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Abstract: The Eastern Long-Nosed Viper (Vipera ammodytes meridionalis) is considered one of the most
venomous snakes in Europe. However, it is unknown whether ontogenetic variation in venom effects
occurs in this subspecies and how this may impact antivenom efficacy. In this study, we compared
the procoagulant activities of V. a. meridionalis venom on human plasma between neonate and adult
venom phenotypes. We also examined the efficacy of three antivenoms—Viperfav, ViperaTAb, and
Inoserp Europe—across our neonate and adult venom samples. While both neonate and adult
V. a. meridionalis venoms produced procoagulant effects, the effects produced by neonate venom
were more potent. Consistent with this, neonate venom was a stronger activator of blood-clotting
zymogens, converting them into their active forms, with a rank order of Factor X >> Factor VII
> Factor XII. Conversely, the less potent adult venom had a rank order of FXII marginally more
activated than Factor VII, and both much more so than Factor X. This adds to the growing body
of evidence that activation of factors besides FII (prothrombin) and FX are significant variables in
reptile venom-induced coagulopathy. Although all three examined antivenoms displayed effective
neutralization of both neonate and adult V. a. meridionalis venoms, they generally showed higher
efficacy on adult venom than on neonate venom. The ranking of antivenom efficacy against neonate
venom, from the most effective to the least effective, were Viperfav, Inoserp Europe, ViperaTAb; for
adult venom, the ranking was Inoserp Europe, Viperfav, ViperaTAb. Our data reveal ontogenetic
variation in V. a meridionalis, but this difference may not be of clinical concern as antivenom was
effective at neutralizing both adult and neonate venom phenotypes. Regardless, our results highlight
a previously undocumented ontogenetic shift, likely driven by the documented difference in prey
preference observed for this species across age classes

Keywords: Echis; coagulopathy; antivenom; small-molecule enzyme inhibitor; factor activation

Key Contribution: This study revealed that the neonate venom is faster-acting in promoting blood
coagulation and less effective in neutralization by all regionally available antivenoms. Factor X was
much more strongly activated by neonate venom than adult. It is also the first documentation of
Factor VII activation and Factor XII in this genus.

1. Introduction

Snakebite is a globally neglected disease and an important public health problem [1]. It
is estimated that up to 5.5 million snakebites, 1.8 million envenomings, and 94,000 human
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deaths occur annually [1]. These numbers are recognized as gross underestimations because
of poor/non-existent epidemiological records kept in some of the most affected regions [2,3].
Effects from snakebite are often systemic, but many long-term sequelae occur due to severe
local effects, such as local necrosis leading to amputation [4,5]. Snake venoms are cocktails
of components that collectively take action in prey capture, digestion, and self-defense [6].
Some components in snake venom attack the hemostatic system of victims, resulting in
disruption of blood clotting through either an anticoagulant or procoagulant mechanism.

Procoagulant venoms activate the zymogen form of blood-clotting enzymes, leading
to the generation of endogenous thrombin, which, in turn, converts fibrinogen into fibrin
clots [7–28]. Anticoagulant venoms cause hemorrhagic shock in prey and human snakebite
victims, while procoagulant venoms induce stroke in prey but lead to consumptive coagu-
lopathy in the larger blood volume of human victims [5,29,30]. In contrast to the intense
research on the anticoagulant mechanism, procoagulant toxicity has received comparably
less attention, and of these efforts, the major focal area has been on the activation of Factor
X and prothrombin, with the activation of other factors comparably neglected.

Although some venom components are shared between different snake lineages [31,32],
extensive interspecific venom variation exists [33–35]. Even within the same species, venom
variation can occur between sexes, age groups, and regional populations [12,16,25,26,36–43].
Such variations within a species can have profound impacts on antivenom efficacy, leading
to poor outcomes [7–9,11,13,19,20,25,26,39,40,44–62].

