From the Gastrointestinal Tract (GIT) to the Kidneys: Live Bacterial Cultures (Probiotics) Mediating Reductions of Uremic Toxin Levels via Free Radical Signaling
Abstract
:1. Introduction
2. The GIT Microbial Metabolome
3. GIT Dysbiosis and Uremic Toxins
4. Probiotics/Prebiotics and CKD
5. Commensal GIT Bacteria, Cellular Signaling and Macromolecular Oxidative Changes
Clinical Trial Type [Reference] Probiotic Strains or Prebiotics used Dose administered | Participant Type Location (n = Number) Study Duration | Clinical Trial Results |
---|---|---|
Open label pilot study [37] L. acidophilus Dose: not specified | Haemodialysis USA (n = 8) One course administered with the time-course undefined | Probiotic treatment was effective in:
|
Prospective pilot DBRPC crossover trial [38] S thermophilus L. acidophilus B longum Dose: KIBOW biotics 90 × 109 CFU/day | CKD stages 3 and 4 USA (n = 10) Canada (n = 113) Nigeria (n = 115) Argentina (n = 8) 6 months | Probiotic treatment:
|
Prospective pilot DBRPC crossover trial [39] S. thermophilus KB27 L. acidophilus KB31 B. longum KB35 Dose: KIBOW biotics 90 × 109 CFUs/day | CKD stages 3 and 4 Canada (n = 13) 6 months |
|
Single centre, non-randomized, open-label phase I/II study [40] Escalating dose regimen of oligofructose-enriched inulin.Dose: 10 g b.i.d. | Haemodialysis Belgium (n = 22) |
|
Open label single arm study [41] L casei Shirota B breve Yakult + galacto-oligosaccharides (as prebiotics) Dose: 1 × 108 CFU/mL probiotics and 1.67 g of prebiotic t.i.d. for 2 weeks. | Haemodialysis Japan (n = 8) 4 weeks preceded by 2 weeks of pretreatment observation | Pretreatment observation period:
|
5.1. Specific Protein Oxidations
- (i)
- One of the most sensitive amino acids to oxidation is methionine, being converted to methionine sulfoxide. This phenomenon is commonly cited as an example of random oxidative damage to proteins. The following example would bring such an overriding conclusion into serious question. Calmodulin function and its regulation by superoxide anion/hydrogen peroxide oxidation of specific methionine residues is well documented [42]. The oxidation of only two of the seven specific methionine residues (144 and 145) of calmodulin is involved in the process of down-regulating plasma membrane Ca++ATPase. Using genetically engineered calmodulin in which the two methionines (144,145) were replaced by glutamines, it was shown that oxidation of the remaining methionines did not significantly down-regulate calmodulin-plasma membrane-Ca++ATPase activation [43]. It has also been reported from the same laboratory [44] that methionine sulfoxide reductase can act reductively to restore the ability of oxidized calmodulin to regulate plasma membrane-Ca++ATPase. These results showed that superoxide anion and/or hydrogen peroxide are functioning as part of the controlled regulation of the calmodulin-plasma membrane-Ca++ATPase complex. Furthermore, proteasomal degradation of oxidized calmodulin, when and where it occurs, is part of the normal process of regulated protein turnover. Protein turnover is rigidly controlled: while some proteins turn over in minutes, others take hours or longer, yet all these proteins are part of a system tightly regulated by the ubiquitin/proteasome system.
- (ii)
- The turnover of the hypoxia-inducible factor-alpha (HIFα) and its proteasome degradation is clearly regulated by hydroxylation of its prolyl residues [45]. This is an ordered process involving signaling by the free radical system comprised of superoxide anion, nitric oxide and peroxynitrite.
- (iii)
- Bota et al. [46,47] have reported that mitochondrial aconitase is preferentially oxidatively modified and inactivated, and that the ATP activation of the mitochondrial Lon protease specifically acts to degrade the oxidized inactivated enzyme. The authors interpret their results as demonstrating the toxicity of ROS. In direct contrast, we believe that that their results demonstrate how tightly regulated is the formation of ROS and its directed activity in regulating the metabolome. The controlled specific degradation of aconitase (among the hundreds of mitochondrial proteins) to regulate citric acid cycle activity is an excellent example of the regulatory role that ROS play in the modulation or control of the metabolome, and that ROS do not randomly contribute to the damage or degradation of cellular metabolic processes.
