Cytotoxic and Cytolytic Cnidarian Venoms. A Review on Health Implications and Possible Therapeutic Applications
Abstract
:1. Introduction
2. Hemolytic Effects of Cnidarian Venoms
2.1. Hemolytic Sea Anemone (Anthozoa) Venoms
2.2. Hemolytic Octocoral (Anthozoa) Venoms
2.3. Hemolytic Cubozoan Venoms
2.4. Hemolytic Scyphozoan Venoms
3. Cytotoxicity of Cnidarian Extracts on Cultured Cells
3.1. Cytotoxicity of Extracts from Octocorallia (Anthozoa)
Species | Compound or material | Cells | Tissue/organ/histology | Organism | IC50–ED50 (μg/mL) | Ref. |
---|---|---|---|---|---|---|
Acalycigorgia inermis | Xenicane diterpenoids | K562 | Leukemia | Human | 0.2–52.0 | [87,123] |
Acalycigorgia inermis | Xenicane diterpenoids | K562 | Leukemia | Human | 0.04–3.9 | [88] |
Alcyonum patagonicum | Dihydrohy sterol | P388 | Lymphoma | Mouse | 1.00 | [89] |
Alcyonium paessleri | Sesquiterpenoids | HT-29 | Colon carcinoma | Human | 10.0 | [90] |
Alertigorgia sp. | Suberosenone (sesquiterpene) | A-549 | Lung adenocarcinoma | Human | 1.63 | [114] |
Bellonella albiflora | Diterpenoids | HeLa | Cervix carcinoma | Human | 17.0–90.0 (×) | [119] |
Briareum excavatum | Briarane-type diterpenoid | P388 | Lymphoma | Mouse | 0.9 | [81] |
Briareum excavatum | Diterpenes | A549 | Lung adenocarcinoma | Human | 1.2–>50 | [84] |
Briareum excavatum | Briarane diterpenes | A549 | Lung adenocarcinoma | Human | 0.1–>50 | [85] |
Briareum excavatum | Briarane diterpenes | P388 | Lymphoma | Mouse | 0.40– 0.50 | [86] |
Briareum asbestinum | Asbestinin diterpenes | CHO-K1 | Ovary (normal) | Chinese hamster | 2.50–4.82 | [82] |
Briareum sp. | Diterpenes | A549 | Lung adenocarcinoma | Human | 10.35–>50 | [83] |
Carijoa riisei | Steroid | - | Macrophages | Mouse | 10.6 | [30] |
Carijoa riisei | Steroid | SF295 | Glioblastoma | Human | 14.4 | [105] |
Carijoa (Telesto) riisei | Riiseins (steroidal glycosides) | HCT-116 | Colon adenocarcinoma | Human | 2.0 | [124] |
Telesto riisei | Amides | P388 | Lymphoma | Mouse | 2.1–2.2 | [103] |
Carijoa sp. | Steroids | Bel-7402 | Hepatoma | Human | 9.33–18.68 | [106] |
Clavularia inflata | Dolabellane diterpene | A-549 | Lung adenocarcinoma | Human | 0.57 | [59] |
Clavularia koellikeri | Cembrane-type diterpenoid | DLD-1MOLT-4 | Colorectal adenocarcinoma | Human | 4.2 | [61] |
Clavularia viridis | Clavulones | HL60 | Promyelocytic leukemia | Human | 0.2 | [54] |
Clavularia viridis | Chlorovulone | HL60 | Promyelocytic leukemia | Human | 0.01 | [55] |
Clavularia viridis | Halogenated prostanoid (7-Acetoxy-7,8-dihydroiodovulone I) | MOLT-4 | T lymphocytic leukemia | Human | 0.52 | [58] |
Clavularia sp. | Stolonidol and Stolonidol monoacetate | P388 | Lymphoma | Mouse | 0.015 | [56] |
Dendronephthya gigantea | Dendronesterol B (sterol) | L1210 | Lymphocytic leukemia | Mouse | 5.2 | [120] |
Echinomuricea sp. | Diterpenoid | MOLT-4 | Lymphoblastic leukemia | Human | 13.18 (^) | [63] |
Echinomuricea sp. | Diterpenoid | HL-60 | Promyelocytic leukemia | Human | 19.1 | [64] |
Eunicea laciniata | Dolabellane diterpenes | HeLa | Cervix carcinoma | Human | 25.0–100.0 | [92] |
Eunicea mammosa | Cembranolide diterpenoids | HeLa | Cervix carcinoma | Human | 2.5–5.1 | [93] |
Eunicea pinta | γ-cembranolide-type diterpene (12-Epieupalmerone) | NCI-H322M | Non-small cell lung cancer | Human | 0.90 | [95] |
Eunicea succinea | Asperdiol acetate (diterpene) | SNB-75 | CNS cancer | Human | 6.25 × 10−7 (* +) | [94] |
Eunicella verrucosa | Palmonine B (diterpene) | MEL28 | Melanoma | Human | 5.0 | [111] |
Isis hippuris | Sesquiterpenes | A549 | Lung adenocarcinoma | Human | 0.005–>50 | [116] |
Lemnalia tenuis | Lemnalone | DBA/MC | Fibrosarcoma | Mouse | 2.5–40 (**) | [75] |
Leptogorgia sarmentosa | Steroids | A549 | Lung adenocarcinoma | Human | 1 | [115] |
Lobophytum crassum | Diterpenes | A549 | Lung adenocarcinoma | Human | 0.012–2.99 | [109] |
Lobophytum michaelae | Cembranolides | A549 | Lung adenocarcinoma | Human | 0.38–0.39 | [108] |
Muricella sp. | Secosteroids | K-562 | Leukemia | Human | 2.1–12.1 | [112] |
Nephthea brassica | Brassicolene (diterpenoid) | A-549 | Lung adenocarcinoma | Human | 3.62 | [125] |
Nephthea erecta | Sterols | A549 | Lung adenocarcinoma | Human | 0.41–4.09 | [97] |
Nephthea sp. | Nephtheoxydiol (sesquiterpene) | B-16 | Melanoma | Mouse | 0.1 | [96] |
Pachyclavularia violacea | Pachyclavulariolide F (diterpenoid) | P388 | Lymphoma | Mouse | 1.0 | [126] |
Paraminabea acronocephala | Paraminabic acid C (steroidal carboxylic acid) | Hep G2 | Liver hepatocellular carcinoma | Human | 13.6–19.8 | [122] |
Paramuricea sp. | Linderazulenes (terpenes) | P388 | Lymphoma | Mouse | 2.7–18.8 | [121] |
Pseudopterogorgia americana | Secogorgosterols | LnCap | Prostate carcinoma | Human | 15.5 | [127] |
Plexaurella grisea | Polyhydroxylated sterols | P388 | Lymphoma | Mouse | >1 | [65] |
Plexaurella grisea | Linear norsesquiterpenes | P388 | Lymphoma | Mouse | 0.5–5 | [66] |
