Neutralizing Nanobodies against Venoms from Naja haje Species Captured in North Africa
Abstract
:1. Introduction
2. Results
2.1. Purification of Naja haje Venom Fractions
2.2. Protein Biochip-Based Electrophoretic Profiles of Nht Venom Fractions
2.3. Median Lethal Dose Estimations
2.4. Obtaining Specific Nanobodies by Phage-Display Library Screenings
2.5. Toxic Fraction Binding to nAChRs Subtypes Expressed in HEK293 and Functional Characterization
2.6. In Vitro Analysis of Nanobody-Receptor Binding Affinity
2.7. Neutralizing Efficacy of Nanobodies
2.7.1. Preliminary Finding
2.7.2. Analysis of Neutralization Efficacy
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Animal Ethical and Well-Being Considerations
5.2. Snake Venom Milking and Characterization
5.2.1. Snake Venom Milking
5.2.2. Venom Size-Exclusion Chromatography
5.2.3. Toxicity Assay and LD50 Determination of Nh Venom Fractions
5.2.4. Capillary Electrophoresis and Biochip-Based Analysis of Nh Venom Fractions
5.3. Dromedary Immunization Programs and Library Screenings
5.3.1. Library Construction and VHH Cloning
5.3.2. Phage-Display Library Screening, Enrichments and Positive Clone Rescuing
5.3.3. Nanobody Selection Using Enzyme-Linked Immunosorbent Assays
5.3.4. Nanobody Sequence Analysis
5.4. Nanobody Expression and Purification Using Prokaryotic System
5.4.1. Expression in pHEN6 Vector
5.4.2. Expression in pET23a Vector
5.4.3. Expression in pMECS Vector
5.5. Nanobodies’ Expression and Purification Using Eukaryotic System
5.6. SDS-PAGE Analysis of Purified Nanobodies
5.7. Radioactive I125α-Bgtx Competition Assay
5.8. Statistical Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Snakebite: WHO Targets 50% Reduction in Deaths and Disabilities. Available online: https://www.who.int/news/item/06-05-2019-snakebite-who-targets-50-reduction-in-deaths-and-disabilities (accessed on 22 July 2024).
- Williams, D.J.; Faiz, M.A.; Abela-Ridder, B.; Ainsworth, S.; Bulfone, T.C.; Nickerson, A.D.; Habib, A.G.; Junghanss, T.; Fan, H.W.; Turner, M.; et al. Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Neglected Trop. Dis. 2019, 13, e0007059. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Calvete, J.J.; Habib, A.G.; Harrison, R.A.; Williams, D.J.; Warrell, D.A. Snakebite envenoming. Nat. Rev. Dis. Primers 2017, 3, 17063. [Google Scholar] [CrossRef]
- Chippaux, J.-P.; White, J.; Habib, A.G. African Snakes. In Critical Care Toxicology: Diagnosis and Management of the Critically Poisoned Patient; Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R., White, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 2319–2342. ISBN 978-3-319-17900-1. [Google Scholar]
- Sánchez, A.; Segura, Á.; Pla, D.; Munuera, J.; Villalta, M.; Quesada-Bernat, S.; Chavarría, D.; Herrera, M.; Gutiérrez, J.M.; León, G.; et al. Comparative venomics and preclinical efficacy evaluation of a monospecific Hemachatus antivenom towards sub-Saharan Africa cobra venoms. J. Proteom. 2021, 240, 104196. [Google Scholar] [CrossRef]