Snake venoms are made up of proteinaceous toxins, many of which are dynamic,
displaying accelerated rates of duplication and diversification [63]. Variations in the
surface biogeographic features of toxins can strongly influence antivenom recognition,
even between toxins that do not vary in functional sites, leading to potential clinical is-
sues [20,46,49–51,61,62]. Examples include Causus species, which cleave fibrinogen in a
destructive manner, with the venom of the short-glanded species C. lichtensteinii not neu-
tralized by the South African SAIMR antivenom but the venom of the long-glanded species
C. maculatus neutralized at the same antivenom:venom ratio [64]; Crotalus scutulatus sub-
species, which produce flaccid paralysis through a presynaptic action have some subspecies
well neutralized, but others not [39]; and Trimeresurus species, which have extreme variation
in the ability of antivenom to neutralize their pathophysiological cleavage of fibrinogen
to form weak, transient fibrin clots in a pseudo-procoagulant manner. In this study, the
best and worst antivenom-neutralized species were each other’s closest relatives, while the
second-best neutralized species was distant [53]. This study reinforces the paradigm that
organismal relationships are poor predictors of antivenom efficacy.

In other cases, fundamental differences in the underlying venom biochemistry lead
to highly variant antivenom effects. As an example, Bothrops atrox adult venoms were
shown to vary widely between different Brazilian populations in their ability to activate FX
versus FII (prothrombin) [22]. As the antivenom was made using a population rich in FII
(prothrombin)-activating toxin while containing less FX-activating toxin, it was shown that
populations with venom rich in FX-activating toxin were poorly neutralized.

Diet is considered the predominant driving force of venom variation [23,65–70]. Juve-
niles of some species are known to consume different prey types and utilize different forag-
ing strategies and prey-handling behaviors compared to adult snakes [33]. For example,
there is an extraordinary venom variation within the genus Pseudocerastes. While Pseudo-
cerastes fieldi venom is potently neurotoxic [71–75], conversely, Pseudocerastes urarachnoides
venom is strongly procoagulant, being a powerful activator of Factor X and prothrom-
bin [17]. In such cases, shifts in venom components at different ages are hypothesized to
improve effective prey immobilization. For some species, proteomic variations in venom
biochemistry were noted between neonates and adults, but the impact on antivenom effi-
cacy was not assessed [47,76–78]. The venom of the Pakistan locality of Daboia russelii varies
between neonates and adults in a manner reflective of diet, with the neonate phenotype
more potent on amphibian plasma reflective of amphibians being a higher proportion of
their diet at this life stage [24]. In this case, there was no significant difference in antivenom
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efficacy, as there was no significant difference in effects upon mammalian plasma, including
humans. Similarly, Trimeresurus albolabris neonate and adult venoms have the same level
of potency in the pseudo-procoagulant action upon fibrinogen, with antivenom being
equally effective against both [79]. However, for Bothrops jararacussu, while the venom
biochemistry was similar between neonates and adults, the neonates were more potent
and, therefore, compared to adults, the neonate venom required more antivenom to neu-
tralize an equal mass of venom. [59]. A similar scenario was evident in a study on Lachesis
muta venoms, where neonate venoms required over 50% more antivenom than adults to
neutralize the same mass of venom [80]. In more extreme cases, if age-related venom
variation targets different pathophysiological targets, this makes traditional antivenom
selection based on snake species even more problematic, thus necessitating more considera-
tion in antivenom manufacturing [33]. For example, the Crotalus culminates adult venom
phenotype is an anticoagulant, but the neonate venom phenotype is a procoagulant [42].
As the regionally available antivenoms are made using anticoagulant pit viper venoms,
the procoagulant neonate venom is not neutralized. Another example is the Australian
brown snake species (Pseudonaja spp.), whereby juveniles are nocturnal lizard specialists
that produce exclusively neurotoxic venoms, whereas diurnal adults produce venoms
dominated by procoagulant toxins that effectively subdue mammalian prey [37,52]. In the
case of Crotalus molossus nigrescens, the antivenom is unable to neutralize specific effects
due to crotamine peptides [81].