Sarcophyton crassocaule | Cembrenolide diterpenes | A549 | Lung adenocarcinoma | Human | 4.29–8.31 | [77] |
Sarcophyton trocheliophorum | Polyhydroxysterol | HL60 | Leukemia | Human | 2.8 | [78] |
Scleronephthya pallida | Pregnane steroids | BCA-1 | Breast cancer | Human | 10.0 | [113] |
Sinularia capillosa | Cembranolide (capillolide) | P388 | Lymphoma | Mouse | 15.0 | [73] |
Sinularia capillosa | Cembranolides | P388 | Lymphoma | Mouse | 1.5–8.5 | [73] |
Sinularia flexibilis | Cembranoid diterpenes | A549 | Lung adenocarcinoma | Human | 0.68–16.8 | [70] |
Sinularia gibberosa | Diterpene (sinugibberol) | HT29 | Colon adenocarcinoma | Human | 0.50 | [60] |
Sinularia inelegans | Diterpene (ineleganene) | A549 | Lung adenocarcinoma | Human | 3.63 (*) | [72] |
Sinularia sp. | Acylated spermidine | P388 | Lymphoma | Mouse | 0.04 | [68] |
Sinularia sp. | Sterols | A549 | Lung adenocarcinoma | Human | 2.7–10.8 | [128] |
Subergorgia suberosa | Sesquiterpene (Subergorgic acid methyl ester) | HeLa | Cervix carcinoma | Human | 4.3 | [79] |
Subergorgia suberosa | Sesquiterpene alcohols | P388 | Lymphoma | Mouse | 2.1–7.4 | [80] |
Virgularia juncea | Sesquiterpenoid | P388 | Lymphoma | Mouse | 5.1 | [117] |
Xenia blumi | Diterpenoids | HT-29 | Colon adenocarcinoma | Human | 0.5–>20 | [98] |
Xenia umbellata | Diterpenoids | P388 | Lymphoma | Mouse | 1.6–3.8 (§) | [99] |
3.2. Cytotoxicity of Extracts from Hexacorallia (Anthozoa)
Species | Compound or material | Cells | Tissue/organ/histology | Organism | IC50–ED50 (μg/mL) | Ref. |
---|---|---|---|---|---|---|
Epizoanthus sp. | Alkaloid | HCT8 | Colon adenocarcinoma | Human | 1.61 | [130] |
Montipora digitata | Carboxylic acids | P388 | Lymphoma | Mouse | 5–12 | [132] |
Montipora sp. | Acetylenic compounds | A549 | Lung carcinoma | Human | >50 | [133] |
Montipora sp. | Diacetylenes | A549 | Lung carcinoma | Human | 3.9->30 | [134] |
Palythoa caribaeorum | Palytoxin | UKHN-1 | Oropharynx squamous cell carcinoma | Human | 1.2 (×) | [139] |
Palythoa liscia | Palystatins A-D | P388 | Lymphoma | Mouse | 0.0023–0.02 | [152] |
Palythoa tuberculosa | Palytoxin | H2981 | Lung adenocarcinoma | Human | 3 × 10−12 (+) | [146] |
Commercial source | Palytoxin | PC12 | Pheochromocytoma | Rat | 5–8 (♦) approx | [145] |
Tubastrea faulkneri | Macrolides | Tested on 60 tumour cell lines | Human | 0.6–2.5 (^) | [131] |
3.3. Cytotoxicity of Extracts from Sea Anemones (Anthozoa)
Species | Compound or material | Cells | Tissue/organ/histology | Organism | IC50–ED50 (μg/mL) | Ref. |
---|---|---|---|---|---|---|
Bunodosoma caissarum | Bc2 | U87 | Glioblastoma | Human | Not indicated | [161] |
Actinia equina | Equinatoxin II | V-79-379 A | Normal lung fibroblasts | Chinese hamster | 8.8 × 10−10 (*) | [154] |
Actinia equina | Crude venom | V79 | Normal lung fibroblasts | Chinese hamster | 87.9 × 103 (**) | [157] |
Actinia equina | Equinatoxin II-I18C mutant | MCF 7 | Breast adenocarcinoma | Human | 0.2–0.3 | [158] |
Actinia equina | EqTx-II | U87 | Glioblastoma | Human | Not indicated | [161] |
Aiptasia mutabilis | Crude venom | Vero | Normal kidney cells | Monkey | 2000 (**) | [167] |
Anemonia sulcata | Crude venom | V79 | Normal lung fibroblasts | Chinese hamster | 65.0 × 103 (**) | [166] |
Heteractis crispa | Actinoporin RTX-A | HL-60 | Promyelocytic leukemia | Human | 1.06 (♦) | [169] |
Sagartia rosea | Acidic actinoporin Src I | U251 | Glioblastoma | Human | 3.5 | [26] |
Urticina piscivora | Crude extract | KB | Epidermoid carcinoma (#) | Human | 6.54 | [25] |
Urticina piscivora | UpI (protein) | KB | Epidermoid carcinoma (#) | Human | 40.32 | [25] |
3.4. Cytotoxicity of Extracts from Scyphozoa
Species | Compound or material | Cells | Tissue/organ/histology | Organism | IC50–ED50 (μg/mL) | Ref. |
---|---|---|---|---|---|---|
Atolla vanhoeffeni | Water soluble extract | L1210 | Lymphocytic leukemia | Mouse | 740 (°) | [22] |
Cyanea capillata | Fishing tentacle extract | HepG2 | Hepatoma | Human | 20.3 | [46] |
Cyanea capillata | Preparations from nematocyst suspensions | RTgill W1 Neuro 2A | Normal gill Neuroblastoma | Rainbow trout Mouse | 3.9–10.1 | [47] |
Cyanea nozakii | Crude extract | Bel-7402 | Hepatoma | Human | 17.9 | [178] |
Pelagia noctiluca | Crude venom | V79 | Normal lung fibroblasts | Chinese hamster | 29.8–74.2 × 103 (**) | [180] |
Pelagia noctiluca | Crude venom | HCT 116 | Colon cancer | Human | 320 | [181] |
Pelagia noctiluca | Crude venom | U87 | Glioblastoma | Human | 180 | [1] |
Pelagia noctiluca | Crude venom | Vero | Normal kidney cells | Monkey | 64–112 × 103 (**) (MTT) 20–90 × 103 (**) (NR) | [182] |
Rhizostoma pulmo | Crude venom | V79 | Normal lung fibroblasts | Chinese hamster | 39.9 × 103 (**) | [43,165,166] |
Cotylorhiza tuberculata | Extract (pigments, fatty acids, polypeptides) | MCF-7 | Breast adenocarcinoma | Human | 0.015 | [3] |