- Trape, J.-F.; Chirio, L.; Broadley, D.G.; Wüster, W. Phylogeography and systematic revision of the Egyptian cobra (Serpentes: Elapidae: Naja haje) species complex, with the description of a new species from West Africa. Zootaxa 2009, 2236, 1–25. [Google Scholar] [CrossRef]
- Nys, M.; Zarkadas, E.; Brams, M.; Mehregan, A.; Kambara, K.; Kool, J.; Casewell, N.R.; Bertrand, D.; Baenziger, J.E.; Nury, H.; et al. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat. Commun. 2022, 13, 4543. [Google Scholar] [CrossRef]
- Kalamida, D.; Poulas, K.; Avramopoulou, V.; Fostieri, E.; Lagoumintzis, G.; Lazaridis, K.; Sideri, A.; Zouridakis, M.; Tzartos, S.J. Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J. 2007, 274, 3799–3845. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Hodgson, W.C.; Isbister, G.K. Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming. Toxins 2017, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- Sriapha, C.; Rittilert, P.; Vasaruchapong, T.; Srisuma, S.; Wananukul, W.; Trakulsrichai, S. Early Adverse Reactions to Snake Antivenom: Poison Center Data Analysis. Toxins 2022, 14, 694. [Google Scholar] [CrossRef]
- Potet, J.; Beran, D.; Ray, N.; Alcoba, G.; Habib, A.G.; Iliyasu, G.; Waldmann, B.; Ralph, R.; Faiz, M.A.; Monteiro, W.M.; et al. Access to antivenoms in the developing world: A multidisciplinary analysis. Toxicon X 2021, 12, 100086. [Google Scholar] [CrossRef]
- de Silva, H.A.; Ryan, N.M.; de Silva, H.J. Adverse reactions to snake antivenom, and their prevention and treatment. Br. J. Clin. Pharmacol. 2016, 81, 446–452. [Google Scholar] [CrossRef]
- Laustsen, A.H.; Engmark, M.; Milbo, C.; Johannesen, J.; Lomonte, B.; Gutiérrez, J.M.; Lohse, B. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Curr. Pharm. Des. 2016, 22, 5270–5293. [Google Scholar] [CrossRef]
- Hmila, I.; Saerens, D.; Ben Abderrazek, R.; Vincke, C.; Abidi, N.; Benlasfar, Z.; Govaert, J.; El Ayeb, M.; Bouhaouala-Zahar, B.; Muyldermans, S. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J. 2010, 24, 3479–3489. [Google Scholar] [CrossRef]
- Rossotti, M.A.; Bélanger, K.; Henry, K.A.; Tanha, J. Immunogenicity and humanization of single-domain antibodies. FEBS J. 2022, 289, 4304–4327. [Google Scholar] [CrossRef]
- Hmila, I.; Abdallah R, B.A.-B.; Saerens, D.; Benlasfar, Z.; Conrath, K.; Ayeb, M.E.; Muyldermans, S.; Bouhaouala-Zahar, B. VHH, bivalent domains and chimeric Heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI’. Mol. Immunol. 2008, 45, 3847–3856. [Google Scholar] [CrossRef]
- Abderrazek, R.B.; Hmila, I.; Vincke, C.; Benlasfar, Z.; Pellis, M.; Dabbek, H.; Saerens, D.; El Ayeb, M.; Muyldermans, S.; Bouhaouala-Zahar, B. Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. Biochem. J. 2009, 424, 263–272. [Google Scholar] [CrossRef]
- Wade, J.; Rimbault, C.; Ali, H.; Ledsgaard, L.; Rivera-de-Torre, E.; Abou Hachem, M.; Boddum, K.; Mirza, N.; Bohn, M.-F.; Sakya, S.A.; et al. Generation of Multivalent Nanobody-Based Proteins with Improved Neutralization of Long α-Neurotoxins from Elapid Snakes. Bioconjug Chem. 2022, 33, 1494–1504. [Google Scholar] [CrossRef]