V. ammodytes (Long-Nosed Viper) (Linnaeus, 1758) is widespread across southern
Europe, and the subspecies Vipera ammodytes meridionalis (Eastern Long-Nosed Viper)
(Boulenger, 1903) is restricted to Greece and Turkish Thrace [82,83]. This species contains
a diverse array of toxins, which have a myriad of effects, including coagulotoxicity, my-
otoxicity, and neurotoxicity [84–87]. Traditionally considered the most dangerous snake in
Europe because of the combination of potent venom and wide distribution overlapping
with human population centers, V. ammodytes is a medically significant species capable of
delivering a life-threatening bite [12,88,89]. Clinical records of V. ammodytes evenomations
show it can cause symptoms such as pain, swelling, paralysis, and coagulopathy, which
appear to be consistent with the proteomic composition of their venom [84,90,91]. The pro-
coagulant action of V. ammodytes is primarily driven by the snake venom metalloproteases
(SVMPs) found in the venom [92], with V. ammodytes the most procoagulant species of
the Vipera genus [12]. It has also been shown that kallikrein-scaffold serine proteases, also
present in the venom, are able to activate Factor X, but the concentration of this toxin type
is very low [93]. As such, the contribution of kallikrein-scaffold serine protease enzymes to
the overall procoagulant potency is marginal relative to that of the SVMPs. Consistent with
this, metalloprotease inhibitors can restore clotting [12].

In Europe, bites from V. ammodytes are treated with Viperfav, a commercial antivenom
prepared against European viper venoms [91,94]. However, when a shortage of Viperfav
occurs, V. ammodytes envenomation is treated with ViperaTAb, an antivenom primarily used
to treat V. berus bites. The efficacy of ViperaTAb against V. ammodytes has been reported
to be limited, especially for severe symptoms [94,95]. A newly developed polyvalent
antivenom, Inoserp Europe, was also reported as a possible treatment for V. ammodytes
bites [12,94,96].

V. ammodytes effects upon clotting varies between subspecies [12]. It has also been
shown that V. a. meridionalis is more complex and potent than that of the nominate sub-
species, V. a. ammodytes [84]. However, no studies have investigated the possible ontoge-
netic variation in V. ammodytes venoms. To fill this knowledge gap, we compare neonate
with adult venoms for their relative procoagulant potency and compare the impact upon
the efficacy of three antivenoms (Viperfav, ViperaTAb, and Inoserp Europe).

2. Results

Thromboelastography on human plasma (Figure 1) indicated both neonate and adult
venom initiate clotting of plasma significantly faster than the spontaneous control (p < 0.001).
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However, there was a strong ontogenetic signal, with the neonate venom phenotype induc-
ing clotting significantly faster than the adult (p < 0.001).
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Figure 1. Thromboelastography using human plasma (1800 s total run time). Blue traces = spon-
taneous clot control (negative control), green traces = thrombin control, and red traces = venom
samples. All traces are overlaid with the spontaneous clot control. SP = the split point, the time in
seconds until clot formation begins. R = reaction time, the time in seconds until a detectable clot
(>2 mm) is formed. A = amplitude, the width of tracing at the latest time point, representing clot
strength (mm). Data are n = 4 mean ± standard deviation. Thrombin control is at a concentration of
1.94 NIH units/mL. Venom samples are at a concentration of 19.44 µg/mL.

Subsequent Stago STA-R Max coagulation tests confirmed the thromboelastography
results. At the maximum venom concentration tested (20 µg/mL), both neonate and adult
venom significantly shortened clotting time (p < 0.0001) relative to the spontaneous clotting
control of 407.6 ± 6.8 s with the adult clotting the plasma in 38.367 ± 2.12 s and neonate in
15.60 ± 0.61 s. The neonate venom was significantly faster than the adult (p = 0.001523),
with the adult 246.46 ± 22.07% slower. Concentration–response curves (venom-only line
graphs in Figure 2A,B) showed a similar pattern. Using the area under the curve (AUC)
to compare potency shows the neonate venom was significantly more potent (AUC =
411.9 ± 33.94) than the adult venom (AUC = 964.3 ± 52.95) (p = 0.000299). Consistent with
the adult venom type being used in antivenom production, antivenom testing revealed
adult venom was better neutralized than neonate venom for all antivenoms tested (Figure 2).
Differences in rank order of relative antivenom potency within each venom were as follows:
adult Inoserp = Viperafav > ViperaTAb; and neonate Viperafav > Inoserp > ViperaTAb
(Figure 2A–C).