Nemopilema nomurai | Crude venom | H9C2 | Heart myoblasts | Rat | 2.0 (*) | [45] |
3.5. Cytotoxicity of Extracts from Hydrozoa
3.6. Cytotoxicity of Extracts from Cubozoa
4. Conclusions
Conflicts of Interest
References
- Ayed, Y.; Bousabbeh, M.; Mabrouk, H.B.; Morjen, M.; Marrakchi, N.; Bacha, H. Impairment of the cell-to-matrix adhesion and cytotoxicity induced by the Mediterranean jellyfish Pelagia noctiluca venom and its fractions in cultured glioblastoma cells. Lipids Health Dis. 2012, 11, 84. [Google Scholar]
- Morabito, R.; Condello, S.; Currò, M.; Marino, A.; Ientile, R.; La Spada, G. Oxidative stress induced by crude venom from the jellyfish Pelagia noctiluca in neuronal-like differentiated SH-SY5Y cells. Toxicol. In Vitro 2012, 26, 694–699. [Google Scholar]
- Leone, A.; Lecci, R.M.; Durante, M.; Piraino, S. Extract from the zooxanthellate jellyfish Cotylorhiza tuberculata modulates gap junction intercellular communication in human cell cultures. Mar. Drugs 2013, 11, 1728–1762. [Google Scholar] [CrossRef]
- Lassen, S.; Helmholz, H.; Ruhnau, C.; Prange, A. A novel proteinaceous cytotoxin from the northern Scyphozoa Cyanea capillata (L.) with structural homology to cubozoan haemolysins. Toxicon 2011, 57, 721–729. [Google Scholar]
- Marino, A.; Morabito, R.; La Spada, G. Physiology of Nematocytes. In Proceedings of the 83° Congresso Nazionale SIBS, Palermo, Italy, 24–25 October 2013. Abstract Number 36.
- Mariscal, R.N. Nematocysts. In Coelenterate Biology; Muscatine, L., Lenhoff, H.M., Eds.; Academic Press: New York, NY, USA, 1974; pp. 129–178. [Google Scholar]
- Weinheimer, A.J.; Spraggins, R.L. The occurrence of two new prostaglandin derivatives (15-epi-PGA2 and its acetate, methyl ester) in the Gorgonian Plaxaura homomalla. Chemistry of Coelenterates. XV. Tetrahedron Lett. 1969, 10, 5185–5188. [Google Scholar] [CrossRef]
- Moore, R.E.; Scheuer, P.J. Palytoxin: A new marine toxin from a Coelenterate. Science 1971, 172, 495–498. [Google Scholar]
- Kohl, A.C.; Kerr, R.G. Pseudopterosin biosynthesis: Aromatization of the diterpene cyclase product, Elisabethatriene. Mar. Drugs 2003, 1, 54–65. [Google Scholar] [CrossRef]
- Crone, H.D.; Keen, T.E.B. Chromatographic properties of the hemolysin from the cnidarian Chironex fleckeri. Toxicon 1969, 7, 79–87. [Google Scholar] [CrossRef]
- Keen, T.E.B.; Crone, H.D. The hemolytic properties of extracts of tentacles from the cnidarian Chironex fleckeri. Toxicon 1969, 7, 55–63. [Google Scholar] [CrossRef]
- Keen, T.E.B. Surface properties of the hemolytic fraction derived from tentacles extracts of Chironex fleckeri. Toxicon 1972, 10, 587–596. [Google Scholar] [CrossRef]
- Tamkun, M.M.; Hessinger, D.A. Isolation and partial characterization of a hemolytic and toxic protein from the nematocyst venom of the Portuguese Man-of-War, Physalia physalis. Biochim. Biophys. Acta 1981, 667, 87–98. [Google Scholar] [CrossRef]
- Hessinger, D.A.; Lenhoff, H.M. Binding of active and inactive hemolytic factor of sea anemone nematocyst venom to red blood cells. Biochem. Biophys. Res. Commun. 1973, 53, 475–481. [Google Scholar] [CrossRef]
- Hessinger, D.A.; Lenhoff, H.M. Assay and properties of the hemolysis activity of pure venom from the nematocysts of the acontia of the sea anemone Aiptasia pallida. Arch. Biochem. Biophys. 1973, 159, 629–638. [Google Scholar] [CrossRef]
- Macek, P.; Lebez, D. Kinetics of hemolysis induced by equinatoxin, a cytolytic toxin from the sea anemone Actinia equina. Effect of some ions and pH. Toxicon 1981, 19, 233–240. [Google Scholar] [CrossRef]
- Turk, T.; Macek, P. Effect of different membrane lipids on the hemolytic activity of equinatoxin II from Actinia equina. Period. Biol. 1986, 88, 216–217. [Google Scholar]
- Macek, P.; Lebez, D. Isolation and characterization of three lethal and hemolytic toxins from the sea anemone Actinia equina L. Toxicon 1988, 26, 441–451. [Google Scholar] [CrossRef]
- Cariello, L.; Romano, G.; Spagnuolo, A.; Zanetti, L. Isolation and partial characterization of rhizolysin, a high molecular weight protein with hemolytic activity from the jellyfish Rhizostoma pulmo. Toxicon 1988, 26, 1057–1065. [Google Scholar] [CrossRef]
- Long, K.O.; Burnett, J.W. Isolation, characterization, and comparison of hemolytic peptides in nematocyst venoms of two species of jellyfish (Chrysaora quinquecirrha and Cyanea capillata). Comp. Biochem. Physiol. B 1989, 94, 641–646. [Google Scholar]
- Hessinger, D.A.; Lenhoff, H.M. Membrane structure and function. Mechanism of hemolysis induced by nematocyst venom: Roles of phospholipase A and direct lytic factor. Arch. Biochem. Biophys. 1976, 176, 603–613. [Google Scholar] [CrossRef]
- Kawabata, T.; Lindsay, D.J.; Kitamura, M.; Konishi, S.; Nishikawa, J.; Nishida, S.; Kamio, M.; Nagai, H. Evaluation of the bioactivities of water-soluble extracts from twelve deep-sea jellyfish species. Fish. Sci. 2013, 79, 487–494. [Google Scholar] [CrossRef]