- Ben Abderrazek, R.; Ksouri, A.; Idoudi, F.; Dhaouadi, S.; Hamdi, E.; Vincke, C.; Farah, A.; Benlasfar, Z.; Majdoub, H.; El Ayeb, M.; et al. Neutralizing Dromedary-Derived Nanobodies Against BotI-Like Toxin From the Most Hazardous Scorpion Venom in the Middle East and North Africa Region. Front. Immunol. 2022, 13, 863012. [Google Scholar] [CrossRef]
- Ezzine, A.; M’hirsi El Adab, S.; Bouhaouala-Zahar, B.; Hmila, I.; Baciou, L.; Marzouki, M.N. Efficient expression of the anti-AahI’ scorpion toxin nanobody under a new functional form in a Pichia pastoris system. Biotechnol. Appl. Biochem. 2012, 59, 15–21. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, G.; Korza, G.; Sun, X.; Setlow, P.; Li, J. Engineering Bacillus subtilis as a Versatile and Stable Platform for Production of Nanobodies. Appl. Environ. Microbiol. 2020, 86, e02938-19. [Google Scholar] [CrossRef]
- Hmila, I.; Cosyns, B.; Tounsi, H.; Roosens, B.; Caveliers, V.; Abderrazek, R.B.; Boubaker, S.; Muyldermans, S.; El Ayeb, M.; Bouhaouala-Zahar, B.; et al. Pre-clinical studies of toxin-specific nanobodies: Evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. Toxicol. Appl. Pharmacol. 2012, 264, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Kadkhodazadeh, M.; Rajabibazl, M.; Motedayen, M.; Shahidi, S.; Veisi Malekshahi, Z.; Rahimpour, A.; Yarahmadi, M. Isolation of Polyclonal Single-Chain Fragment Variable (scFv) Antibodies Against Venomous Snakes of Iran and Evaluation of Their Capability in Neutralizing the Venom. Iran. J. Pharm. Res. 2020, 19, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Karam, H.; Mohamed, M. Beneficial effect of low dose gamma irradiation or quercetin on Cerastes cerastes snake venom induced toxicity in male rats. Toxin Rev. 2021, 40, 35–47. [Google Scholar] [CrossRef]
- Makran, B.; Fahmi, L.; Boussada, L.; Oukkache, N.; Chgoury, F.; Benomar, H.; Ghalim, N.; Lkhider, M. Comparative toxicological characterization of venoms of Cerastes cerastes and Macrovipera mauritanica from Morocco and neutralization by monospecific antivenoms. Toxin Rev. 2020, 39, 382–396. [Google Scholar] [CrossRef]
- Zeinab, M.G.; Said, A. Determination of Naja haje crude venom LD50 and the study of its nephrotoxic effect in Wistar rat. J. Am. Sci. 2021, 17, 1–8. [Google Scholar] [CrossRef]
- Win, M.N.; Yee, K.T.; Htwe, K.M.; Thin, E.E.; Win, S.M.; Kyaw, A.M.; Aye, M.M.; Khaing, K.K.; Thwe, W.M.; Htwe, K.K.; et al. Biochemical and biological characterization of the venoms of Naja kaouthia and Naja mandalayensis from Myanmar and neutralization effects of BPI cobra antivenom. Toxicon X 2024, 22, 100196. [Google Scholar] [CrossRef]
- Bin Asad, M.H.; Asad, A.F.; Bibi, S.; Ullah, K.; Javed, T.; Ullah, M.; Ali, A.; Qureshi, Z.R.; Amirzada, M.I.; Al-Kahraman, Y.M.; et al. Lethal toxic Dose (i.p LD50), total protein contents and comparative hemolytic potential of (99mTc labeled & non-labeled) Naja naja karachiensis venom. Pak. J. Pharm. Sci. 2018, 31, 685–689. [Google Scholar]
