The Biological Control of the Malaria Vector
Abstract
:1. Introduction
Biological Control Agent | Commonly Used Strain | Effect | Application | Limitation | Corresponding Reference |
---|---|---|---|---|---|
Entomopathogenic fungi |
|
|
|
| [26,27,28,29,30,31,32,33] |
Bacterial agents |
|
|
|
| [34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57] |
Larvivorous fish |
|
|
|
| [55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71] |
Microsporidian parasites |
|
|
|
| [72,73,74,75,76,77,78,79,80] |
Viruses | Densonucleosis viruses or denso viruses (DNVs) |
|
|
| [81,82] |
Nematodes |
|
|
|
| [83,84,85,86,87,88] |
2. Means of Biological Control
2.1. Entomopathogenic Fungi
2.2. Bacterial Agents
2.3. Larvivorous Fish
2.4. Other Biological Control Agents
3. Conclusion
Acknowledgments
Conflict of Interest
References
- World Health Organization Regional Office for South-East Asia, Anopheline Species Complexes in South and South-East; World Health Organization Regional Office for South-East Asia: New Delhi, India, 2007; p. 102.
- Murray, C.J.L.; Rosenfeld, L.C.; Lim, S.S.; Andrews, K.G.; Foreman, K.J.; Haring, D.; Fullman, N.; Mohsen, N.; Rafael, L.; Lopez, A.D. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet 2012, 379, 413–431. [Google Scholar] [CrossRef]
- Anopheles. Available online: http://en.wikipedia.org/wiki/Anopheles (accessed on 10 May 2012).
- Oaks, S.C.; Mitchell, V.S.; Pearson, G.W. Malaria: Obstacles and Opportunities; Carpenter, C.C.J., Ed.; National Academy: Washington, WA, USA, 1991. [Google Scholar]
- Bronner, U.; Divis, P.C.; Farnert, A.; Singh, B. Swedish Traveller with Plasmodium Knowlesi Malaria After Visiting Malaysian Borneo. Malar. J. 2009, 8, 15. [Google Scholar] [CrossRef]
- Harrison, G. Mosquitoes, Malaria and Man. A history of Hostilities since 1880; Murray, J., Ed.; Dutton: New York, NY, USA, 1978; p. 314. [Google Scholar]
- World Health Organization, Implementation of the Global Malaria Control Strategy; Technical Report Series, No. 839; World Health Organization: Geneva, Switzerland, 1993; pp. 1–62.
- Raghavendra, K.; Subbarao, S.K. Chemical Insecticides in Malaria Vector Control in India. ICMR Bull 2002, 32, 93–99. [Google Scholar]
- Hassall, K.A. The Chemistry of Pesticide: Their Metabolism, Mode of Action, and Uses in Crop Protections; Chemie, V., Ed.; Weinheim: Deerfield Beach, FL, USA, 1982; p. 372. [Google Scholar]
- D’Alessandro, U.; Olaleye, B.O.; McGuire, W.; Thomson, M.C.; Langerock, P.; Bennett, S.; Greenwood, B.M. A comparison of the efficacy of insecticide-treated and untreated bed nets in preventing malaria in Gambian children. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 596–598. [Google Scholar] [CrossRef]
- Trigg, P.I.; Kondrachine, A.V. Commentary: Malaria Control in the 1990s. Bull. World Health Organ. 1998, 76, 11–16. [Google Scholar]
- Shiff, C. Integrated approach to malaria control. Clin. Microbiol. Rev. 2002, 15, 278–293. [Google Scholar] [CrossRef]
- Mabaso, M.L.H.; Sharp, B.; Lengeler, C. Historical review of malarial control in Southern African with emphasis on the use of indoor residual house-spraying. Trop. Med. Int. Health 2004, 9, 846–856. [Google Scholar] [CrossRef]
- Wakabi, W. Africa counts greater successes against malaria. Lancet 2007, 370, 1895–1896. [Google Scholar] [CrossRef]
- Pant, C.P. Malaria Vector Control: Imagociding. In Malaria: Principles and Practicie of Malariology; Wernsdorfer, W.H., McGregor, I.A., Eds.; Churchill Livingstone: Edinburgh, UK, 1988; pp. 1173–1212. [Google Scholar]
- Rozendaal, J.A. Vector Control: Methods for Use by Individuals and Communities; World Health Organization: Geneva, Switzerland, 1997; pp. 1–412. [Google Scholar]
- Gratz, N.G.; Pal, R. Malaria Vector Control: Larviciding. In Malaria: Principle and Practices of Malariology; Wernsdorfer, W.H., McGregor, I.A., Eds.; Churchill Livingstone: Edinburgh, UK, 1988; pp. 1213–1226. [Google Scholar]
- Raghavendra, K.; Barik, T.K.; Niranjan Reddy, B.P.; Sharma, P.; Dash, A.P. Malaria vector control: From past to future. Parasitol. Res. 2011, 108, 757–779. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, V.P.; Sumodan, P.K.; Thavaselvan, D.; Kamat, R.H. Malaria control utilizing Bacillus sphaericus against Anopheles stephensi breeding in construction sites and abandoned overhead tanks with Bacillus thuringiensis var. israelensis. J. Am. Mosq. Control Assoc. 1994, 11, 86–89. [Google Scholar]
- Gopaul, R. Entomological surveillance in mauritius. Sante 1995, 5, 401–405. [Google Scholar]
- Parvez, S.D.; Al-Wahaibi, S.S. Comparison of three larviciding options for malaria vector control. East Mediterr. Health J. 2003, 9, 627–636. [Google Scholar]
- National malaria eradication programme, Directorate General of Health Services. In Epidemiology and Control of Malaria in India; World Health Organization: New Delhi, India, 1996; p. 251.