- Anderluh, G.; Maček, P. Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). Toxicon 2002, 40, 111–124. [Google Scholar]
- Avila, A.D.; Mateo de Acosta, C.; Lage, A. A new immunotoxin built by linking a hemolytic toxin to a monoclonal antibody specific for immature T lymphocytes. Int. J. Cancer 1988, 42, 568–571. [Google Scholar] [CrossRef]
- Cline, E.I.; Wiebe, L.I.; Young, J.D.; Samuel, J. Toxic effects of the novel protein UpI from the sea anemone Urticina piscivora. Pharmacol. Res. 1995, 32, 309–314. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, H.; Yang, W.; Liu, Y.; Liu, W.; Wei, J.; Tu, H.; Xie, X.; Wang, L.; Xu, A. Functional expression and characterization of an acidic actinoporin from sea anemone Sagartia rosea. Biochem. Biophys. Res. Commun. 2003, 312, 562–570. [Google Scholar] [CrossRef]
- Marino, A.; Morabito, R.; La Spada, G. Factors altering the haemolytic power of crude venom from Aiptasia. mutabilis (Anthozoa) nematocysts. Comp. Biochem. Physiol. A 2009, 152, 418–422. [Google Scholar] [CrossRef]
- Miyamoto, T.; Yamada, K.; Ikeda, N.; Komori, T.; Higuchi, R. Bioactive terpenoids from Octocorallia, I. Bioactive diterpenoids: Litophynols A and B from the mucus of the soft coral Litophyton sp. J. Nat. Prod. 1994, 57, 1212–1219. [Google Scholar] [CrossRef]
- Karthikayalu, S.; Rama, V.; Kirubagaran, R.; Venkatesan, R. Hemolytic toxin from the soft coral Sarcophyton trocheliophorum: Isolation and physiological characterization. J. Venom. Anim. Toxins. Incl. Trop. Dis. 2010, 16, 107–120. [Google Scholar]
- Reimão, J.Q.; Migotto, A.E.; Kossuga, M.H.; Berlinck, R.G.; Tempone, A.G. Antiprotozoan activity of Brazilian marine cnidarian extracts and of a modified steroid from the octocoral Carijoa riisei. Parasitol. Res. 2008, 103, 1445–1450. [Google Scholar] [CrossRef]
- Brinkman, D.L.; Burnell, J.N. Biochemical and molecular characterisation of cubozoan protein toxins. Toxicon 2009, 54, 1162–1173. [Google Scholar] [CrossRef]
- Azuma, H.; Ishikawa, M.; Nakajima, T.; Satoh, A.; Sekizaki, S. Calcium-dependent contractile response of arterial smooth muscle to a jellyfish toxin (pCrTX: Carybdea rastonii). Br. J. Pharmacol. 1986, 88, 549–559. [Google Scholar] [CrossRef]
- Azuma, H.; Sekizaki, S.; Satoh, A.; Nakajima, T.; Ishikawa, M. Platelet aggregation caused by a partially purified jellyfish toxin from Carybdea rastonii. Toxicon 1986, 24, 489–499. [Google Scholar] [CrossRef]
- Azuma, H.; Sekizaki, S.; Satoh, A.; Nakajima, T. Platelet aggregation caused by Carybdea rastonii toxins (CrTX-I, II and III) obtained from a jellyfish, Carybdea rastonii (42305). Proc. Soc. Exp. Biol. Med. 1986, 182, 34–42. [Google Scholar] [CrossRef]
- Othman, I.; Eldila, M.T.; Mustafa, M.R.; Musa, M.Y.; Nor Azila, M.A. Studies on the jellyfish Carybdea rastoni. Toxicon 1996, 34, 167–168. [Google Scholar]
- Rottini, G.; Gusmani, L.; Parovel, E.; Avian, M.; Patriarca, P. Purification and properties of a cytolytic toxin in venom of the jellyfish Carybdea marsupialis. Toxicon 1995, 33, 315–326. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, J.; Torrens, E.; Segura-Puertas, L. Partial purification and characterisation of a novel neurotoxin and three cytolysins from the box jellyfish (Carybdea marsupialis) nematocyst venom. Arch. Toxicol. 2006, 80, 163–168. [Google Scholar] [CrossRef]
- Chung, J.J.; Fernandez, K.; Ratnapala, L.A.; Cooke, I.M.; Yanagihara, A.A. Partial purification and characterization of Hawaiian box jellyfish (Carybdea alata) venom. Pac. Sci. 2000, 54, 90. [Google Scholar]
- Chung, J.J.; Ratnapala, L.A.; Cooke, I.M.; Yanagihara, A.A. Partial purification and characterization of a hemolysin (CAH1) from Hawaiian box jellyfish (Carybdea alata) venom. Toxicon 2001, 39, 981–990. [Google Scholar] [CrossRef]
- Nagai, H.; Takuwa-Kuroda, K.; Nakao, M.; Oshiro, N.; Iwanaga, S.; Nakajima, T. A novel protein toxin from the deadly box jellyfish (sea wasp, habu-kurage) Chiropsalmus quadrigatus. Biosci. Biotechnol. Biochem. 2002, 66, 97–102. [Google Scholar] [CrossRef]
- Brinkman, D.; Burnell, J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 2007, 50, 850–860. [Google Scholar] [CrossRef]
- Brinkman, D.; Burnell, J. Partial purification of cytolytic venom proteins from the box jellyfish, Chironex fleckeri. Toxicon 2008, 51, 853–863. [Google Scholar] [CrossRef]
- Allavena, A.; Mariottini, G.L.; Carli, A.M.; Contini, S.; Martelli, A. In vitro evaluation of the cytotoxic, hemolytic and clastogenic activities of Rhizostoma pulmo toxin(s). Toxicon 1998, 36, 933–936. [Google Scholar] [CrossRef]
- Mazzei, M.; Allavena, A.; Garzoglio, R.; Mariottini, G.L.; Carli, A. Chemical and chromatographic characteristics of toxin from the jellyfish Rhizostoma pulmo Agassiz (Cnidaria: Scyphozoa). Pharmacol. Toxicol. 1995, 76, 38. [Google Scholar]