- Jiang, W.; Liang, Y.; Han, L.; Qiu, P.; Yuan, J.; Zhao, S. Purification and characterization of a novel antinociceptive toxin from Cobra venom (Naja naja atra). Toxicon 2008, 52, 638–646. [Google Scholar] [CrossRef]
- Louw, A.I.; Visser, L. The synergism of cardiotoxin and phospholipase A2 in hemolysis. Biochim. Biophys. Acta 1978, 512, 163–171. [Google Scholar] [CrossRef]
- Xiong, S.; Huang, C. Synergistic strategies of predominant toxins in snake venoms. Toxicol. Lett. 2018, 287, 142–154. [Google Scholar] [CrossRef]
- Kalita, B.; Utkin, Y.N.; Mukherjee, A.K. Current Insights in the Mechanisms of Cobra Venom Cytotoxins and Their Complexes in Inducing Toxicity: Implications in Antivenom Therapy. Toxins 2022, 14, 839. [Google Scholar] [CrossRef]
- Tohamy, A.A.; Mohamed, A.F.; Abdel Moneim, A.E.; Diab, M.S.M. Biological effects of Naja haje crude venom on the hepatic and renal tissues of mice. J. King Saud. Univ. Sci. 2014, 26, 205–212. [Google Scholar] [CrossRef]
- Laustsen, A.H.; María Gutiérrez, J.; Knudsen, C.; Johansen, K.H.; Bermúdez-Méndez, E.; Cerni, F.A.; Jürgensen, J.A.; Ledsgaard, L.; Martos-Esteban, A.; Øhlenschlæger, M.; et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon 2018, 146, 151–175. [Google Scholar] [CrossRef]
- Venkatesan, C.; Sarathi, M.; Balasubramanaiyan, G.; Vimal, S.; Madan, N.; Sundar Raj, N.; Mohammed Yusuf Bilal, S.; Nazeer Basha, A.; Farook, M.A.; Sahul Hameed, A.S.; et al. Neutralization of cobra venom by cocktail antiserum against venom proteins of cobra (Naja naja naja). Biologicals 2014, 42, 8–21. [Google Scholar] [CrossRef]
- Khalek, I.S.; Senji Laxme, R.R.; Nguyen, Y.T.K.; Khochare, S.; Patel, R.N.; Woehl, J.; Smith, J.M.; Saye-Francisco, K.; Kim, Y.; Misson Mindrebo, L.; et al. Synthetic development of a broadly neutralizing antibody against snake venom long-chain α-neurotoxins. Sci. Transl. Med. 2024, 16, eadk1867. [Google Scholar] [CrossRef]
- Richard, G.; Meyers, A.J.; McLean, M.D.; Arbabi-Ghahroudi, M.; MacKenzie, R.; Hall, J.C. In Vivo Neutralization of α-Cobratoxin with High-Affinity Llama Single-Domain Antibodies (VHHs) and a VHH-Fc Antibody. PLoS ONE 2013, 8, e69495. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chang, J.; Lee, C.-H.; Chiang, Y.-W.; Leu, S.-J.; Mao, Y.-C.; Chiang, J.-R.; Yang, C.-K.; Wu, C.-J.; Yang, Y.-Y. Phage display-derived alpaca nanobodies as potential therapeutics for Naja atra snake envenomation. Appl. Environ. Microbiol. 2024, 2024, e0012124. [Google Scholar] [CrossRef]
- Oghalaie, A.; Hosseininejad-Chafi, M.; Mejri, H.; Zareinejad, M.R.; Bouhaouala-Zahar, B.; Bagheri, K.P.; Mirzahoseini, H.; Shahbazzadeh, D.; Behdani, M.; Kazemi-Lomedasht, F. Development and characterization of nanobody against envenomation by Naja naja oxiana. Toxicon 2024, 249, 108057. [Google Scholar] [CrossRef]
