Rapid Detection of Aflatoxins in Ground Maize Using Near Infrared Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Contamination with Aflatoxins
2.2. Quantification of Aflatoxins Contents Using NIRS
2.2.1. Spectra Acquisition
2.2.2. Partial Least Squares Regression (PLS) Model
2.2.3. Artificial Neural Network (ANN) Model Regression
2.3. Evaluation of the Aflatoxin Risk by NIRS
Characteristics and Performances of the Best Prediction Models for Aflatoxin Content Classes from NIR Spectra
3. Conclusions
4. Materials and Methods
4.1. Maize Samples
4.2. Aflatoxin Analysis
4.3. Collection of NIR Spectra
4.4. Statistical Approaches and Data Mining
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frisvad, J.C.; Hubka, V.; Ezekiel, C.N.; Hong, S.B.; Novakova, A.; Chen, A.J.; Arzanlou, M.; Larsen, T.O.; Sklenar, F.; Mahakarnchanakul, W.; et al. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud. Mycol. 2019, 93, 1–63. [Google Scholar] [CrossRef]
- Klich, M.A. Aspergillus flavus: The major producer of aflatoxin. Mol. Plant Pathol. 2007, 8, 713–722. [Google Scholar] [CrossRef] [PubMed]
- IARC. Monographs on the evaluation of carcinogenic risks to humans. Aflatoxins 2012, 100F, 225–244. [Google Scholar]
- Benkerroum, N. Chronic and acute toxicities of aflatoxins: Mechanisms of action. Int. J. Environ. Res. Public Health 2020, 17, 423. [Google Scholar] [CrossRef]
- Nejad, B.G.; Mostafei, Z.; Rezaabad, A.B.; Mehravar, F.; Zarei, M.; Dehghani, A.; Estabragh, M.A.R.; Karami-Mohajeri, S.; Alizadeh, H. A systematic review with meta-analysis of the relation of aflatoxin B1 to growth impairment in infants/children. BMC Pediatr. 2023, 23, 614. [Google Scholar] [CrossRef] [PubMed]
- Meissonnier, G.M.; Pinton, P.; Laffitte, J.; Cossalter, A.M.; Gong, Y.Y.; Wild, C.P.; Bertin, G.; Galtier, P.; Oswald, I.P. Immunotoxicity of aflatoxin B1: Impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol. Appl. Pharmacol. 2008, 231, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Gibb, H.; Devleesschauwer, B.; Bolger, B.M.; Wu, F.; Ezenman, J.; Cliff, J.; Zeilmaker, M.; Verger, P.; Pitt, J.; Baines, J. World Health Organization estimates of the global and regional disease burden of four foodborne chemical toxins, 2010: A data synthesis. F1000Research 2015, 4, 1393. [Google Scholar] [CrossRef]
- Van Egmond, H.P. Worldwide regulation for mycotoxins. Adv. Exp. Med. Biol. 2002, 504, 257–269. [Google Scholar] [CrossRef]
- European Union. Regulation 2023/915 of the commission regarding maximal tolerable concentrations for certain contaminants in foods. Off. J. Eur. Union 2023, L119, 103–157. [Google Scholar]
- EN ISO 16050:2011; Determination of AFB1 and the Total Content of Aflatoxins B1; B2, G1 and G2 in Cereals, Nuts and Derived Products. High Performance Liquid Chromatographic Method. International Organization for Standardization: Geneva, Switzerland, 2011.