- Kang, C.; Munawir, A.; Cha, M.; Sohn, E.-T.; Lee, H.; Kim, J.-S.; Yoon, W.D.; Lim, D.; Kim, E. Cytotoxicity and hemolytic activity of jellyfish Nemopilema nomurai (Scyphozoa: Rhizostomeae) venom. Comp. Biochem. Physiol. C 2009, 150, 85–90. [Google Scholar]
- Helmholz, H.; Ruhnau, C.; Schütt, C.; Prange, A. Comparative study on the cell toxicity and enzymatic activity of two northern scyphozoan species Cyanea capillata (L.) and Cyanea lamarckii (Péron & Léslieur). Toxicon 2007, 50, 53–64. [Google Scholar] [CrossRef]
- Helmholz, H.; Wiebring, A.; Lassen, S.; Ruhnau, C.; Schuett, C.; Prange, A. Cnidom analysis combined with an in vitro evaluation of the lytic, cyto- and neurotoxic potential of Cyanea capillata (Cnidaria: Scyphozoa). Sci. Mar. 2012, 76, 339–348. [Google Scholar] [CrossRef]
- Wang, T; Wen, X.J.; Mei, X.B.; Wang, Q.Q.; He, Q.; Zheng, J.M.; Zhao, J.; Xiao, L.; Zhang, L.M. Lipid peroxidation is another potential mechanism besides pore-formation underlying hemolysis of tentacle extract from the jellyfish Cyanea capillata. Mar. Drugs 2013, 11, 67–80. [Google Scholar] [CrossRef]
- Marino, A.; Crupi, R.; Rizzo, G.; Morabito, R.; Musci, G.; La Spada, G. The unusual toxicity and stability properties of crude venom from isolated nematocysts of Pelagia noctiluca. Cell. Mol. Biol. 2007, 53, 994–1002. [Google Scholar]
- Marino, A.; Morabito, R.; La Spada, G. Toxicity of crude venom from the Scyphozoan Pelagia noctiluca. Comp. Biochem. Physiol. A 2009, 154, 30. [Google Scholar] [CrossRef]
- Marino, A.; Morabito, R.; Pizzata, T.; La Spada, G. Effect of various factors on Pelagia noctiluca (Cnidaria, Scyphozoa) crude venom-induced haemolysis. Comp. Biochem. Physiol. A 2008, 151, 144–149. [Google Scholar] [CrossRef]
- Maisano, M.; Trapani, M.R.; Parrino, V.; Parisi, M.G.; Cappello, T.; D’Agata, A.; Benenati, G.; Natalotto, A.; Mauceri, A.; Cammarata, M. Haemolytic activity and characterization of nematocyst venom from Pelagia noctiluca (Cnidaria: Scyphozoa). Ital. J. Zool. 2013, 80, 168–176. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, H.; Tsukitani, Y.; Iguchi, K.; Yamada, Y. Clavulones, new type of prostanoids from the stolonifer Clavularia viridis Quoy and Gaimard. Tetrahedron Lett. 1982, 23, 5171–5174. [Google Scholar] [CrossRef]
- Honda, A.; Yamamoto, Y.; Mori, Y.; Yamada, Y.; Kikuchi, H. Antileukemic effect of coral-prostanoids clavulones from the stolonifer Clavularia viridis on human myeloid leukemia (HL-60) cells. Biochem. Biophys. Res. Commun. 1985, 130, 515–523. [Google Scholar] [CrossRef]
- Hondo, A.; Mori, Y.; Iguchi, K.; Yamada, Y. Antiproliferative and cytotoxic effects of newly discovered halogenated coral prostanoids from the Japanese stolonifer Clavularia viridis on human myeloid leukemia cells in culture. Mol. Pharmacol. 1987, 32, 530–535. [Google Scholar]
- Mori, K.; Iguchi, K.; Yamada, N.; Yamada, Y.; Inouye, Y. Bioactive marine diterpenoids from Japanese soft coral of Clavularia sp. Chem. Pharm. Bull. 1988, 36, 2840–2852. [Google Scholar] [CrossRef]
- Yabe, T.; Yamada, H.; Shimomura, M.; Miyaoka, H.; Yamada, Y. Induction of choline acetyltransferase activity in cholinergic neurons by stolonidiol: Structure-activity relationship. J. Nat. Prod. 2000, 63, 433–435. [Google Scholar] [CrossRef]
- Watanabe, K.; Sekine, M.; Takahashi, H.; Iguchi, K. New halogenated marine prostanoids with cytotoxic activity from the Okinawan soft coral Clavularia viridis. J. Nat. Prod. 2001, 64, 1421–1425. [Google Scholar] [CrossRef]
- Duh, C.-Y.; Chia, M.-C.; Wang, S.-K.; Chen, H.-J.; El-Gamal, A.A.H.; Dai, C.-F. Cytotoxic dolabellane diterpenes from the Formosan soft coral Clavularia inflata. J. Nat. Prod. 2001, 64, 1028–1031. [Google Scholar] [CrossRef]
- Hou, R.-S.; Duh, C.-Y.; Chiang, M.Y.; Lin, C.-N. Sinugibberol, a new cytotoxic cembranoid diterpene from the soft Coral Sinularia gibberosa. J. Nat. Prod. 1995, 58, 1126–1130. [Google Scholar] [CrossRef]
- Iwashima, M.; Matsumoto, Y.; Takahashi, H.; Iguchi, K. New marine cembrane-type diterpenoids from the okinawan soft coral Clavularia koellikeri. J. Nat. Prod. 2000, 63, 1647–1652. [Google Scholar] [CrossRef]
- Schmitz, F.J.; Schulz, M.M.; Siripitayananon, J.; Hossain, M.B.; van der Helm, D. New diterpenes from the gorgonian Solenopodium excavatum. J. Nat. Prod. 1993, 56, 1339–1349. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Chung, H.-M.; Hwang, T.-L.; Lu, M.-C.; Wen, Z.-H.; Kuo, Y.-H.; Wang, W.-H.; Sung, P.-J. Echinoclerodane A: A new bioactive clerodane-type diterpenoid from a gorgonian coral Echinomuricea sp. Molecules 2012, 17, 9443–9450. [Google Scholar] [CrossRef]
- Chung, H.-M.; Hong, P.-H.; Su, J.-H.; Hwang, T.-L.; Lu, M.-C.; Fang, L.-S.; Wu, Y.-C.; Li, J.-J.; Chen, J.-J.; Wang, W.-H.; et al. Bioactive compounds from a gorgonian coral Echinomuricea sp. (Plexauridae). Mar. Drugs 2012, 10, 1169–1179. [Google Scholar] [CrossRef]
- Rueda, A.; Zubía, E.; Ortega, M.J.; Salvá, J. Structure and cytotoxicity of new polyhydroxylated sterols from the Caribbean gorgonian Plexaurella grisea. Steroids 2001, 66, 897–904. [Google Scholar] [CrossRef]
