Scholar] [CrossRef]
- De Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
Author Study Design | Population | Sample (n) | Mean Age (y) | Muscles Injected | Outcome Measures | Follow-up Time Points | mD&B | PEDro |
---|---|---|---|---|---|---|---|---|
Baguley 2022 [63] Non-RCT | Stroke/TBI | 30 | G1:60 G2:58 | PM, SC, BRA, BB, BR, PT, PQ, FCR, FCU FDS, FDP, hand intrinsics, AP, FPL, FPB, AbDM | DCD grasp | 4/52 | 14 | |
Barden 2014 [64] Non-RCT | TBI/Stroke | 28 | 51 | PM, SC, BRA, BR, BB, PT/PQ, FCR, FCU, FDS, FDP, FPL, AP, FPB, LUM interossei, AbDM | DCD pincer pinch max, DCD lat pinch max | 4/52 | 16 | |
Barden 2014 [65] Non-RCT | TBI/Stroke | 28 | 51 | UL # | DCD grip max | 4/52 | 15 | |
Bhakta 2000 [5] RCT | Stroke | 40 | E:60 C:54 | BB, BR FCU, FDS, FDP | MRC Grip | 2/52, 6/52 12/52 | 22 | 10 |
Bumbea 2023 [66] Non-RCT | Stroke | 160 | 63 | D, P, PT FDP, FDS, FCR FPL | MRC | 3/12 | 19 | |
Caty 2009 [67] Non-RCT | Stroke | 20 | 59 | BB, BRA, PT, FCR, FDP, FPL | Grip-HHD Key pinch gauge | 2/12 | 12 | |
Chen 2020 [69] Non-RCT | Stroke | 10 | 52 | BB | MVC | 3/52 | 15 | |
Chen 2022 [68] Non-RCT | Stroke | 12 | 52 | BB | MVC | 3/12 | 16 | |
Fawzi 2023 [71] Non-RCT | Stroke | 50 | 48 | BB^ FCR^ | MRC | 3–4/52 | 15 | |
Franck 2021 [72] Non-RCT | Stroke | 10 | 56 | BB, PT FDP, FDS, FPL FCR, FCU | Grip-HHD MI | 1/52 3–6/52 3/12 | 20 | |
Gandolfi 2019 [49] RCT | Stroke | 32 | E:59 C:59 | BB, BRA, BR, PM FCR, FCU, FDP, FDL, FDS, FPL, FPB, LUM, OP, ECRB, ECUL^ | MRC | 5/52 | 22 | 8 |
Giray 2020 [44] RCT | Stroke | 20 | 46 | BB, BRA, PT, PQ FCR, FCU, FDS, FDP, FPL | MI | 3/52 3/12 | 21 | 7 |
Gracies 2009 [50] RCT | Stroke/TBI | 21 | G1:46 G2:52 G3:47 | BB | MVP isometric HHD | 1/12 | 22 | 8 |
Intiso 2014 [73] Non-RCT | TBI/CP | BI (n = 16) CP (n = 6) | 38 | PM, BB, BR, PT, FDS FDP, FCU, FCR, FPL | MRC | 4/52 4/12 | 17 | |
Kulkarni 2004 [74] Non-RCT | CVA, MS, CP, BI, Other | 72 | 45 | UL # | MRC | 4–6/52 | 14 | |
Lannin 2020 [53] RCT | Stroke | 139 | 61 | FCR, FCU, FDS, FDP, FPL, ED, EDM, PL ECRL, ECU, ECRB | Grip-HHD | 3/12 | 20 | 8 |
Lannin 2022 [52] RCT | Stroke | 140 | 61 | FCR, FCU, FDS, FDP, FPL, ED, EDM, PL ECRL, ECU, ECRB | Grip-HHD | 12/12 | 21 | 8 |
Lee 2018 [75] Non-RCT | Stroke | 15 | 45 | D, BB, BRA, BR FCU, FDP, FDS, AP, PT, FPB, FPL, OP, LUM | MRC Grip—HHD | 2/52 6/52 | 13 | |
Lim 2016 [90] Non-RCT | Stroke | 18 | SA:63 Ch:52 | BB, BR, BRA FCR, FCU FDP, FDS, FPL | MRC | 4/52 | 16 | |
Macher 2021 [55] RCT | Stroke (n = 10) ISCI (n = 1) | 11 | 68 M | BB, BR, PT, Sup, FDS, FDP, FPB, AP, FPL, OP, FCR, FCU | HHD—EF | 1/52, 4/52 8/52, 3–7/12 | 22 | 7 |
Marque 2019 [77] Non-RCT | Stroke | 330 | 54 | D, SC, PM, FDS, FDP, BB, BRA, BR, PL, PT, PQ, FCR, FPL, FCU, Other | MI | 4/52 3/12 12/12 | 16 | |
Meythaler 2009 [57] RCT | Stroke | 21 | 53 | WF, EF, PT | MRC Grip-HHD Lat Pinch Dynamometer | 12/52 24/52 | 23 ^ | 8 |