To ascertain the biochemical mechanisms responsible for the procoagulant toxicity
upon plasma, tests were undertaken to determine which clotting factor zymogens were
converted by the venoms into the activated enzymes. While Factors XI (FXI), FIX, and
FII (prothrombin) were not activated, FVII, FX, and FXII were (Figure 3). Consistent
with having a faster plasma clotting activity, the neonate venom was a much stronger FX
activator than the adult and slightly more potent upon FVII. Conversely, the adult was
more potent upon FXII than the neonate, activated FXII slightly more potently than FVII,
and was least potent on FX.
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Figure 2. Logarithmic views of (A) adult and (B) neonate venom and antivenom plasma clotting
dose-response curves (0.05, 0.125, 0.25, 0.66, 1.66, 4, 10, and 20 µg/mL). (C) Relative shifts in the
area under the curve (AUC) for the venom and antivenom plasma clotting dose-response curves.
No antivenom effect = 0%. p-values are comparisons between neonate and adult venoms within the
same antivenom type, comparisons between antivenom types for neonate venom, and comparisons
between antivenom types for adults. p-values classifications are as follows: ns = not significant (0.62
in this case). Statistics are Brown–Forsythe and Welch ANOVA tests with post-hoc Dunnett’s T3
multiple comparisons. All data are n = 3 ± standard deviation.
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Figure 3. Adult and neonate relative ability to convert clotting factor zymogens into their correspond-
ing activated enzyme. p-values are comparisons between neonate and adult venoms within the same
factor type, comparisons between factor types for neonate venom, and comparisons between factor
types for adults. p-values classifications are as follows: ns = not significant; * = p ≤ 0.05; ** = p ≤ 0.01;
*** = p ≤ 0.001; and **** = p ≤ 0.0001. Statistics are Brown–Forsythe and Welch ANOVA tests with
post-hoc Dunnett’s T3 multiple comparisons. Data are n = 3 mean ± standard deviation.

3. Discussion

Our study found that while both neonate and adult V. a. meridionalis venom produced
procoagulant actions on human plasma, significant ontogenetic variation in potency of
effects between the two phenotypes was displayed (Figures 1 and 2A,B). Results revealed
neonate venom produces more potent procoagulant effects than adult venom. Venom
ontogenetic shifts in Vipera species have been poorly studied, with this study being the
first report of ontogenetic variation on V. a. meridionalis venom. Avella et al. showed an
ontogenetic shift in the venom composition of Vipera latastei, a species closely related to V.
ammodytes, with neonate venoms having a higher proportion of SVMPs than adults [47].
Consistent with a size-based variation in venom biochemistry, an examination of V. mon-
ticola subspecies that varies significantly in adult size revealed the subspecies with the
smallest adult size (V. m. atlantica) had venoms with the highest SVMP content (13.2%),
while the subspecies with the largest adult size (V. m. saintgironsi) had the lowest SVMP
content (6.3%) [97]. However, it is important to note that neither study included functional
assays, which is important as SVMPs are multifunctional. Consequently, neither study was
able to inform about ontogenetic/size-related changes in procoagulant potency. As such,
the current study is the first to investigate age-related variations in clotting factor action by
Vipera venoms.

As diet an important selective force that shapes venom composition [37,65,98], prey
specialization is the most likely major driver of ontogenetic venom variation on ven-
omous snakes. The diet of V. a. meridionalis is reported to show ontogenetic variations,
with juvenile vipers feeding on lizards and adults predominantly preying on birds and
mammals [99–101]. The predatory ecology must also be considered, such as the extreme
variation in the Australian elapid genus Pseudonaja (brown snakes), whereby neonates
are neurotoxic nocturnal specialists on sleeping lizards, while adults are procoagulotoxic
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diurnal pursuit predators of small mammals [37,52]. In contrast, the sister genus Oxyuranus
does not display age-related venom effects, as they are diurnal pursuit predators of small
mammals at all life stages [37]. Alternate theories have been proposed. One is that as
juvenile snakes produce a limited amount of venom; they require stronger coagulopathic
effects in venom to subjugate and kill prey [47]. However, a limitation of this theory is
that while the smaller snakes produce less venom, they also feed on proportionally smaller
prey. Another theory is that adults that feed upon larger prey may invest venom effects to
facilitate consumption [102]. However, data to support this theory are lacking, and in fact,
this theory has been proposed as invalid [103].