- Global Malaria Programme. Available online: http://www.who.int/malaria/en/ (accessed on 20 April 2012).
- Brown, A.W. Laboratory Studies on the Behaviouristic Resistance of Anopheles albimanus in Panama. Bull. World Health Organ. 1958, 19, 1053–1061. [Google Scholar]
- Beier, J.C. Malaria control in the highlands of burundi: An important success story. Am. J. Trop. Med. Hyg. 2008, 79, 1–2. [Google Scholar]
- Fang, W.; Vega-Rodríguez, J.; Ghosh, A.K.; Jacobs-Lorena, M.; Kang, A.; St Leger, R.J. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 2011, 331, 1074–1077. [Google Scholar] [CrossRef]
- Orduz, S.; Restrepo, N.; Patiño, M.M.; Rojas, W. Transfer of toxin genes to alternate bacterial hosts for mosquito control. Mem. Inst. Oswaldo Cruz. 1995, 90, 97–107. [Google Scholar] [CrossRef]
- Scholte, E.J.; Knols, B.G.J.; Samson, R.A.; Takken, W. Entomopathogenic fungi for mosquito control: A review. J. Insect Sci. 2004, 4, 24. [Google Scholar]
- Okumu, F.O.; Madumla, E.P.; John, A.N.; Lwetoijera, D.W.; Sumaye, R.D. Attracting, trapping, and killing disease-transmitting mosquitoes using odor-baited stations-the ifakara odor-baited stations. Parasites Vectors 2010, 3, 1–10. [Google Scholar] [CrossRef]
- Scholte, E.J.; Ng’habi, K.; Kihonda, J.; Takken, W.; Paaijmans, K.; Abdulla, S.; Killeen, G.F.; Knols, B.G. An entomopathogenic fungus for control of adult African malaria mosquitoes. Science 2005, 308, 1641–1642. [Google Scholar]
- Thomas, M.B.; Read, A.F. Can fungal biopesticides control malaria. Nat. Rev. Microbiol. 2007, 5, 377–383. [Google Scholar] [CrossRef]
- Blandford, S.; Chan, B.H.; Jenkins, N.; Sim, D.; Turner, R.J.; Read, A.F.; Thomas, M.B. Fungal pathogen reduces potential for malaria Transmission. Science 2005, 308, 1638–1641. [Google Scholar] [CrossRef]
- Scholte, E.J.; Knols, B.G.J.; Samson, R.A.; Takken, W. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J. Invertebr. Pathol. 2006, 91, 43–49. [Google Scholar] [CrossRef]
- Charles, J.F.; Nielsen-LeRoux, C. Mosquitocidal bacterial toxins: Diversity, mode of action and resistance phenomena. Mem. Inst. Oswaldo Cruz. 2002, 95, 201–206. [Google Scholar]
- Unep, I.L.O. Bacillus Thuringiensis: Environmental Health Criteria; Series No. 217; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- Becker, N. The use of Bacillus thuringiensis subsp. israelensis (Bti) against mosquitoes, with special emphasis on the ecological impact. Isr. J. Entomol. 1998, 32, 63–69. [Google Scholar]
- Guillet, P.; Kurstak, D.; Philippon, B.; Meyer, R. Use of Bacillus thuringiensis israelensis for Onchocerciasis Control in West Africa. In Bacterial Control of Mosquitoes and Blackflies; de Barjac, H., Sutherland, D.J., Eds.; Rutgers University Press: New Brunswick, NJ, USA, 1990; pp. 187–199. [Google Scholar]
- Majori, G.; Ali, A.; Sabatinelli, G. Laboratory and field efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus against Anopheles gambiae s.l. and Culex quinquefasciatus in Ouagadougou, Burkina Faso. J. Am. Mosq. Control Assoc. 1987, 3, 20–25. [Google Scholar]
- Karch, S.; Manzambi, Z.A.; Salaun, J.J. Field trials with vectolex (Bacillus sphaericus) and vectobac (Bacillus thuringiensis (H-14)) against Anopheles gambiae and Culex quinquefasciatus Breeding in Zaire. J. Am. Mosq. Control Assoc. 1991, 7, 176–179. [Google Scholar]