- European Union. Regulation 401/2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Off. J. Eur. Union 2006, L70, 12–34. [Google Scholar]
- Liu, S.; Jiang, S.; Yao, Z.; Liu, M. Aflatoxin detection technologies: Recent advances and future prospects. Environ. Sci. Pollut. Res. Int. 2023, 30, 79627–79653. [Google Scholar] [CrossRef]
- Sun, D.-W. (Ed.) Infrared Spectroscopy for Food Quality Analysis and Control; National University of Ireland: Dublin, Ireland; Academic Press: Burlington, MA, USA, 2009. [Google Scholar]
- Levasseur-Garcia, C. Updated overview of infrared spectroscopy methods for detecting mycotoxins on cereals (corn, wheat, and barley). Toxins 2018, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Deng, J.; Jiang, H. Markov transition field combined with convolutional neural network improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin B1 in maize. Foods 2022, 11, 2210. [Google Scholar] [CrossRef]
- Deng, J.; Jiang, H.; Chen, Q. Characteristic wavelengths optimization improved the predictive performance of near-infrared spectroscopy models for determination of aflatoxin B1 in maize. J. Cereal Sci. 2022, 105, 103474. [Google Scholar] [CrossRef]
- Liu, T.; He, J.; Yao, W.; Jiang, H.; Chen, Q. Determination of aflatoxin B1 value in corn based on Fourier transform near-infrared spectroscopy: Comparison of optimization effect of characteristic wavelengths. LWT 2022, 164, 113657. [Google Scholar] [CrossRef]
- Hoffmans, Y.; Schaarschmidt, S.; Fauhl-Hassek, C.; van der Fels-Klerx, H.J. Factors during production of cereal derived feed that influence mycotoxin contents. Toxins 2022, 14, 301. [Google Scholar] [CrossRef] [PubMed]
- Weyer, L.; Lo, S. Spectra-structure correlations in the near-infrared. In Handbook of Vibrational Spectroscopy; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002; Volume 3, pp. 1817–1837. [Google Scholar]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Fernández-Ibañez, V.; Soldado, A.; Martínez-Fernández, A.; de la Roza-Delgado, B. Application of near infrared spectroscopy for rapid detection of aflatoxin B1 in maize and barley as analytical quality assessment. Food Chem. 2009, 113, 629–634. [Google Scholar] [CrossRef]
- Darnell, R.E.; Harvey, J.J.; Fox, G.P.; Fletcher, M.T.; Wainaina, J.; Wanjuki, I.; Turner, W.J. NIRS calibration of aflatoxin in maize. Austr. J. Chem 2018, 71, 868–873. [Google Scholar] [CrossRef]
- Shen, G.; Kang, X.; Su, J.; Qiu, J.; Liu, X.; Xu, J.; Shi, J.; Mohamed, S.R. Rapid detection of fumonisin B1 and B2 in ground corn samples using smartphone-controlled portable near-infrared spectrometry and chemometrics. Food Chem. 2022, 384, 132487. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.; Hussain, S.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, A.S.; Mekhilef, J.; Milad, A. Artificial neural networks-based optimization techniques: A review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Ali, Z.A.; Abdul Jabbar, Z.H.; Taher, H.A.; Sallow, A.B.; Almufti, S.M. Exploring the power of extreme gradient boosting algorithm in machine learning: A review. Acad. J. Nawroz Univ. 2023, 12, 320–334. [Google Scholar] [CrossRef]
- Dardenne, P. Some considerations about NIR spectroscopy: Closing speech at nir-2009. NIR News 2010, 21, 8–14. [Google Scholar] [CrossRef]
- Naes, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2002. [Google Scholar]