- (iv)
- Consider the nitrosylation of sulfydryl groups, proposed as a damaging phenomenon. We have previously referred to and cited the hemoglobin system as a remarkably regulated machine, finely tuned allosterically for the carriage of the daily massive amounts of inhaled oxygen from lungs to cells [36]. It is now recognized in textbooks that hemoglobin undergo subtle but critical changes as result of sequential reactions with dioxygen, protons and CO2 to regulate the delivery of oxygen to the tissues. As part of this process, it has been recognized relatively recently that NO− participates in the regulation [48]. In the cyclic oxygen carriage by hemoglobin, NO− reacts with the b subunit ferrous ions. Subsequently, on the b subunit binding of dioxygen, the NO− is displaced to nitrosylate the cys 93 thiol group of the hemoglobin b subunit. These changes are accompanied by an allosteric change from the T (tense) to the R (relaxed) form. The various allosteric changes which hemoglobin undergoes are now recognized as of the utmost importance to hemoglobin function. They are the outcome of over 80 years study (that includes the Bohr effect/Perutz X-ray structural studies/the detailed effector allosteric inducers, namely H+, CO2, O2, NO−, 2;3-bisphosphoglycerate/and the allosteric positive and negative co-operative changes that occur) [36]. What is important here is that the comparatively recently recognized NO− nitrosylation of hemoglobin is part of the normal physiological transport of oxygen delivery to tissues; nitrosylation of proteins is not conditionally deleterious. Parenthetically it may be added that superoxide anion continually formed in small amounts during the process oxidizes hemoglobin to met hemoglobin in the order of a steady state amount of 1%–3%. The met hemoglobin formed is itself continually reduced back to hemoglobin by erythrocyte met hemoglobin reductase to maintain regulated oxygen homeostasis.
- (v)
- Farout and Friguet [49] have considered that there is an age-related deleterious accumulation of oxidized proteins resulting from impaired redox homeostasis and proteolysis. Further, they consider that changes in proteasome structure with increasing age and dysfunction of the proteasome leads to an exacerbated accumulation of oxidatively modified proteins due to their impaired proteolysis. Somewhat contrary to this interpretation, it has been reported when cellular proteasome activity is inhibited, the resultant decrease in its activity leads to a concerted increase in cellular synthesis of the proteasome (the phenomenon of hormesis) [50]. Husom et al. [51] have reported an increase in the 20S proteasome in aged rat skeletal muscle, albeit with some change in function.
5.2. The Antioxidant Effect
5.3. Commensal and Probiotic Bacteria Mechanism of Action
6. Discussion
Conflicts of Interest
References
- Wen, C.P.; Cheng, T.Y.; Tsai, M.K.; Chang, Y.C.; Chan, H.T.; Tsai, S.P.; Chiang, P.H.; Hsu, C.C.; Sung, P.K.; Hsu, Y.H.; et al. All-cause mortality attributable to chronic kidney disease: A prospective cohort study based on 462 293 adults in Taiwan. Lancet 2008, 371, 2173–2182. [Google Scholar] [CrossRef]
- Vitetta, L.; Gobe, G. Uremia and chronic kidney disease: The role of the gut microflora and therapies with pro- and prebiotics. Mol. Nutr. Food Res. 2013, 57, 824–832. [Google Scholar] [CrossRef]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.-M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Vitetta, L.; Alford, H. The pharmacobiotic potential of the gastrointestinal tract micro-biometabolome-probiotic connect: A brief commentary. Drug Dev. Res. 2013, 74, 353–359. [Google Scholar] [CrossRef]