- Karch, S.; Asidi, N.; Manzambi, Z.M.; Salaun, J.J. Efficacy of Bacillus sphaericus against the malaria vector Anopheles gambiae and other mosquitoes in swamps and rice fields in Zaire. J. Am. Mosq. Control Assoc. 1992, 8, 376–380. [Google Scholar]
- Ragoonanansingh, R.N.; Njunwa, K.J.; Curtis, C.F.; Becker, N. A field study of Bacillus sphaericus for the control of culicine and anopheline mosquito larvae in Tanzania. Bull. Soc. Vector Ecol. 1992, 17, 45–50. [Google Scholar]
- Ravoahangimalala, O.; Thiery, I.; Sinegre, G. Rice field efficacy of deltamethrin and Bacillus thuringiensis israelensis formulations on Anopheles gambiae s.s. the Anjiro region of Madagascar. Bull. Soc. Vector Ecol. 1994, 19, 169–174. [Google Scholar]
- Seyoum, A.; Abate, D. Larvicidal efficacy of Bacillus thuringiensis var. israelensis and Bacillus sphaericus on Anopheles arabiensis in Ethiopia. World J. Microbiol. Biotechnol. 1997, 13, 21–24. [Google Scholar] [CrossRef]
- Skovmand, O.; Sanogo, E. Experimental formulations of Bacillus sphaericus and Bacillus thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso. J. Med. Entomol. 1999, 36, 62–67. [Google Scholar]
- Barbazan, P.; Baldet, T.; Darriet, F.; Escaffre, H.; Djoda, D.H.; Hougard, J.M. Control of Culex quinquefasciatus (Diptera: Culicidae) with Bacillus sphaericus in Maroua, Cameroon. J. Am. Mosq. Control Assoc. 1997, 13, 263–269. [Google Scholar]
- Barbazan, P.; Baldet, T.; Darriet, F.; Escaffre, H.; Djoda, D.H.; Hougard, J.M. Impact of treatments with Bacillus sphaericus on Anopheles populations and the transmission of malaria in Maroua, a Large City in a Savannah region of Cameroon. J. Am. Mosq. Control Assoc. 1998, 14, 33–39. [Google Scholar]
- Das, P.K.; Amalraj, D.D. Biological control of malaria vectors. Indian J. Med. Res. 1997, 106, 174–197. [Google Scholar]
- Chouaia, B.; Rossi, P.; Montagna, M.; Ricci, I.; Crotti, E.; Damiani, C.; Epis, S.; Faye, I.; Sagnon, N.; Alma, A.; et al. Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl. Environ. Microbiol. 2010, 76, 7444–7450. [Google Scholar] [CrossRef]
- Damiani, C.; Ricci, I.; Crotti, E.; Rossi, P.; Rizzi, A.; Scuppa, P.; Capone, A.; Ulissi, U.; Epis, S.; Genchi, M.; et al. Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. Microb. Ecol. 2010, 60, 644–654. [Google Scholar] [CrossRef] [Green Version]
- Favia, G.; Ricci, I.; Damiani, C.; Raddadi, N.; Crotti, E.; Marzorati, M.; Rizzi, A.; Urso, R.; Brusetti, L.; Borin, S.; et al. Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. Proc. Natl. Acad. Sci. USA 2007, 104, 9047–9051. [Google Scholar]
- Favia, G.; Ricci, I.; Marzorati, M.; Negri, I.; Alma, A.; Sacchi, L.; Bandi, C.; Daffonchio, D. Bacteria of the genus Asaia: A potential paratransgenic weapon against malaria. Adv. Exp. Med. Biol. 2008, 627, 49–59. [Google Scholar] [CrossRef]
- Crotti, E.; Damiani, C.; Pajoro, M.; Gonella, E.; Rizzi, A.; Ricci, I.; Negri, I.; Scuppa, P.; Rossi, P.; Ballarini, P.; et al. Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. Environ. Microbiol. 2009, 11, 3252–3264. [Google Scholar] [CrossRef] [Green Version]
- Kambris, Z.; Cook, P.E.; Phuc, H.K.; Sinkins, S.P. Immune activation by life shortening Wolbachia and reduced filarial competence in mosquitoes. Science 2009, 326, 134–136. [Google Scholar]
- Hughes, G.L.; Koga, R.; Xue, P.; Fukatsu, T.; Rasgon, J.L. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 2011, 7, e1002043. [Google Scholar] [CrossRef]
- Walker, K. A Review of Control Methods for African Malaria Vectors; Activity Report 108; Agency for International Development: Washington, WA, USA, 2002. [Google Scholar]