- Rueda, A.; Zubía, E.; Ortega, M.J.; Salvá, J. New acyclic sesquiterpenes and norsesquiterpenes from the Caribbean Gorgonian Plexaurella grisea. J. Nat. Prod. 2001, 64, 401–405. [Google Scholar] [CrossRef]
- El Sayed, K.A.; Hamann, M.T. A new norcembranoid dimer from the Red Sea soft coral Sinularia gardineri. J. Nat. Prod. 1996, 59, 687–689. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Schmitz, F.J. Cytotoxic acylated spermidine from a soft coral, Sinularia sp. J. Nat. Prod. 1997, 60, 495–496. [Google Scholar] [CrossRef]
- Weinheimer, A.J.; Matson, J.A.; Hossain, M.B.; van der Helm, D. Marine anticancer agents: Sinularin and dihydrosinularin, new cembranolides from the soft coral, Sinularia flexibilis. Tetrahedron Lett. 1977, 18, 2923–2926. [Google Scholar] [CrossRef]
- Duh, C.Y.; Wang, S.K.; Tseng, H.-K.; Sheu, J.-H.; Chiang, M.Y. Novel cytotoxic cembranoids from the soft coral Sinularia flexibilis. J. Nat. Prod. 1998, 61, 844–847. [Google Scholar] [CrossRef]
- Reddy, B.S.; Rao, V.D.; Rao, B.S.; Dhananjaya, N.; Kuttan, R.; Babu, T.D. Isolation and structural determination of new sphingolipids and pharmacological activity of Africanene and other metabolites from Sinularia leptoclados. Chem. Pharm. Bull. 1999, 47, 1214–1220. [Google Scholar] [CrossRef]
- Chai, M.C.; Wang, S.K.; Dai, C.F.; Duh, C.-Y. A cytotoxic lobane diterpene from the formosan soft coral Sinularia inelegans. J. Nat. Prod. 2000, 63, 843–844. [Google Scholar] [CrossRef]
- Su, J.; Yang, R.; Kuang, Y.; Zeng, L. A new cembranolide from the soft coral Sinularia capillosa. J. Nat. Prod. 2000, 63, 1543–1545. [Google Scholar] [CrossRef]
- Lu, Y.; Su, H.-J.; Chen, Y.-H.; Wen, Z.-H.; Sheu, J.-H.; Su, J.-H. Anti-inflammatory Cembranoids from the Formosan soft coral Sinularia discrepans. Arch. Pharm. Res. 2011, 34, 1263–1267. [Google Scholar] [CrossRef]
- Kikuchi, H.; Manda, T.; Kobayashi, K.; Yamada, Y.; Iguchi, K. Anti-tumor activity of lemnalol isolated from the soft coral Lemnalia tenuis Verseveldt. Chem. Pharm. Bull. 1983, 31, 1086–1088. [Google Scholar] [CrossRef]
- Jean, Y.H.; Chen, W.F.; Duh, C.Y.; Huang, S.Y.; Hsu, C.H.; Lin, C.S.; Sung, C.S.; Chen, I.M.; Wen, Z.H. Inducible nitric oxide synthase and cyclooxygenase-2 participate in anti-inflammatory and analgesic effects of the natural marine compound lemnalol from Formosan soft coral Lemnalia cervicorni. Eur. J. Pharmacol. 2008, 578, 323–331. [Google Scholar] [CrossRef]
- Duh, C.Y.; Wang, S.K.; Chung, S.G.; Chou, G.-C.; Dai, C.-F. Cytotoxic cembrenolides and steroids from the formosan soft coral Sarcophyton crassocaule. J. Nat. Prod. 2000, 63, 1634–1637. [Google Scholar] [CrossRef]
- Dong, H.; Gou, Y.-L.; Kini, R.M.; Xu, H.-X.; Chen, S.-X.; Teo, S.L.M.; But, P.P.-H. A new cytotoxic polyhydroxysterol from soft coral Sarcophyton trocheliophorum. Chem. Pharm. Bull. 2000, 48, 1087–1089. [Google Scholar] [CrossRef]
- Wang, G.-H.; Ahmed, A.F.; Kuo, Y.-H.; Sheu, J.-H. Two new subergane-based sesquiterpenes from a Taiwanese Gorgonian coral Subergorgia suberosa. J. Nat. Prod. 2002, 65, 1033–1036. [Google Scholar] [CrossRef]
- Wang, G.-H.; Ahmed, A.F.; Sheu, J.-H.; Duh, C.-Y.; Shen, Y.-C.; Wang, L.-T. Suberosols A–D, four new sesquiterpenes with β-caryophyllene skeletons from a Taiwanese gorgonian coral Subergorgia suberosa. J. Nat. Prod. 2002, 65, 887–891. [Google Scholar] [CrossRef]
- Wu, S.-L.; Sung, P.-J.; Chiang, M.Y.; Wu, J.-Y.; Sheu, J.-H. New polyoxygenated briarane diterpenoids, briaexcavatolides O-R, from the gorgonian Briareum excavatum. J. Nat. Prod. 2001, 64, 1415–1420. [Google Scholar] [CrossRef]
- Morales, J.J.; Lorenzo, D.; Rodríguez, A.D. Application of two-dimensional NMR spectroscopy in the structural determination of marine natural products. Isolation and total structural assignment of 4-deoxyasbestinin diterpenes from the Caribbean gorgonian Briareum asbestinum. J. Nat. Prod. 1991, 54, 1368–1382. [Google Scholar] [CrossRef]
- Sheu, J.-H.; Sung, P.-J.; Huang, L.-H.; Lee, S.-F.; Wu, T.; Chang, B.-Y.; Duh, C.-Y.; Fang, L.-S.; Soong, K.; Lee, T.-J. New cytotoxic briaran diterpenes from the Formosan gorgonian Briareum sp. J. Nat. Prod. 1996, 59, 935–938. [Google Scholar] [CrossRef]
- Sheu, J.-H.; Sung, P.-J.; Cheng, M.-C.; Liu, H.-Y.; Fang, L.-S.; Duh, C.-Y.; Chiang, M.Y. Novel cytotoxic diterpenes, Excavatolides A-E, isolated from the Formosan gorgonian Briareum excavatum. J. Nat. Prod. 1998, 61, 602–608. [Google Scholar] [CrossRef]
- Sung, P.-J.; Su, J.-H.; Wang, G.-H.; Lin, S.-F.; Duh, C.-Y.; Sheu, J.-H. Excavatolides F-M, new briarane diterpenes from the gorgonian Briareum excavatum. J. Nat. Prod. 1999, 62, 457–463. [Google Scholar] [CrossRef]
- Sung, P.-J.; Su, J.-H.; Duh, C.-Y.; Chiang, M.Y.; Sheu, J.-H. Briaexcavatolides K-N, new briarane diterpenes from the gorgonian Briareum excavatum. J. Nat. Prod. 2001, 64, 318–323. [Google Scholar] [CrossRef]