- Zheng, X.; Zhao, A.; Xie, G.; Chi, Y.; Zhao, L.; Li, H.; Wang, C.; Bao, Y.; Jia, W.; Luther, M.; et al. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci. Transl. Med. 2013, 5. 172ra22. [Google Scholar] [CrossRef]
- Fasano, A. Toxins and the gut: Role in human disease. Gut 2002, 50 (Suppl. 3), III9–III14. [Google Scholar] [CrossRef]
- Bengmark, S. Gut microbiota, immune development and function. Pharmacol. Res. 2013, 69, 87–113. [Google Scholar] [CrossRef]
- Stecher, B.; Maier, L.; Hardt, W.D. ‘Blooming’ in the gut: How dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 2013, 11, 277–284. [Google Scholar] [CrossRef]
- Cani, P.D.; Delzenne, N.M. Gut microflora as a target for energy and metabolic homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 729–734. [Google Scholar] [CrossRef]
- Macfarlane, G.T.; Macfarlane, S. Bacteria, colonic fermentation, and gastrointestinal health. J. AOAC Int. 2012, 95, 50–60. [Google Scholar] [CrossRef]
- Vanholder, R.; De Smet, R.; Glorieux, G.; Argiles, A.; Baurmeister, U.; Brunet, P.; Clark, W.; Cohen, G.; De Deyn, P.P.; Deppisch, R.; et al. Review on uremic toxins: Classification, concentration, and interindividual variability. Kidney Int. 2003, 63, 1934–1943. [Google Scholar] [CrossRef]
- Duranton, F.; Cohen, G.; De Smet, R.; Rodriguez, M.; Jankowski, J.; Vanholder, R.; Argiles, A.; European Uremic Toxin Work Group. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012, 23, 1258–1270. [Google Scholar] [CrossRef]
- Charney, D.I.; Walton, D.F.; Cheung, A.K. Atherosclerosis in chronic renal failure. Curr. Opin. Nephrol. Hypertens. 1993, 2, 876–882. [Google Scholar] [CrossRef]
- Schepers, E.; Meert, N.; Glorieux, G.; Goeman, J.; Van der Eycken, J.; Vanholder, R. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol. Dial. Transplant. 2007, 22, 592–596. [Google Scholar]
- Motojima, M.; Hosokawa, A.; Yamato, H.; Muraki, T.; Yoshioka, T. Uremic toxins of organic anions up-regulate PAI-1 expression by induction of NF-kappaB and free radical in proximal tubular cells. Kidney Int. 2003, 63, 1671–1680. [Google Scholar] [CrossRef]
- Dou, L.; Bertrand, E.; Cerini, C.; Faure, V.; Sampol, J.; Vanholder, R.; Berland, Y.; Brunet, P. The uremic solutes p-cresol and indoxylsulfate inhibit endothelial proliferation and wound repair. Kidney Int. 2004, 65, 442–451. [Google Scholar] [CrossRef]
- Vitetta, L.; Briskey, D.; Hayes, E.; Shing, C.; Peake, J. A review of the pharmacobiotic regulation of gastrointestinal inflammation by probiotics, commensal bacteria and prebiotics. Inflammopharmacology 2013, 20, 251–266. [Google Scholar]
- Anders, H.J.; Andersen, K.; Stecher, B. The intestinal microbiota, a leaky gut, and abnormal immunity in kidney disease. Kidney Int. 2013, 83, 1010–1016. [Google Scholar] [CrossRef]
- Hida, M.; Aiba, Y.; Sawamura, S.; Suzuki, N.; Satoh, T.; Koga, Y. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996, 74, 349–355. [Google Scholar] [CrossRef]
- Wang, C.P.; Lu, L.F.; Yu, T.H.; Hung, W.C.; Chiu, C.A.; Chung, F.M.; Yeh, L.R.; Chen, H.J.; Lee, Y.J.; Houng, J.Y. Serum levels of total p-cresylsulphate are associated with angiographic coronary atherosclerosis severity in stable angina patients with early stage of renal failure. Atherosclerosis 2010, 211, 579–583. [Google Scholar] [CrossRef]
- Massy, Z.A.; Barreto, D.V.; Barreto, F.C.; Vanholder, R. Uraemic toxins for consideration by the cardiologist-Beyond traditional and non-traditional cardiovascular risk factors. Atherosclerosis 2010, 211, 381–383. [Google Scholar] [CrossRef]
- Hoy, W.E. Markers for cardiovascular and renal morbidity: Expectations for an intervention program in an Australian aboriginal community. Clin. Exp. Pharmacol. Physiol. 1996, 23 (Suppl. 1), S33–S37. [Google Scholar] [CrossRef]
- Fuller, R. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [CrossRef]