Miscio 2004 [78] Non-RCT | Stroke | 18 | 48 | PT, FCR, FCU FDS, FDP, PL, FPL, OP | Isometric strain gauge | 2/52, 1/12 2/12, 3/12 | 17 | |
Pandyan 2002 [30] Non-RCT | Stroke | 14 | 57 ^ | BB, BR FDL (FDP) | Isometric force transducer Grip—GSM | 4/52 | 14 ^ | |
Paolucci 2021 [79] Non-RCT | Stroke | 44 | E:66 C:65 | SC, BB-med, BB-lat, BRA, BR, PT, FCR, FCU FDS, FDP, 1st FF | MI | 6/52 3/12 | 22 | |
Picelli 2021 [80] Non-RCT | Stroke | 83 | 64 | Sh Add, EE, FF EF, TF, WF, Pron | MI | 4/52 12/52 24/52 | 18 | |
Reiter 1996 [91] Non-RCT | Stroke/TBI | 17 | 58 | BB, FCU, FCR, FDP, FDS, FPL | MI MRC | 1/52 1/12, 2/12, 3/12, 4,12, 5/12, 6/12 | 16 | |
Rousseaux 2002 [82] Non-RCT | Stroke | 20 | 54 | PM, D (anterior) EF, PT, PL, WF, FDS, FPL | MRC | 2/52, 2/12 5/12 | 16 | |
Sarzynska-Dlugosz 2020 [84] Non-RCT | Stroke | 57 | 57 | UL # | MRC | ~4/12 | 16 | |
Shaw 2010 [58] RCT | Stroke | 333 | 67 | PM, BB, BR, PT, FDS, FDP, FPL Forearm flexors, FCU, FCR | Grip-HHD MI | 1/12 | 26 | 8 |
Shaw 2011 [59] RCT | Stroke | 333 | 67 | PM, BB, BR, PT, FDS, FDP, FPL Forearm flexors, FCU, FCR | Grip-HHD MI | 1/12 | 21 | 7 |
Simpson 1996 [62] RCT | Stroke | 37 | 59 | BB, FCR, FCU | Grip | 2/52, 6/52 10/52, 4/12 | 19 | 8 |
Slawek 2005 [86] Non-RCT | Stroke | 21 | 52 | PM, BB, BR, PT, FCU, FCR, FDS, FDP, FPL, AP | MRC | 2/52, 4/52, 6/52, 10/52, 16/52 | 12 | |
Tsuchiya 2016 [87] Non-RCT | Stroke (n = 14) ISCI (n = 1) | 15 | 52 | BB, PT, FCR, FCU FDS, FPL, AP | Grip-HHD | 10/7 4/12 | 19 | |
Turcu-Stiolica 2021 [60] RCT | Stroke | 34 | E:60 C:61 | UL # | MRC-UL | 6/12 | 17 | 6 |
Wallace 2020 [61] RCT | Stroke | 28 | 49 | FCR, FCU, PT FDS, FDP, FPL, LUM | Grip-HHD Isometric Servomotor | 5/52 | 22 | 9 |
Wang 2002 [88] Non-RCT | Stroke | 16 | 62 | BB, BR, FCU, FCR FDS, FDP, FPL, VI | Grip-HHD Pinch gauge | 2/52, 4/52 8/52, 3/12 | 16 | |
Woldag 2003 [89] Non-RCT | Stroke | 10 | 45 | FCR, FCU, FDP, FDS^ | Grip-Max digital multimyometer | 4/52, 8/52 12/52 | 17 |
Author Study Type | Population | Sample Size (n) | Mean Age (y) | Muscles Injected | Outcome Measure | Follow-Up Time Points | mD&B | PEDro |
---|---|---|---|---|---|---|---|---|
Baricich 2019 [45] RCT | Stroke | 30 | 59 | GN—lat GN—med, Sol | MRC | 10/7 2.5/52, 3/12 | 20 | 8 |
Bernuz 2012 [19] Non-RCT | ISCI | 15 | 43 | RF | Isokinetic peak voluntary torque 60°/s | 4–6/52 | 15 | |
Bollens 2013 [46] RCT | Stroke | 16 | 52.3 | Sol TP, FHL | MRC | 2/12 6/12 | 22 | 7 |
Carda 2011 [47] RCT | Stroke | 69 | Ta:62 Ca:65 St:60 | GN—med GN—lat Sol | MRC-DF | 3/52 3/12 | 23 | 7 |
Cinone 2019 [32] RCT | Stroke | 25 | E:56 C:56 | GN—med GN—lat Sol | MI Isokinetic dynamometer—Peak Torque 60°/s | 5/52 8/52 | 19 | 8 |
de Niet 2015 [70] Non-RCT | HSP | 25 | E:48 C:46 | GN—Med GN—Lat and Sol | MRC QMA | 4/52 18/52 | 17 | |
Diniz de Lima 2021 [48] RCT | HSP | 55 | 43 | AM GN + Sol | MRC | 8/52 | 19 | 8 |