- Meisch, M.V. Gambusia affinis affinis. Am. Mos. Control Assoc. Bull. 1985, 5, 3–16. [Google Scholar]
- Yap, H.H. Biological control of mosquitoes, especially malaria vectors, Anopheles specie. Southeast Asian J. Trop. Med. Public Health 1985, 16, 163–172. [Google Scholar]
- World Health Organization, Manual on Environmental Management for Mosquito Control with Special Emphasis on Malaria Vectors; WHO Offset Publication No. 66; World Health Organization: Geneva, Switzerland, 1982; pp. 1–276.
- Rupp, H.R. Adverse assessments of Gambusia affinis: An alternate view for mosquito control practitioners. J. Am. Mos. Control Assoc. 1996, 12, 155–166. [Google Scholar]
- Dua, V.K.; Sharma, S.K. Use of Guppy and Gambusia Fishes for Control of Mosquito Breeding at BHEL. Industrial Complex, Hardwar (U.P.). In Larvivorous Fishes of Inland Ecosystems; Sharma, V.P., Ghosh, A., Eds.; Malaria Research Centre: Delhi, India, 1994; pp. 35–42. [Google Scholar]
- Wu, N.; Liao, G.; Li, D.; Luo, Y.; Zhong, G. The advantages of mosquito biocontrol by stocking edible fish in rice paddies. Southeast Asian J. Trop. Med. Public Health 1991, 22, 436–442. [Google Scholar]
- Lacey, L.A.; Lacey, C.M. The medicinal importance of riceland mosquitoes and their control using alternatives to chemical insecticides. J. Am. Mosq. Control Assoc. 1990, 2, 1–93. [Google Scholar]
- Victor, T.J.; Chandrasekaran, B.; Reuben, R. Composite fish culture for mosquito control in rice fields in Southern India. Southeast Asian J. Trop. Med. Public Health 1994, 25, 522–527. [Google Scholar]
- Fletcher, M.; Teklehaimanot, A.; Yemane, G. Control of mosquito larvae in the port city of Assab by an indigenous larvivorous fish, Aphanius dispar. Acta Trop. 1992, 52, 155–166. [Google Scholar] [CrossRef]
- Menon, P.K.B.; Rajagopalan, P.K. Control of mosquito breeding in wells by using Gambusia affinis and Aplocheilus blocki in Pondicherry town. Indian J. Med. Res. 1978, 68, 927–933. [Google Scholar]
- Kumar, A.; Sharma, V.P.; Sumodan, P.K.; Thavaselvam, D. Field trials of biolarvicide Bacillus thuringiensis var. israelensis strain 164 and the larvivorous fish Aplocheilus blocki against Anopheles stephensi for malaria control in Goa, India. J. Am. Mos. Control Assoc. 1998, 14, 457–462. [Google Scholar]
- Sabatinelli, G.; Blanchy, S.; Majori, G.; Papakay, M. Impact de L’utilisations du poisson larvivore Poecilia reticulata Sur la transmission du paludisme en RFI des comores. Ann. Parasitol. Hum. Comp. 1991, 66, 84–88. [Google Scholar]
- Gupta, D.K.; Bhatt, R.M.; Sharma, R.C.; Gautam, A.S. Rajnikant. Intradomestic mosquito breeding sources and their management. Indian J. Malariol. 1992, 29, 41–46. [Google Scholar]
- Rajnikant, D.; Bhatt, R.M.; Gupta, D.K.; Sharma, R.C.; Srivastava, H.C.; Gautam, A.S. Observations on mosquito breeding in wells and its control. Indian J. Malariol. 1993, 20, 215–220. [Google Scholar]
- Kusumawathie, P.H.D.; Wickremasinghe, A.R.; Karunaweera, N.D.; Wijeyaratne, M.J.S. Larvivorous potential of the Guppy, Poecilia reticulata, in Anopheline mosquito control in riverbed pools below the Kotmale Dam, Sri Lanka. Asia Pac. J. Public Health 2008, 20, 56–63. [Google Scholar] [CrossRef]
- Shililu, J.; Ghebremeskel, T.; Seulu, F.; Mengistu, S.; Fekadu, H.; Zerom, M.; Asmelash, G.E.; Sintasath, D.; Mbogo, C.; Githure, J.; et al. Seasonal abundance, vector behavior, and malaria parasite transmission in Eritrea. J. Am. Mosq. Control Assoc. 2004, 20, 155–164. [Google Scholar]