- Rho, J.-R.; Lee, H.-S.; Seo, Y.; Cho, K.W.; Shin, J. New xenicane diterpenoids from the gorgonian Acalycigorgia inermis. J. Nat. Prod. 2000, 63, 254–257. [Google Scholar] [CrossRef]
- Rho, J.-R.; Oh, M.-S.; Jang, K.H.; Cho, K.W.; Shin, J. New xenicane diterpenoids from the gorgonian Acalycigorgia inermis. J. Nat. Prod. 2001, 64, 540–543. [Google Scholar] [CrossRef]
- Zeng, L.M.; Li, X.; Su, J.; Fu, X.; Schmitz, F.J. A new cytotoxic dihydroxy sterol from the soft coral Alcyonium patagonicum. J. Nat. Prod. 1995, 58, 296–298. [Google Scholar] [CrossRef]
- Palermo, J.A.; Rodríguez Brasco, M.F.; Spagnuolo, C.; Seldes, A.M. Illudalane sesquiterpenoids from the soft coral Alcyonium paessleri: The first natural nitrate esters. J. Org. Chem. 2000, 65, 4482–4486. [Google Scholar] [CrossRef]
- Rodríguez Brasco, M.F.; Seldes, A.M.; Palermo, J.A. Paesslerins A and B: Novel tricyclic sesquiterpenoids from the soft coral Alcyonium paessleri. Org. Lett. 2001, 3, 1415–1417. [Google Scholar] [CrossRef]
- Rodríguez, A.D.; González, E.; González, C. Additional dolabellane diterpenes from the Caribbean gorgonian octocoral Eunicea laciniata. J. Nat. Prod. 1995, 58, 226–232. [Google Scholar] [CrossRef]
- Rodríguez, A.D.; Soto, J.J.; Pina, I.C. Uprolides D-G, 2. A rare family of 4,7-oxa-bridged cembranolides from the caribbean gorgonian Eunicea mammosa. J. Nat. Prod. 1995, 58, 1209–1216. [Google Scholar] [CrossRef]
- Rodríguez, A.D.; Acosta, A.L. New cembranoid diterpenes and a geranylgeraniol derivative from the common Caribbean sea whip Eunicea succinea. J. Nat. Prod. 1997, 60, 1134–1138. [Google Scholar] [CrossRef]
- Shi, Y.-P.; Rodríguez, A.D.; Barnes, C.L.; Sánchez, J.A.; Raptis, R.G.; Baran, P. New terpenoid constituents from Eunicea pinta. J. Nat. Prod. 2002, 65, 1232–1241. [Google Scholar] [CrossRef]
- Kitagawa, I.; Cui, Z.; Byeng Wha, S.; Kobayashi, M.; Kyogoku, Y. Marine natural products XVII. Nephtheoxydiol, a new cytotoxic hydroperoxy-germacrane sesquiterpene, and related sesquiterpenoids from an okinawan soft coral of Nephthea sp. (Nephtheidae). Chem. Pharm. Bull. 1987, 35, 124–135. [Google Scholar] [CrossRef]
- Duh, C.Y.; Wang, S.K.; Chu, M.-J.; Sheu, J.-H. Cytotoxic sterols from the soft coral Nephthea erecta. J. Nat. Prod. 1998, 61, 1022–1024. [Google Scholar] [CrossRef]
- El-Gamal, A.A.H.; Chiang, C.-Y.; Huang, S.-H.; Wang, S.-K.; Duh, C.-Y. Xenia diterpenoids from the Formosan soft coral Xenia blumi. J. Nat. Prod. 2005, 68, 1336–1340. [Google Scholar] [CrossRef]
- El-Gamal, A.A.H.; Wang, S.-K.; Duh, C.-Y. Cytotoxic xenia diterpenoids from the soft coral Xenia umbellata. J. Nat. Prod. 2006, 69, 338–341. [Google Scholar] [CrossRef]
- Kato, T.; Fukushima, M. Advances in Prostaglandin, Thromboxane, and Leukotriene Research; Hayaishi, O., Yamamoto, S., Eds.; Raven Press: New York, NY, USA, 1985; Volumm 15, pp. 415–418. [Google Scholar]
- Baker, B.J.; Scheuer, P.J. The punaglandins: 10-chloroprostanoids from the octocoral Telesto riisei. J. Nat. Prod. 1994, 57, 1346–1353. [Google Scholar] [CrossRef]
- Kioshihara, Y.; Takamori, R.; Nomura, K.; Sugiura, S.; Kurozumi, S. Enhancement of in vitro mineralization in human osteoblasts by a novel prostaglandin A1 derivative TEI-3313. J. Pharmacol. Exp. Ther. 1991, 258, 1120–1126. [Google Scholar]
- Liyanage, G.K.; Schmitz, F.J. Cytotoxic amides from the octocoral Telesto riisei. J. Nat. Prod. 1996, 59, 148–151. [Google Scholar] [CrossRef]
- Seleghim, M.H.R.; Lira, S.P.; Kossuga, M.H.; Batista, T.; Berlinck, R.G.S.; Hajdu, E.; Muricy, G.; da Rocha, R.M.; do Nascimento, G.G.F.; Silva, M.; et al. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Braz. J. Pharmacogn. 2007, 17, 287–318. [Google Scholar]
- Kossuga, M.H.; Lira, S.P.; Nascimento, A.M.; Gambardella, M.T.P.; Berlinck, R.G.S.; Torres, Y.R.; Nascimento, G.G.F.; Pimenta, E.F.; Silva, M.; Thiemann, O.H.; et al. Isolamento e atividades biológicas de produtos naturais das esponjas Monanchora arbuscula, Aplysina sp., Petromica ciocalyptoides e Topsentia ophiraphidites, da Ascídia Didemnum ligulum e do Octocoral Carijoa riisei. Química Nova 2007, 30, 1194–1202. [Google Scholar]
- Zhao, H.Y.; Shao, C.L.; Li, Z.Y.; Han, L.; Cao, F.; Wang, C.Y. Bioactive pregnane steroids from a South China Sea gorgonian Carijoa sp. Molecules 2013, 18, 3458–3466. [Google Scholar] [CrossRef]
- Uchio, Y.; Toyota, J.; Nozaki, H.; Nakayama, M.; Nishizono, Y.; Hase, T. Lobohedleolide and (7Z)-lobohedleolide, new cembranolides from the soft coral Lobophytum hedleyi Whitelegge. Tetrahedron Lett. 1981, 22, 4089–4092. [Google Scholar] [CrossRef]
- Wang, S.-K.; Duh, C.-Y.; Wu, Y.-C.; Wang, Y.; Cheng, M.-C.; Soong, K.; Fang, L.-S. Studies on formosan soft corals, II. Cytotoxic cembranolides from the soft coral Lobophytum michaelae. J. Nat. Prod. 1992, 55, 1430–1435. [Google Scholar] [CrossRef]