- Benard-Valle, M.; Wouters, Y.; Ljungars, A.; Nguyen, G.T.T.; Ahmadi, S.; Ebersole, T.W.; Dahl, C.H.; Guadarrama-Martínez, A.; Jeppesen, F.; Eriksen, H.; et al. In vivo neutralization of coral snake venoms with an oligoclonal nanobody mixture in a murine challenge model. Nat. Commun. 2024, 15, 4310. [Google Scholar] [CrossRef]
- Leonel, T.B.; Gabrili, J.J.M.; Squaiella-Baptistão, C.C.; Woodruff, T.M.; Lambris, J.D.; Tambourgi, D.V. Bothrops jararaca Snake Venom Inflammation Induced in Human Whole Blood: Role of the Complement System. Front. Immunol. 2022, 13, 885223. [Google Scholar] [CrossRef]
- Smith, C.F.; Mackessy, S.P. Asymmetrical expression of toxins between the left and right venom glands of an individual prairie rattlesnake (Crotalus viridis viridis). Toxicon 2020, 186, 105–108. [Google Scholar] [CrossRef]
- Cortés-Ríos, J.; Valdivia-Olivares, R.Y.; Álvarez-Figueroa, M.J.; Rodriguez-Fernandez, M.; González-Aramundiz, J.V. Optimization of physicochemical properties of novel multiple nanoemulsion for complex food matrices through iterative mathematical modelling. J. Food Eng. 2020, 276, 109883. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Für Exp. Pathol. Und Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Spearman, C. The Method of ‘Right and Wrong Cases’ (‘constant Stimuli’) Without Gauss’s Formulae. Br. J. Psychol. 1908, 2, 227–242. [Google Scholar] [CrossRef]
- Rüfer, A. Therapeutic Protein Analysis with the Agilent 2100 Bioanalyzer. BioTechniques 2010, 49, 669–671. [Google Scholar] [CrossRef]
- Moeglin, E.; Desplancq, D.; Stoessel, A.; Massute, C.; Ranniger, J.; McEwen, A.G.; Zeder-Lutz, G.; Oulad-Abdelghani, M.; Chiper, M.; Lafaye, P.; et al. A Novel Nanobody Precisely Visualizes Phosphorylated Histone H2AX in Living Cancer Cells under Drug-Induced Replication Stress. Cancers 2021, 13, 3317. [Google Scholar] [CrossRef]
- Pardon, E.; Laeremans, T.; Triest, S.; Rasmussen, S.G.F.; Wohlkönig, A.; Ruf, A.; Muyldermans, S.; Hol, W.G.J.; Kobilka, B.K.; Steyaert, J. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 2014, 9, 674–693. [Google Scholar] [CrossRef]
- Lafaye, P.; Achour, I.; England, P.; Duyckaerts, C.; Rougeon, F. Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. Mol. Immunol. 2009, 46, 695–704. [Google Scholar] [CrossRef]
- Dhaouadi, S.; Ben Abderrazek, R.; Loustau, T.; Abou-Faycal, C.; Ksouri, A.; Erne, W.; Murdamoothoo, D.; Mörgelin, M.; Kungl, A.; Jung, A.; et al. Novel Human Tenascin-C Function-Blocking Camel Single Domain Nanobodies. Front. Immunol. 2021, 12, 635166. [Google Scholar] [CrossRef]
- Moutel, S.; El Marjou, A.; Vielemeyer, O.; Nizak, C.; Benaroch, P.; Dübel, S.; Perez, F. A multi-Fc-species system for recombinant antibody production. BMC Biotechnol. 2009, 9, 14. [Google Scholar] [CrossRef]
N Nh | IP Dose (µg/Mouse) | IP Dose (mg/kg) | Injection Volume (µL) | Mouse Weight (g) | Symptoms |
---|---|---|---|---|---|
Nht crude Venom | 6.64 | 0.33 | 500 | 20 ± 2 | Paralysis, difficulty moving, weakness, respiratory distress from muscle paralysis and convulsions. |