- Lyimo, E.O.; Koella, J.C. Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum. Parasitology 1992, 104, 233–237. [Google Scholar] [CrossRef]
- Ameneshewa, B.; Service, M.W. The relationship between female body size and survival rates of the malaria vector Anopheles arabiensis in Ethiopia. Med. Vet. Entomol. 1996, 10, 170–172. [Google Scholar] [CrossRef]
- Bano, L. Partial inhibitory effect of Plistophora culicis on the Sporogonic cycle of Plasmodium cynomolgi in Anopheles Stephensi. Nature 1958, 181, 430. [Google Scholar] [CrossRef]
- Fox, R.M.; Weiser, J. A microsporidian parasite of Anopheles gambiae in Liberia. J. Parasitol. 1959, 45, 21–30. [Google Scholar] [CrossRef]
- Gajanana, A.; Tewari, S.C.; Reuben, R.; Rajagopalan, P.K. Partial suppression of malaria parasites in Aedes aegypti and Anopheles stephensi doubly infected with Nosema algerae and Plasmodium. Indian J. Med. Res. 1979, 70, 417–423. [Google Scholar]
- Hulls, R.H. The adverse effects of a microsporidian on the sporogony and infectivity of Plasmodium berghei. Trans. R. Soc. Trop. Med. Hyg. 1971, 65, 412–423. [Google Scholar] [CrossRef]
- Schenker, W.; Maier, W.A.; Seitz, H.M. The Effects of Nosema algerae on the Development of Plasmodium yoelii nigeriensis in Anopheles stephensi. Parasitol Res. 1992, 78, 56–59. [Google Scholar] [CrossRef]
- Koella, J.C.; Agnew, P. Blood-feeding success of the mosquito Aedes aegypti depends on the transmission route of its parasite Edhazardia aedis. Oikos 1997, 78, 311–316. [Google Scholar] [CrossRef]
- Koella, J.C.; Lorenz, L.; Bargielowski, I. Microsporidians as evolution-proof agents of malaria control? Adv. Parasitol. 2009, 68, 315–327. [Google Scholar] [CrossRef]
- Ren, X.; Hoiczyk, E.; Rasgon, J.L. Viral paratransgenesis in the malaria vector Anopheles gambiae. PLoS Pathog. 2008, 4, 1–8. [Google Scholar]
- Carlson, J.; Suchman, E.; Buchatsky, L. Densoviruses for control and genetic manipulation of mosquitoes. Adv. Virus Res. 2006, 68, 361–392. [Google Scholar] [CrossRef]
- Blackmore, M.S. Mermethid parasitism of adult mosquitoes in Sweden. Am. Midl. Nat. 1994, 312, 192–198. [Google Scholar] [CrossRef]
- Blackmore, M.S.; Berry, R.L.; Foster, W.A.; Walker, E.D.; Wilmot, T.R.; Craig, G.B., Jr. Records of mosquito parasitic mermithid nematodes in the northcentral United States. J. Am. Mosq. Control Assoc. 1993, 9, 338–343. [Google Scholar]
- Trips, M.; Haufe, W.O.; Shemanchuk, J.A. Mermithid parasites of the mosquito Aedes vexans meigen in British Columbia. Can. J. Zool. 1968, 46, 1077–1079. [Google Scholar] [CrossRef]
- Petersen, J.J.; Chapman, H.C.; Woodard, D.B. Preliminary observations on the incidence and biology of a mermithid nematode of Aedes sollicitans (walker) in Louisiana. Mosq. News 1967, 27, 493–498. [Google Scholar]
- Pachecoa, R.P.; Hernándezb, C.R.; Reynab, J.L.; Belmontc, R.M.; Vegaa, J.R. Control of the mosquito Anopheles pseudopunctipennis (Diptera: Culicidae) with Romanomermis iyengari (Nematoda: Mermithidae) in Oaxaca, Mexico. Biol. Control 2005, 32, 137–142. [Google Scholar] [CrossRef]
- Rojas, W.; Northup, J.; Gallo, O.; Montoya, A.E.; Montoya, F.; Restrepo, M.; Nimnich, G.; Arango, M.; Echavarria, M. Reduction of malaria prevalence after introduction of Romanomermis culicivorax (Mermithidae: Nematoda) in larval anopheles habitats in Colombia. Bull. World Health Org. 1987, 65, 331–337. [Google Scholar]