Fawzi 2023 [71] Non-RCT | Stroke | 50 | 48 | GN/Sol ^ | MRC | 3–4/52 | 15 | |
Hameau 2014 [33] Non-RCT | Stroke | 14 | 54 | RF | Isokinetic Dynamometer MVC-peak torque | 1/12 | 15 | |
Intiso 2014 [73] Non-RCT | BI/CP | 14 (and 3 CP) | 38 | ADDLBM, RF, BF, GN—Med, GN—lat, Sol, TP, TA, FDL, FHL | MRC | 4/52 4/12 | 17 | |
Kaji 2022 [51] RCT | Stroke | 31 | E:62 C:63 | TP GN—Med | MRC | 1/12 2/12 | 18 | 8 |
Kulkarni 2004 [74] Non-RCT | CVA, MS, CP, BI, other | 72 | 45.3 | UL # HS, Hip Abd | MRC | 4–6/52 | 14 | |
Leung 2019 [54] RCT | ABI | 10 | E:27 £ C:39 £ | GN, Sol +/− TP | MRC | 2/52 post cast 8/52 post cast | 22 | 8 |
López de Munain 2019 [76] Non-RCT | Stroke | 100 | 58.2 | LL # | MI | 1/12 ± 7/7 3–5/12 | 19 | |
Mancini 2005 [56] RCT | Stroke | 45 | G1:62 £ G2:59 £ G3:60 £ | GN—med, GN—lat Sol, TP, FDL, FDB, EHL, EH | MRC | 4/52 4/12 | 20 | 9 |
Picelli 2021 [80] Non-RCT | Stroke | 83 | 64 | PF, Ankle invertors | MI | 4/52, 3/12, 6/12 | 18 | |
Rousseaux 2005 [81] Non-RCT | Stroke | 47 | 52 | TP, TA, GN—med GN—lat, Sol, FDL, FHL | MRC | 2–3/52 2–3/12, 5/12 | 15 | |
Rousseaux 2007 [83] Non-RCT | HSP | 15 | 48 M | Hip Add Sol, TP | MRC | 2–3/52 2–3/12, 5/12 | 17 | |
Servelhere 2018 [85] Non-RCT | HSP | 33 | 42 | Hip Add, QUAD, HS, GN, Sol, TP EHL, FDL, FDB, FHB, QL, TA | MRC | ~1.5/12 ± ~2/52 | 15 | |
Yan 2018 [4] RCT | ISCI | 336 | BoNT-A: 37 No drug: 35 Baclofen: 37 | Hip Add HS | mMRC (0–6) # | 2/52 4/52 6/52 | 21 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gill, R.; Banky, M.; Yang, Z.; Medina Mena, P.; Woo, C.C.A.; Bryant, A.; Olver, J.; Moore, E.; Williams, G. The Effect of Botulinum Neurotoxin-A (BoNT-A) on Muscle Strength in Adult-Onset Neurological Conditions with Focal Muscle Spasticity: A Systematic Review. Toxins 2024, 16, 347. https://doi.org/10.3390/toxins16080347
Gill R, Banky M, Yang Z, Medina Mena P, Woo CCA, Bryant A, Olver J, Moore E, Williams G. The Effect of Botulinum Neurotoxin-A (BoNT-A) on Muscle Strength in Adult-Onset Neurological Conditions with Focal Muscle Spasticity: A Systematic Review. Toxins. 2024; 16(8):347. https://doi.org/10.3390/toxins16080347
Chicago/Turabian StyleGill, Renée, Megan Banky, Zonghan Yang, Pablo Medina Mena, Chi Ching Angie Woo, Adam Bryant, John Olver, Elizabeth Moore, and Gavin Williams. 2024. "The Effect of Botulinum Neurotoxin-A (BoNT-A) on Muscle Strength in Adult-Onset Neurological Conditions with Focal Muscle Spasticity: A Systematic Review" Toxins 16, no. 8: 347. https://doi.org/10.3390/toxins16080347
APA StyleGill, R., Banky, M., Yang, Z., Medina Mena, P., Woo, C. C. A., Bryant, A., Olver, J., Moore, E., & Williams, G. (2024). The Effect of Botulinum Neurotoxin-A (BoNT-A) on Muscle Strength in Adult-Onset Neurological Conditions with Focal Muscle Spasticity: A Systematic Review. Toxins, 16(8), 347. https://doi.org/10.3390/toxins16080347