- Timmerman, H.M.; Koning, C.J.; Mulder, L.; Rombouts, F.M.; Beynen, A.C. Monostrain, multistrain and multispecies probiotics-A comparison of functionality and efficacy. Int. J. Food Microbiol. 2004, 96, 219–233. [Google Scholar] [CrossRef]
- Vitetta, L.; Sali, A. Probiotics, prebiotics and gastrointestinal health. Med. Today 2008, 9, 65–70. [Google Scholar]
- Borges, S.; Barbosa, J.; Silva, J.; Teixeira, P. Evaluation of characteristics of Pediococcus spp. to be used as a vaginal probiotic. J. Appl. Microbiol. 2013, 115, 527–538. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Yuan, J.; Nazertehrani, S.; Ni, Z.; Liu, S. Chronic kidney disease causes disruption of gastric and small intestinal epithelial tight junction. Am. J. Nephrol. 2013, 38, 99–103. [Google Scholar] [CrossRef]
- Himmelfarb, J.; Stenvinkel, P.; Ikizler, T.A.; Hakim, R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002, 62, 1524–1538. [Google Scholar] [CrossRef]
- Terawaki, H.; Yoshimura, K.; Hasegawa, T.; Matsuyama, Y.; Negawa, T.; Yamada, K.; Matsushima, M.; Nakayama, M.; Hosoya, T.; Era, S. Oxidative stress is enhanced in correlation with renal dysfunction: examination with the redox state of albumin. Kidney Int. 2004, 66, 1988–1993. [Google Scholar] [CrossRef]
- Rutkowski, P.; Słominska, E.M.; Szołkiewicz, M.; Aleksandrowicz, E.; Smolenski, R.T.; Wołyniec, W.; Renke, M.; Wisterowicz, K.; Swierczynski, J.; Rutkowski, B. Relationship between uremic toxins and oxidative stress in patients with chronic renal failure. Scand J. Urol. Nephrol. 2007, 41, 243–248. [Google Scholar] [CrossRef]
- Chiang, C.K.; Tanaka, T.; Nangaku, M. Dysregulated oxygen metabolism of the kidney by uremic toxins: Review. J. Ren. Nutr. 2012, 22, 77–80. [Google Scholar] [CrossRef]
- Dounousi, E.; Papavasiliou, E.; Makedou, A.; Ioannou, K.; Katopodis, K.P.; Tselepis, A.; Siamopoulos, K.C.; Tsakiris, D. Oxidative stress is progressively enhanced with advancing stages of CKD. Am. J. Kidney Dis. 2006, 48, 752–760. [Google Scholar] [CrossRef]
- Cicek, M.; Yıldırır, A.; Okyay, K.; Yazici, A.C.; Aydinalp, A.; Kanyilmaz, S.; Muderrisoglu, H. Use of alpha-lipoic acid in prevention of contrast-induced nephropathy in diabetic patients. Ren. Fail. 2013, 35, 748–753. [Google Scholar]
- Jun, M. Antioxidants for chronic kidney disease. Nephrology Carlton 2013, 18, 576–578. [Google Scholar] [CrossRef]
- Linnane, A.W.; Kios, M.; Vitetta, L. Healthy aging: Regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: The essential roles of superoxide anion and hydrogen peroxide. Biogerontology 2007, 8, 445–467. [Google Scholar] [CrossRef]
- Simenhoff, M.L.; Dunn, S.R.; Zollner, G.P.; Fitzpatrick, M.E.; Emery, S.M.; Sandine, W.E.; Ayres, J.W. Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus. Min. Electrolyte Metab. 1996, 22, 92–96. [Google Scholar]
- Ranganathan, N.; Friedman, E.A.; Tam, P.; Rao, V.; Ranganathan, P.; Dheer, R. Probiotic dietary supplementation in patients with stage 3 and 4 chronic kidney disease: A 6-month pilot scale trial in Canada. Curr. Med. Res. Opin. 2009, 25, 1919–1930. [Google Scholar] [CrossRef]
- Ranganathan, N.; Ranganathan, P.; Friedman, E.A.; Joseph, A.; Delano, B.; Goldfarb, D.S.; Tam, P.; Rao, A.V.; Anteyi, E.; Musso, C.G. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv. Ther. 2010, 27, 634–647. [Google Scholar] [CrossRef]
- Meijers, B.K.; De Preter, V.; Verbeke, K.; Vanrenterghem, Y.; Evenepoel, P. P-cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol. Dial. Transplant. 2010, 25, 219–224. [Google Scholar] [CrossRef]
- Nakabayashi, I.; Nakamura, M.; Kawakami, K.; Ohta, T.; Kato, I.; Uchida, K.; Yoshida, M. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: A preliminary study. Nephrol. Dial. Transplant. 2011, 26, 1094–1098. [Google Scholar] [CrossRef]