- Howard, A.F.V.; Koenraadth, C.J.M.; Farenhorst, M.; Knols, B.G.J.; Takken, W. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Malar. J. 2010, 9, 168. [Google Scholar] [CrossRef]
- Farenhorst, M.; Knols, B.G.; Thomas, M.B.; Howard, A.F.; Takken, W.; Rowland, M.; N’Guessan, R. Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PLoS One 2010, 11, 5. [Google Scholar]
- Scholte, E.J.; Takken, W.; Knols, B.G.J. Pathogenicity of six East African entomopathogenic fungi to adult Anopheles gambiae s.s. (Diptera: Culicidae) mosquitoes. Proc. Exp. Appl. Entomol. 2003, 14, 25–29. [Google Scholar]
- Read, A.F.; Lynch, P.A.; Thomas, M.B. How to make evolution-proof insecticides for malaria control. PLoS Biol. 2009, 7, e1000058. [Google Scholar]
- Scholte, E.J.; Njiru, B.N.; Smallegange, R.C.; Takken, W.; Knols, B.G.J. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malar. J. 2003, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Brogdon, W.G.; McAllister, J.C. Insecticide resistance and vector control. Emerg. Infect. Dis. 1998, 4, 605–613. [Google Scholar] [CrossRef]
- Ward, M.D.W.; Selgrade, M.K. Benefits and risks in malaria control. Science 2005, 310, 49. [Google Scholar]
- Michalakis, Y.; Renaud, F. Malaria: Fungal allies enlisted. Nature 2005, 435, 891–893. [Google Scholar] [CrossRef]
- Tinsley, M.C.; Blanford, S.; Jiggins, F.M. Genetic variation in Drosophila melanogaster pathogen susceptibility. Parasitology 2006, 132, 767–773. [Google Scholar] [CrossRef]
- Ferrari, J.; Muller, C.B.; Kraaijeveld, A.R.; Godfray, H.C.J. Clonal variation and covariation in Aphid resistance to parasitoids and a pathogen. Evolution 2001, 55, 1805–1814. [Google Scholar]
- Thomas, M.B.; Blandford, S. Thermal biology in insect-Pathogen interactions. Trends Ecol. Evol. 2003, 18, 344–350. [Google Scholar] [CrossRef]
- Traniello, J.F.A.; Rosengaus, R.B.; Savoie, K. The development of immunity in a social insect: Evidence for the group facilitation of disease resistance. Proc. Natl. Acad. Sci. USA 2002, 99, 6838–6842. [Google Scholar] [CrossRef]
- Elliot, S.L.; Blandford, S.; Thomas, M.B. Host-pathogen interactions in a varying environment: temperature, behavioural fever and fitness. Proc. R. Soc. B 2002, 269, 1599–1607. [Google Scholar] [CrossRef]
- Partridge, L.; Barton, N.H. Optimality, mutation and evolution of ageing. Nature 1993, 362, 305–311. [Google Scholar] [CrossRef]
- Boete, C.; Koella, J.C. Evolutionary ideas about genetically manipulated mosquitoes and malaria control. Trends Parasitol. 2003, 19, 32–38. [Google Scholar] [CrossRef]
- Riehle, M.M.; Markianos, K.; Niaré, O.; Xu, J.; Li, J.; Touré, AM.; Podiougou, B.; Oduol, F.; Diawara, S.; Diallo, M.; et al. Natural malaria infection in Anopheles gambiae is regulated by a single genomic control region. Science 2006, 312, 577–579. [Google Scholar] [CrossRef]
- Fillinger, U.; Knols, B.G.J.; Becker, N. Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations Afrotropical Anophelines in Western Kenya. Trop. Med. Int. Health 2003, 8, 37–47. [Google Scholar] [CrossRef]
- Consoli, R.A.; Santos, B.S.; Lamounier, M.A.; Secundino, N.F.; Rabinovitch, L.; Silva, C.M.; Alves, R.S.; Carneiro, N.F. Efficacy of a new formulation of Bacillus sphaericus 2362 against Culex quinquefasciatus (Diptera: Culicidae) in Montes Claros, Minas Gerais, Brazil. Mem. Inst. Oswaldo Cruz. 1997, 92, 571–573. [Google Scholar] [CrossRef]