- Pearson, T.C.; Wicklow, D.T.; Maghirang, E.B.; Xie, F.; Dowell, F.E. Detecting aflatoxin in single corn kernels by transmittance and reflectance spectroscopy. Trans. ASAE 2001, 44, 1247–1254. [Google Scholar] [CrossRef]
- Ghilardelli, F.; Barbato, M.; Gallo, A. A preliminary study to classify corn silage for high or low mycotoxin contamination by using near infrared spectroscopy. Toxins 2022, 14, 323. [Google Scholar] [CrossRef]
- Cheng, X.; Vella, A.; Stasiewicz, M.J. Classification of aflatoxin contaminated single corn kernels by ultraviolet to near infrared spectroscopy. Food Control 2019, 98, 253–261. [Google Scholar] [CrossRef]
- Tao, F.; Yao, H.; Hruska, Z.; Liu, Y.; Rajasekaran, K.; Bhatnagar, D. Detection of aflatoxin B1 on corn kernel surfaces using visible-near infrared spectroscopy. J. Near Infrared Spectrosc. 2020, 28, 59–69. [Google Scholar] [CrossRef]
- Bailly, S.; El Mahgubi, A.; Carvajal-Campos, A.; Lorber, S.; Puel, O.; Oswald, I.P.; Bailly, J.D.; Orlando, B. Occurrence and identification of Aspergillus section Flavi in the context of the emergence of aflatoxins in French maize. Toxins 2018, 10, 525. [Google Scholar] [CrossRef]
AFB1 | Total Aflatoxins | |
---|---|---|
Number of analyzed samples | 554 | 554 |
Number of contaminated samples | 38 | 39 |
Minimum (μg/kg) | 0.015 | 0.015 |
Maximum (μg/kg) | 30.17 | 73.07 |
Mean of contaminated samples (μg/kg) | 3.78 | 5.94 |
Samples > regulation * | 11 | 9 |
Variance (n − 1) (μg/kg) | 55.58 | 183.09 |
Standard deviation (n − 1) (μg/kg) | 7.46 | 13.53 |
Dataset | n * | Preprocessing | r2 | RMSE (µg/kg) | RPD |
---|---|---|---|---|---|
AFB1 calibration | 54 | SNV + D1 | 0.97 | 1.44 | 6.3 |
AFB1 testing | 12 | SNV + D1 | 0.56 | 6.6 | 1.4 |
Total Aflatoxins calibration | 54 | SNV + D1 | 0.99 | 1.88 | 9.0 |
Total Aflatoxins testing | 12 | SNV + D1 | 0.78 | 8.10 | 2.1 |
Dataset | Nb. Neurons in the Hidden Layer | Hidden Layer Activation Function | Initial Weight Assignment | Preprocessing | r2 | RMSE (µg/kg) | RPD | |
---|---|---|---|---|---|---|---|---|
AFB1 | Cross validation | 72 | sine | randomly following a negative uniform distribution (from −1 to 1) | SNV + D1 | 0.90 | 2.93 | 3.1 |
Test | 0.82 | 4.9 | 1.8 | |||||
Total AF | Cross validation | 33 | sine | randomly following a negative uniform distribution (from −1 to 1) | SND + D1 | 0.99 | 0.91 | 20.0 |
Test | 0.74 | 4.9 | 1.9 |
Dataset | Preprocessing | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|---|
AFB1 | SVN + Detrend | 97.4% | 84.6% | 100% | 91.7% |
Total AF | SVN + Detrend | 100% | 100% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailly, S.; Orlando, B.; Brustel, J.; Bailly, J.-D.; Levasseur-Garcia, C. Rapid Detection of Aflatoxins in Ground Maize Using Near Infrared Spectroscopy. Toxins 2024, 16, 385. https://doi.org/10.3390/toxins16090385
Bailly S, Orlando B, Brustel J, Bailly J-D, Levasseur-Garcia C. Rapid Detection of Aflatoxins in Ground Maize Using Near Infrared Spectroscopy. Toxins. 2024; 16(9):385. https://doi.org/10.3390/toxins16090385
Chicago/Turabian StyleBailly, Sylviane, Béatrice Orlando, Jean Brustel, Jean-Denis Bailly, and Cecile Levasseur-Garcia. 2024. "Rapid Detection of Aflatoxins in Ground Maize Using Near Infrared Spectroscopy" Toxins 16, no. 9: 385. https://doi.org/10.3390/toxins16090385
APA StyleBailly, S., Orlando, B., Brustel, J., Bailly, J. -D., & Levasseur-Garcia, C. (2024). Rapid Detection of Aflatoxins in Ground Maize Using Near Infrared Spectroscopy. Toxins, 16(9), 385. https://doi.org/10.3390/toxins16090385