The ontogenetic shift in the diet of V. latastei has been reported to be similar to that
of V. ammodytes, with juveniles of both species predominantly feeding on ectothermic
prey and adults mainly predating on endotherms [47,99,104]. Paralleling this are juve-
niles with higher concentrations of SVMP enzymes [47], the toxin type responsible for
procoagulant toxicity in this genus [12]. As such, the data in this are consistent with the
ontogenetic variation in procoagulant effects produced by V. a. meridionalis venom is driven
by a relative abundance of SVMP toxins. Therefore, this finding also provides a testable
hypothesis for future research that V. latastei will show a similar ontogenetic variation in
procoagulant potency.

The results of this study extend beyond biological theory and into the realm of human
snakebite by providing data useful in the evidence-based design of clinical management
strategies for the envenomed patient. Based on our results on antivenom efficacy, all
three tested antivenoms showed higher efficacy against adult venom than neonate venom.
However, in the treatment of an envenomation, this would, of course, be offset by the
proportionally small venom yield of smaller specimens [105–107].

Viperfav, which is currently used to treat V. ammodytes bites [89,95], ranked as the
most effective antivenom against neonate venom and the second most effective against
adult venom on human plasma (Figure 2). The newly developed polyvalent antivenom
Inoserp Europe also displayed effective neutralization against the coagulopathic effects
caused by both neonate and adult V. a. meridionalis venom. This is consistent with previous
results, which showed Inoserp Europe to be the most effective against the procoagulant
effects of 12 Vipera species [12]. However, an in vivo mouse study identified ViperaTAb
as more effective against V. ammodytes venoms from Croatia [94]. By contrast, ViperaTAb
had limited effects on counteracting the procoagulant activity of both neonate and adult
V. a. meridionalis venom in this study. This is not surprising as ViperaTab is immunized
with only the venom of V. berus. Moreover, previous literature suggested limited effects of
this antivenom against severe V. a. meridionalis envenomation [94,95] and poor performance
compared to both Inoserp Europe and Viperfav in vitro [12].

Our study further interrogated the fundamental biochemistry underpinning the on-
togenetic venom variation in V. a. meridionalis. Consistent with more potent procoagu-
lant effects, neonate venom was a stronger activator of clotting factors, particularly FX
(Figure 3). FX being the strongest activated zymogen is consistent with those of previous
studies, which also showed potent FX activation by V. ammodytes and other species of
Vipera [12,92,93]. However, this study was the first to show FVII or FXII activation for any
Vipera venom. This adds to the growing body of literature regarding reptile venoms being
able to activate diverse clotting factors besides just FII (prothrombin) or FX, including the
following: Oxyuranus and Pseudonaja species (FVII activation in addition to FII) [52,108];
natricine species within the Rhabdophis genus (FVII >> FIX > FXII > FII > FX); and the
viperid snake Porthidium volcanicum (FVII > FXII > FXI > FX) [15]; and Heloderma species of
anguimorph lizards (FVII and FXII) [109].

An important caveat is that while our study provides evidence of the ontogenetic vari-
ation in coagulotoxic venom components of V. a. meridionalis and its impact on antivenom
efficacy, possible ontogenetic shifts in other pathophysiological effects also need to be
explored. Beyond the potent procoagulant components, neurotoxins and cardiotoxins, such
as vipoxin and ammodytin L, are also present in Vipera ammodytes venom [12,84,88,110].
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Envenomation, thus, can possibly result in vessel and myocardial dysfunction and cranial
nerve paresis or paralysis [96]. Neurotoxicity of V. ammodytes is also relevant to antivenom
efficacy. In the case of antivenom ViperaTAb, while shown to have some effects against
coagulopathic venom in the present study, it was reported to have no effects at all on
neurological signs caused by V. ammodytes bite [95]. Exploring ontogenetic shifts in these
other pathophysiological actions and the impact on antivenom efficacy will enable us to
fully understand the potential clinical effects of V. a. meridionalis envenomations, as well as
the evolutionary influences underlying it.