- Rodrigues, I.B.; Tadei, W.P.; Dias, J.M. Studies on the Bacillus sphaericus larvicidal activity against malarial vector species in Amazonia. Mem. Inst. Oswaldo Cruz. 1998, 93, 441–444. [Google Scholar] [CrossRef]
- Rodrigues, I.B.; Tadei, W.P.; Dias, J.M. Larvicidal activity of Bacillus sphaericus 2362 against Anopheles nuneztovari, Anopheles darlingi and Anopheles braziliensis (Diptera, Culicidae). Rev. Inst. Med. Trop. Sao Paulo 1999, 41, 101–105. [Google Scholar]
- Kroeger, A.; Dehlinger, U.; Burkhardt, G.; Atehortua, W.; Anaya, H.; Becker, N. Community based dengue control in Columbia: People’s knowledge and practice and the potential contribution of the biological larvicide Bti (Bacillus thuringiensis israelensis). Trop. Med. Parasitol. 1995, 46, 241–246. [Google Scholar]
- Kroeger, A.; Horstick, O.; Riedl, C.; Kaiser, A.; Becker, N. The potential for malaria control with the biological larvicide Bacillus thuringiensis israelensis (Bti) in Peru and Ecuador. Acta Trop. 1995, 60, 47–57. [Google Scholar] [CrossRef]
- Blanco Castro, S.D.; Martinez Arias, A.; Cano Velasquez, O.R.; Tello Granados, R.; Mendoza, I. Introduction of Bacillus sphaericus Strain-2362 (GRISELESF) for biological control of malaria vectors in Guatemala. Rev. Cubana. Med. Trop. 2000, 52, 37–43. [Google Scholar]
- Regis, L.; Oliveira, C.M.; Silva-Filha, M.H.; Silva, S.B.; Maciel, A.; Furtado, A.F. Efficacy of Bacillus sphaericus in control of the filariasis vector Culex quinquefasciatus in an urban area of Olinda, Brazil. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 488–492. [Google Scholar] [CrossRef]
- Regis, L.; Silva, S.I.B.; Melo-Santos, M.A.V. The use of bacteria larvicides in mosquito and black fly control programmes in Brazil. Mem. Inst. Oswaldo Cruz. 2000, 95, 207–210. [Google Scholar] [CrossRef]
- Porter, A.G.; Davidson, E.W.; Liu, J.W. Mosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiologic. Rev. 1993, 57, 838–861. [Google Scholar]
- Tianyun, S.; Mulla, M.S. Field evaluation of new waterdispersible granular formulations of Bacillus thuringiensis ssp. israelensis and Bacillus sphaericus against Culex mosquitoes in microcosms. J. Am. Mosq. Control Assoc. 1999, 15, 356–365. [Google Scholar]
- Becker, N.; Zgomba, M.; Petric, D.; Beck, M.; Ludwig, M. Role of larval cadavers in recycling processes of Bacillus sphaericus. J. Am. Mosq. Control Assoc. 1995, 11, 329–334. [Google Scholar]
- Pantuwatana, S.; Maneeroj, R.; Upatham, E.S. Long residual activity of Bacillus sphaericus 1593 against Culex quinquefasciatus larvae in artificial pools. Southeast Asian J. 1989, 20, 421–427. [Google Scholar]
- Federici, B.A.; Park, H.W.; Bideshi, D.K.; Wirth, M.C.; Johnson, J.J. Review: Recombinant bacteria for mosquito control. J. Exp. Biol. 2003, 206, 3877–3885. [Google Scholar] [CrossRef]
- Federici, B.A.; Park, H.W.; Bideshi, D.K.; Wirth, M.C.; Johnson, J.J.; Sakano, Y.; Tang, M. Developing recombinant bacteria for control of mosquito larvae. J. Am. Mosq. Control Assoc. 2007, 23, 164–175. [Google Scholar] [CrossRef]
- Borovsky, D.; Carlson, D.A.; Griffin, P.R.; Shabanowitz, J.; Hunt, D.F. Sequence analysis, synthesis and characterization of Aedes aegypti trypsin oostatic factor (TMOF) and its analogs. Insect Biochem. Mol.Biol. 1993, 23, 703–712. [Google Scholar] [CrossRef]
- Delécluse, A.; Rosso, M.L.; Ragni, A. Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein. Appl. Environ. Microbiol. 1995, 61, 4230–4235. [Google Scholar]