- Yin, D.; Sun, H.; Weaver, R.F.; Squier, T.C. Nonessential role for methionines in the productive association between calmodulin and the plasma membrane Ca-ATPase. Biochemistry 1999, 38, 13654–13660. [Google Scholar] [CrossRef]
- Yin, D.; Kuczera, K.; Squier, T.C. The sensitivity of carboxyl-terminal methionines in calmodulin isoforms to oxidation by H2O2 modulates the ability to activate the plasma membrane Ca-ATPase. Chem. Res. Toxicol. 2000, 13, 103–110. [Google Scholar] [CrossRef]
- Sun, H.; Gao, J.; Ferrington, D.A.; Biesiada, H.; Williams, T.D.; Squier, T.C. Repair of oxidized calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane Ca-ATPase. Biochemistry 1999, 38, 105–112. [Google Scholar]
- Stolze, I.P.; Mole, D.R.; Ratcliffe, P.J. Regulation of HIF: Prolyl hydroxylases. Novartis Found Symp. 2006, 272, 15–25. [Google Scholar] [CrossRef]
- Bota, D.A.; Van Remmen, H.; Davies, K.J. Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett. 2002, 532, 103–106. [Google Scholar] [CrossRef]
- Bota, D.A.; Ngo, J.K.; Davies, K.J. Down regulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic. Biol. Med. 2005, 38, 665–677. [Google Scholar] [CrossRef]
- Singel, D.J.; Stamler, J.S. Chemical physiology of blood flow regulation by red blood cells: The role of nitric oxide and S-nitrohemoglobin. Ann. Rev. Physiol. 2005, 67, 99–145. [Google Scholar] [CrossRef]
- Farout, L.; Friguet, B. Proteasome function in aging and oxidative stress: Implications in protein maintenance failure. Antioxid. Redox Signal 2006, 8, 205–216. [Google Scholar] [CrossRef]
- Meiners, S.; Heyken, D.; Weller, A.; Ludwig, A.; Stangl, K.; Kloetzel, P.M.; Kruger, E. Inhibition of proteasome induces concerted expression of proteasome genes and de novo formation of mammalian proteasomes. J. Biol. Chem. 2003, 278, 21517–21525. [Google Scholar]
- Husom, A.D.; Peters, E.A.; Kolling, E.A.; Fugere, N.A.; Thompson, L.V.; Ferrington, D.A. Altered proteasome function and subunit composition in aged muscle. Arch. Biochem. Biophys. 2004, 421, 67–76. [Google Scholar] [CrossRef]
- Hornig, D. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann. N. Y. Acad. Sci. 1975, 258, 103–118. [Google Scholar] [CrossRef]
- Bailey, D.M.; Raman, S.; McEnery, J.; Young, I.S.; Parham, K.L.; Hullin, D.A.; Davies, B.; McKeeman, G.; McCord, J.M.; Lewis, M.H. tamin C prophylaxis promotes oxidative lipid damage during surgical ischemia-reperfusion. Free Radic. Biol. Med. 2006, 40, 591–600. [Google Scholar] [CrossRef]
- Chen, Q.; Espey, M.G.; Krishna, M.C.; Mitchell, J.B.; Corpe, C.P.; Buettner, G.R.; Shacter, E.; Levine, M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA 2005, 102, 13604–13609. [Google Scholar] [CrossRef]
- Vaziri, N.D.; Yuan, J.; Rahimi, A.; Ni, Z.; Said, H.; Subramanian, V.S. Disintegration of colonic epithelial tight junction in uremia: A likely cause of CKD-associated inflammation. Nephrol. Dial. Transplant. 2012, 27, 2686–2693. [Google Scholar] [CrossRef]
- Vinik, A. The question is, my dear watson, why did the dog not bark? The joslin 50-year medalist study. Diabetes Care 2011, 34, 1060–1063. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Diaz, J.; Munoz-Quezada, S.; Gomez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- Neish, A.S. Redox signaling mediated by the gut microbiota. Free Radic. Res. 2013, 47, 950–957. [Google Scholar] [CrossRef]
- Lin, P.W.; Myers, L.E.; Ray, L.; Song, S.C.; Nasr, T.R.; Berardinelli, A.J.; Kundu, K.; Murthy, N.; Hansen, J.M.; Neish, A.S. Lactobacillus rhamnosus blocks inflammatory signaling in vivo via reactive oxygen species generation. Free Radic. Biol. Med. 2009, 47, 1205–1211. [Google Scholar] [CrossRef]
- Lee, W.J. Bacterial-modulated signaling pathways in gut homeostasis. Sci. Signal 2008, 1, pe24. [Google Scholar] [CrossRef]