4. Materials and Methods
4.1. Venom

Venom work was conducted under the University of Queensland Animal Ethics Ap-
proval 2021/AE000075 and UQ Biosafety Committee Approval # IBC/134B/SBS/2015.
Six lyophilized Vipera ammodytes meridionalis venoms were provided by alpha-biotoxins.
Samples included venom from two wild adult individuals (male and female, both from
Peloponese Greece) and their offspring (five neonates, sex unknown, milked at 3 months of
age). Venom samples were stored in a −80 ◦C freezer until use. Venom stocks were recon-
stituted to a 1mg/mL working stock with a 50% double deionized water and 50% glycerol
mix to preserve enzymatic activity. Concentrations of venom samples were determined
by a Thermo Fisher Scientific NanoDrop 2000 UV–Vis Spectrophotometer (Thermofisher,
Sydney, NSW, Australia). Prepared venom stocks were stored in a −20 ◦C freezer.

4.2. Plasma Coagulation Assay Approvals

Human-plasma work was performed under University of Queensland Biosafety Ap-
proval #IBC134BSBS2015 and Human Ethics Approval #2016000256. Australian Red Cross
(44 Musk Street, Kelvin Grove, QLD 4059, Australia) supplied human platelet-poor plasma
(3.2% citrated) under research approval #16- 04QLD-10. Samples were flash-frozen in liquid
nitrogen and stored in 1.5 ml aliquots at −80 ◦C until required. For testing, plasma was
defrosted in a 37 ◦C water bath for 5 min before use.

4.3. Thromboelastography

A Thrombelastograph 5000 Haemostasis analyzer (Haemonetics, Haemonetics Aus-
tralia Pty Ltd., North Rdye, Sydney, Australia) was employed to measure the effect of
V. a. meridionalis venom on human-plasma clot strength, “TEG® 5000 disposable cups and
pins clear” were used (Haemonetics®, REF 6211). In each assay, 72 µL 0.025M CaCl2 (Stago
Cat# 00367), 72 µL phospholipid (Stago Cat# 00597) solubilized in Owren Koller (OK),
and 20 µL OK buffer (Stago Cat# 00360) were pipetted into cups, followed by 7 µL 50%
deionized water/50% glycerol for the spontaneous clot control, 7 µL of thrombin (Stago
Cat#00673 Liquid Fib, thrombin concentration of 100 NIH units/mL) for the thrombin
control and 7 µL of 1 mg/mL venom stock for the clot strength assays. After all reagents
were added, 189 µL human plasma (thawed for 5 min in a 37 ◦C water bath) was pipetted
into cups. Testing was conducted at 37 ◦C. Each assay was performed for 30 min. Traces
were exported from the analyzer and processed in Adobe Photoshop to create figures.

4.4. Coagulation Curves

The ability of venoms to clot human plasma at different concentrations was measured
with a Stago STA-R Max hemostasis analyzer (Stago, Asnières sur Seine, France). Plasma
samples were thawed in a 37 ◦C water bath for 5 min prior to testing. The clotting time of
each venom sample was measured in triplicate at eight different concentrations (20 µg/mL,
10 µg/mL, 4 µg/mL, 1.6 µg/mL, 0.66 µg/mL, 0.25 µg/mL, 0.125 µg/mL, and 0.05 µg/mL).
For testing, 1 mg/mL venom stock was diluted with OK buffer to 0.1 mg/mL and placed
into the analyzer. For the 20 µg/mL concentration, 50 µL 0.025 M CaCl2, 50 µL phospholipid
solubilized in 25 µL OK buffer, and 50 µL of 0.1 mg/mL venom were automatically pipetted
into a cuvette and incubated for 120 s at 37 ◦C. Following incubation, 75 µL of human
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plasma was added to the cuvette, and clotting time was measured using a mechanical,
viscosity-based system. For additional concentrations, the volumes of venom and OK
buffer added to the cuvette were adjusted. The final cuvette volume for all concentrations
was 250 µL.