NhtF5 | 8.75 | 0.44 | 500 | 20 ± 2 | Behavioral difficulties: confusion, tremor, respiratory distress, bending of the back correlated to diaphragm muscle contraction. |
NhtF6 | 14.77 | 0.74 | 500 | 20 ± 2 | Flaccid paralysis starting from the hindlimbs and reaching the forelimbs. |
Nha crude Venom | 5.24 | 0.26 | 500 | 20 ± 2 | Weakness, difficulty moving, paralysis, spasm in the abdominal region. |
NhaF5 | 5.63 | 0.28 | 500 | 20 ± 2 | Weakness, difficulty moving, paralysis, spasm in the abdominal region. |
NhaF6 | 4.90 | 0.25 | 500 | 20 ± 2 | Paralysis, spasm in the abdominal region. |
Nb (Alone or Mixture) | Molar Ratio (NhaF6:Nb) | i.p. NhaF6 LD50 Dose/Mouse | nmol of Nb/Mouse | Survivors/Injected Mice |
---|---|---|---|---|
NhtNbE | 1:2 | 3 | 5.02 | 0/5 |
NhtNbC05 | 1:2 | 3 | 5.02 | 1/5 |
NhtNbCl23 | 1:2 | 3 | 5.02 | 1/5 |
NhtNbE | 1:4 | 3 | 10.04 | 1/5 |
NhtNbC05 | 1:4 | 3 | 10.04 | 1/5 |
NhaNbCl23 | 1:4 | 3 | 10.04 | 3/5 |
NhtNbF09 | 1:4 | 3 | 10.04 | 1/5 |
NhtNbE NhtNbC05 NhaNbCl23 | 1:4 | 3 | 10.04/Nb | 1/5 |
Nb (Alone or Mixture) | Molar Ratio (NhtF5:Nb) | i.p. NhtF5 LD50 Dose/Mouse | nmol of Nb/Mouse | Survivors/Injected Mice |
---|---|---|---|---|
NhtNbE | 1:4 | 2 | 10.04 | 0/4 |
NhaNbCl08 | 1:4 | 2 | 10.04 | 1/4 |
NhaNbCl23 | 1:4 | 2 | 10.04 | 2/4 |
NhtNbE, NhtNbF09, NhtNbC05 | 1:4 | 2 | 10.04/Nb | 1/4 |
NhtNbE, NhtNbF09, NhtNbC05, NhaNbCl08, NhaNbCl23 | 1:1 | 2 | 2.51/Nb | 1/4 |
NhtNbE, NhtNbF09, NhtNbC05, NhaNbCl08, NhaNbCl23 | 1:2 | 2 | 5.02/Nb | 2/4 |
NhtNbE, NhtNbF09, NhtNbC05, NhaNbCl08, NhaNbCl23 | 1:4 | 2 | 10.04/Nb | 4/4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejri, H.; Mokrani, R.; Ksouri, A.; Seddik, M.; Awad, N.; Ayme, G.; Chagour, T.; Mokrani, A.; Louchene, C.e.; Salhi, I.; et al. Neutralizing Nanobodies against Venoms from Naja haje Species Captured in North Africa. Toxins 2024, 16, 393. https://doi.org/10.3390/toxins16090393
Mejri H, Mokrani R, Ksouri A, Seddik M, Awad N, Ayme G, Chagour T, Mokrani A, Louchene Ce, Salhi I, et al. Neutralizing Nanobodies against Venoms from Naja haje Species Captured in North Africa. Toxins. 2024; 16(9):393. https://doi.org/10.3390/toxins16090393
Chicago/Turabian StyleMejri, Hiba, Rym Mokrani, Ayoub Ksouri, Mabrouk Seddik, Nour Awad, Gabriel Ayme, Thouraya Chagour, Ahlem Mokrani, Charraf eddine Louchene, Imed Salhi, and et al. 2024. "Neutralizing Nanobodies against Venoms from Naja haje Species Captured in North Africa" Toxins 16, no. 9: 393. https://doi.org/10.3390/toxins16090393
APA StyleMejri, H., Mokrani, R., Ksouri, A., Seddik, M., Awad, N., Ayme, G., Chagour, T., Mokrani, A., Louchene, C. e., Salhi, I., Ben Abderrazek, R., Khalifa, R. B., Benlasfar, Z., Corringer, P. -J., Hammadi, M., Djilani, S., Lafaye, P., & Bouhaouala-Zahar, B. (2024). Neutralizing Nanobodies against Venoms from Naja haje Species Captured in North Africa. Toxins, 16(9), 393. https://doi.org/10.3390/toxins16090393