- Yan, F.; Cao, H.; Cover, T.L.; Whitehead, R.; Washington, M.K.; Polk, D.B. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 2007, 132, 562–575. [Google Scholar] [CrossRef]
- Patel, R.M.; Myers, L.S.; Kurundkar, A.R.; Maheshwari, A.; Nusrat, A.; Lin, P.W. Probiotic bacteria induce maturation of intestinal claudin 3 expression and barrier function. Am. J. Pathol. 2012, 180, 626–635. [Google Scholar] [CrossRef]
- Collier-Hyams, L.S.; Sloane, V.; Batten, B.C.; Neish, A.S. Cutting Edge: Bacterial Modulation of Epithelial Signaling via Changes in Neddylation of Cullin-1. J. Immunol. 2005, 175, 4194–4198. [Google Scholar]
- Neish, A.S.; Gewirtz, A.T.; Zeng, H.; Young, A.N.; Hobert, M.E.; Karmali, V.; Rao, A.S.; Madara, J.L. Prokaryotic regulation of epithelial responses by inhibition of Ikappa B-alpha ubiquitination. Science 2000, 289, 1560–1563. [Google Scholar] [CrossRef]
- Kotchoni, S.O.; Gachomo, E.W. The reactive oxygen species network pathways: An essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J. Biosci. 2006, 31, 389–404. [Google Scholar] [CrossRef]
- Ha, E.M.; Oh, C.T.; Ryu, J.H.; Bae, Y.S.; Kang, S.W.; Jang, I.H.; Brey, P.T.; Lee, W.J. An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell. 2005, 8, 125–132. [Google Scholar] [CrossRef]
- Circu, M.L.; Aw, T.Y. Redox biology of the intestine. Free Radic. Res. 2011, 45, 1245–1266. [Google Scholar] [CrossRef]
- Buchon, N.; Broderick, N.A.; Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 2013, 1611, 615–626. [Google Scholar]
- Aronov, P.A.; Luo, F.J.; Plummer, N.S.; Quan, Z.; Holmes, S.; Hostetter, T.H.; Meyer, T.W. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 2011, 22, 1769–1776. [Google Scholar] [CrossRef]
- Vaziri, N.D. Role of dyslipidemia in impairment of energy metabolism, oxidative stress, inflammation and cardiovascular disease in chronic kidney disease. Clin. Exp. Nephrol. 2013, 24. [Google Scholar] [CrossRef]
- Di Cerbo, A.; Pezzuto, F.; Palmieri, L.; Rottigni, V.; Iannitti, T.; Palmieri, B. Clinical and experimental use of probiotic formulations for management of end-stage renal disease: An update. Int. Urol. Nephrol. 2013, 13. [Google Scholar] [CrossRef]
- Howden, E.J.; Leano, R.; Petchey, W.; Coombes, J.S.; Isbel, N.M.; Marwick, T.H. Effects of exercise and lifestyle intervention on cardiovascular function in CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1494–1501. [Google Scholar] [CrossRef]
- Mehal, W.Z. The Gordian Knot of dysbiosis, obesity and NAFLD. Nat. Rev. Gastroenterol. Hepatol. 2013. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Vitetta, L.; Linnane, A.W.; Gobe, G.C. From the Gastrointestinal Tract (GIT) to the Kidneys: Live Bacterial Cultures (Probiotics) Mediating Reductions of Uremic Toxin Levels via Free Radical Signaling. Toxins 2013, 5, 2042-2057. https://doi.org/10.3390/toxins5112042
Vitetta L, Linnane AW, Gobe GC. From the Gastrointestinal Tract (GIT) to the Kidneys: Live Bacterial Cultures (Probiotics) Mediating Reductions of Uremic Toxin Levels via Free Radical Signaling. Toxins. 2013; 5(11):2042-2057. https://doi.org/10.3390/toxins5112042
Chicago/Turabian StyleVitetta, Luis, Anthony W. Linnane, and Glenda C. Gobe. 2013. "From the Gastrointestinal Tract (GIT) to the Kidneys: Live Bacterial Cultures (Probiotics) Mediating Reductions of Uremic Toxin Levels via Free Radical Signaling" Toxins 5, no. 11: 2042-2057. https://doi.org/10.3390/toxins5112042
APA StyleVitetta, L., Linnane, A. W., & Gobe, G. C. (2013). From the Gastrointestinal Tract (GIT) to the Kidneys: Live Bacterial Cultures (Probiotics) Mediating Reductions of Uremic Toxin Levels via Free Radical Signaling. Toxins, 5(11), 2042-2057. https://doi.org/10.3390/toxins5112042