- Magesa, S.M.; Wilkes, T.J.; Mnzava, A.E.P.; Njunwa, K.J.; Myamba, J.; Kivuyo, M.D.P.; Hill, N.; Lines, J.D.; Curtis, C.F. Trial of pyrethroid impregnated bed nets in an area of Tanzania holoendemic for malaria, 2. Effects on the malaria vector population. Acta Trop. 1991, 49, 97–108. [Google Scholar] [CrossRef]
- Robert, V.; Carnevale, P. Influence of deltamethrin treatment of bed nets on malaria transmission in the Kou Valley, Burkina Faso. Bull. World Health Org. 1991, 69, 735–740. [Google Scholar]
- Gimnig, J.E.; Kolczak, M.S.; Hightower, A.W.; Vulule, J.M.; Schoute, E.; Kamau, L.; Phillips-Howard, P.A.; Ter Kuile, F.O.; Nahlen, B.L.; Hawley, W.A. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in Western Kenya. Am. J. Trop. Med. Hyg. 2003, 68, 115–120. [Google Scholar]
- Service, M.W. Biological control of mosquitoes—has it a future? Mosq. News 1983, 43, 113. [Google Scholar]
- Service, M.W. Importance of ecology in Aedes aegypti control. Southeast Asian J. Trop. Med. Public Health 1992, 23, 681–688. [Google Scholar]
- Killeen, G.F.; Fillinger, U.; Knols, B.G.J. Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective Coverage. Malar. J. 2002, 1, 1–7. [Google Scholar] [CrossRef]
- Hansen, M.H.H.; Koella, J.C. Evolution of tolerance: The genetic basis of a host’s resistance against parasite manipulation. Oikos 2003, 102, 309–317. [Google Scholar] [CrossRef]
- Riehle, M.A.; Moreira, C.K.; Lampe, D.; Lauzon, C.; Jacobs-Lorena, M. Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. Int. J. Parasitol. 2007, 37, 595–603. [Google Scholar] [CrossRef]
- Daoust, R.A. Nematode Pathogens of Culicidae (Mosquitoes). In Bibligoraphy on Pathogens of Medically Important Arthropods; Robert, D.W., Daoust, R.A., Wraight, S.P., Eds.; World Health Organization: Geneva, Switzerland, 1983; pp. 102–118. [Google Scholar]
- Washburn, J.O.; Anderson, J.R.; Egerter, D.E. Distribution and prevalence of Octomyomermis triglodytis (Nematoda: Mermithidae), a parasite of the Western tree hole mosquito, Aedes sierrensi. J. Am. Mosq. Control Assoc. 1986, 2, 341–346. [Google Scholar]
- Nielsen, B.O. Mermithid Parasitism (Nematoda: Mermithidae) in Ochlerotatus cantans (Meigen) (Diptera: Culicidae) in Denmark. Available online: http://www.uel.ac.uk/mosquito/issue10/mermithids.htm (accessed on 23 May 2012).
- Vythilingam, I.; Sidavong, B.; Chan, S.T.; Phonemixay, T.; Phompida, S.; Krishnasamy, M. First report of mermithid parasitism (Nematoda: Mermithidae) in mosquitoes (Diptera: Culicidae) from Lao PDR. Trop. Biomed. 2005, 22, 77–79. [Google Scholar]
- World Health Organization, Vector Control for Malaria and Other Mosquito-Borne Diseases; WHO technical report series, No. 857; World Health Organization: Geneva, Switzerland, 1995; pp. 1–100.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kamareddine, L. The Biological Control of the Malaria Vector. Toxins 2012, 4, 748-767. https://doi.org/10.3390/toxins4090748
Kamareddine L. The Biological Control of the Malaria Vector. Toxins. 2012; 4(9):748-767. https://doi.org/10.3390/toxins4090748
Chicago/Turabian StyleKamareddine, Layla. 2012. "The Biological Control of the Malaria Vector" Toxins 4, no. 9: 748-767. https://doi.org/10.3390/toxins4090748
APA StyleKamareddine, L. (2012). The Biological Control of the Malaria Vector. Toxins, 4(9), 748-767. https://doi.org/10.3390/toxins4090748