4.5. Antivenom Neutralization Studies

Antivenom assays were also performed on a Stago STA-R Max hemostasis analyzer to
test the efficacy of antivenom in neutralizing the coagulotoxic activity of V. a. meridionalis
venom. The antivenoms tested were Inoserp Europe (lot # 9IT03006), a 22.5 mg/mL F(ab′)2
antivenom made using an immunizing mixture consisting of Macrovipera lebetina cernovi,
M. l. obtusa, M. l. turanica, M. schweizeri, Montivipera xanthina, Vipera ammodytes, V. aspis,
V. berus, and V. latastei; MicroPharm VIPERFAV (lot #P4A281V), a 100 mg/mL F(ab′)2
antivenom made using an immunizing mixture consisting of Vipera ammodytes, V. aspis,
and V. berus; and MicroPharm ViperaTAb (lot #VPT 002000), a 24.6 mg/mL Fab antivenom
made using V. berus as the sole venom in the immunizing mixture.

Antivenoms were diluted with OK buffer to a concentration of 5%. The same procedure
as in plasma coagulation assays (Section 4.4) was followed, except 25 µL of OK buffer was
replaced with 25 µL of 5% antivenom, leading to a final cuvette concentration of 0.5%.

4.6. Clotting Factor Activation Assays

Clotting factor activation assays were performed with Fluoroskan Ascent (Thermo
Scientific, Vantaa, Finland) to detect clotting factor (Factor VII, X, XI, XII, and prothrombin)
activation and compare the relative ability of factor activation between neonate and adult
V. a. meridionalis venom. Reaction stoichiometry and reaction conditions were as per [109].
Reagents were automatically plated in 384-well plates (black, lot#1171125; Nunc Thermo
Scientific, Rochester, NY, USA) by a Hamilton Vantage Liquid Handling System (USA).
Plates were manually loaded into the Fluoroskan Ascent, and measurement started. The
Fluoroskan Ascent automatically pipetted 70 µL of buffer, which contained 5 mM CaCl2,
150 mM NaCl, 50 mM Tris-HCl (pH 7.3) and Fluorogenic Peptide Substrate (ES011Boc-Val-
Pro-Arg-AMC. Boc: t-Butyloxycarbonyl; 7-Amino-4-methylcoumarin; R & D systems, Cat#
ES011, Minneapolis, MN, USA) in a 500:1 ratio, to each well to start the reaction. The plate
was warmed up at 37 ◦C and shaken for 3 s in Fluoroskan Ascent before each measurement.
The reaction was carried out 300 times at 390 (excitation)/460 nm (emission), and the
fluorescence generated by the cleavage of the substrate was measured by Ascent Software
v2.6 (Thermo Scientific, Vantaa, Finland) every 10 s. To obtain final results, subtraction of
“venom without zymogen” values from “venom with zymogen” values was performed,
which nullified artificial increments of the fluorescence values caused by venoms that work
directly on the substrate. Finally, the results from the subtractions were normalized as
a percentage relative to the positive control (activated factors/enzyme (note: FXII was
activated by using Kaolin and that solution used as control)) by processing in Excel and
then analyzing in GraphPad PRISM 8.1.1 (GraphPad Prism Inc., La Jolla, CA, USA).

4.7. Statistical Analyses

GraphPad PRISM 8.1.1 (GraphPad Prism Inc., La Jolla, CA, USA) was used to perform
statistical analyses. For the plasma clotting time of venom and venom incubated with
antivenom, an area under the curve (AUC) was generated based on venom curves. To test
and compare antivenom efficacy, an X-fold shift was calculated with the following formula:

X fold shift =
AUC of (venom + antivenom)

AUC of venom
− 1

The value of the X-fold shift indicates the neutralization of venom activity achieved
by antivenom. An AX-fold shift of 0 indicates no neutralization, while a value above 0
indicates neutralization. These values were converted to a percent by multiplying by 100.
The statistically significant results in percent AUC shift were classed as p < 0.05.
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