- Duh, C.Y.; Wang, S.K.; Huang, B.T.; Dai, C.-F. Cytotoxic cembrenolide diterpenes from the formosan soft coral Lobophytum crassum. J. Nat. Prod. 2000, 63, 884–885. [Google Scholar] [CrossRef]
- Lopp, A.; Pihlak, A.; Paves, H.; Samuel, K.; Koljak, R.; Samel, N. The effect of 9,11-secosterol, a newly discovered compound from the soft coral Gersemia fruticosa, on the growth and cell cycle progression of various tumor cells in culture. Steroids 1994, 59, 274–281. [Google Scholar] [CrossRef]
- Ortega, M.J.; Zubía, E.; Salva, J. Structure and absolute configuration of palmonine F, a new eunicellin-based diterpene from the gorgonian Eunicella verrucosa. J. Nat. Prod. 1994, 57, 1584–1586. [Google Scholar] [CrossRef]
- Seo, Y.; Cho, K.W.; Chung, H.; Lee, H.-S.; Shin, J. New secosteroids from a gorgonian of the genus Muricella. J. Nat. Prod. 1998, 61, 1441–1443. [Google Scholar] [CrossRef]
- Kittakoop, P.; Suttisri, R.; Chaichantipyuth, C.; Vethchagarun, S.; Suwanborirux, K. Norpregnane glycosides from a Thai soft coral, Scleronephthya pallida. J. Nat. Prod. 1999, 62, 318–320. [Google Scholar] [CrossRef]
- Bokesch, H.R.; Blunt, J.W.; Westergaard, C.K.; Cardellina, J.H., II; Johnson, T.R.; Michael, J.A.; McKee, T.C.; Hollingshead, M.G.; Boyd, M.R. Alertenone, a dimer of suberosenone from Alertigorgia sp. J. Nat. Prod. 1999, 62, 633–635. [Google Scholar] [CrossRef]
- Garrido, L.; Zubía, E.; Ortega, M.J.; Salvá, J. Isolation and structure elucidation of new cytotoxic steroids from the gorgonian Leptogorgia sarmentosa. Steroids 2000, 65, 85–88. [Google Scholar] [CrossRef]
- Sheu, J.-H.; Hung, K.-C.; Wang, G.-H.; Duh, C.-Y. New cytotoxic sesquiterpenes from the gorgonian Isis hippuris. J. Nat. Prod. 2000, 63, 1603–1607. [Google Scholar] [CrossRef]
- Chen, S.-P.; Sung, P.-J.; Duh, C.-Y.; Dai, C.-F.; Sheu, J.-H. Junceol A, a new sesquiterpenoid from the sea pen Virgularia juncea. J. Nat. Prod. 2001, 64, 1241–1242. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Lin, Y.-C.; Ko, C.-L.; Wang, L.-T. New briaranes from the taiwanese Gorgonian Junceella juncea. J. Nat. Prod. 2003, 66, 302–305. [Google Scholar] [CrossRef]
- Nakao, Y.; Yoshida, S.; Matsunaga, S.; Fusetani, N. (Z)-Sarcodictyin A, a new highly cytotoxic diterpenoid from the soft coral Bellonella albiflora. J. Nat. Prod. 2003, 66, 524–527. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kanekuni, S.; Hanahusa, M.; Arihara, S.; Ohta, T. Polyhydroxylated sterols from the octocoral Dendronephthya gigantea. J. Nat. Prod. 2000, 63, 670–672. [Google Scholar] [CrossRef]
- Reddy, N.S.; Reed, J.K.; Longley, R.E.; Wright, A.E. Two new cytotoxic linderazulenes from a deep-sea gorgonian of the genus Paramuricea. J. Nat. Prod. 2005, 68, 248–250. [Google Scholar] [CrossRef]
- Chao, C.H.; Wu, Y.C.; Wen, Z.H.; Sheu, J.H. Steroidal carboxylic acids from soft coral Paraminabea acronocephala. Mar. Drugs 2013, 11, 136–145. [Google Scholar] [CrossRef]
- Rho, J. New bioactive steroids from the Gorgonian Acalycigorgia inermis. Bull. Korean Chem. Soc. 2000, 21, 518–520. [Google Scholar]
- Maia, L.F.; Epifanio, R.A.; Fenical, W. New cytotoxic sterol glycosides from the octocoral Carijoa (Telesto) riisei. J. Nat. Prod. 2000, 63, 1427–1430. [Google Scholar] [CrossRef]
- Duh, C.Y.; Wang, S.K.; Weng, Y.L. Brassicolene, a novel cytotoxic diterpenoid from the Formosan soft coral Nephthea brassica. Tetrahedron Lett. 2000, 41, 1401–1403. [Google Scholar] [CrossRef]
- Xu, L.; Patrick, B.O.; Roberge, M.; Allen, T.; van Ofwegen, L.; Andersen, R.J. New diterpenoids from the octocoral Pachyclavularia violacea collected in Papua New Guinea. Tetrahedron 2000, 56, 9031–9037. [Google Scholar] [CrossRef]
- Naz, S.; Kerr, R.G.; Narayanan, R. New antiproliferative epoxysecosterols from Pseudopterogorgia americana. Tetrahedron Lett. 2000, 41, 6035–6040. [Google Scholar] [CrossRef]
- Sheu, J.H.; Chang, K.C.; Duh, C.Y. A cytotoxic 5α,8α-epidioxysterol from a soft coral Sinularia species. J. Nat. Prod. 2000, 63, 149–151. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Gustafson, K.R. Marine pharmacology in 2000: Antitumor and cytotoxic compounds. Int. J. Cancer 2003, 105, 291–299. [Google Scholar] [CrossRef]
- Jiménez, C.; Crews, P. 13C-NMR assignments and cytotoxicity assessment of zoanthoxanthin alkaloids from zoanthid corals. J. Nat. Prod. 1993, 56, 9–14. [Google Scholar] [CrossRef]
- Rashid, M.A.; Gustafson, K.R.; Cardellina, J.H., II; Boyd, M.R. Mycalolides D and E, new cytotoxic macrolides from a collection of the stony coral Tubastrea faulkneri. J. Nat. Prod. 1995, 58, 1120–1125. [Google Scholar] [CrossRef]
- Fusetani, N.; Toyoda, T.; Asai, N.; Matsunaga, S.; Maruyama, T. Montiporic acids A and B, cytotoxic and antimicrobial polyacetylene carboxylic acids from eggs of the Scleractinian coral Montipora digitata. J. Nat. Prod. 1996, 59, 796–797. [Google Scholar] [CrossRef]
- Bae, B.H.; Im, K.S.; Choi, W.C.; Hong, J.; Lee, C.-O.; Choi, J.S.; Son, B.W.; Song, J.-I.; Jung, J.H. New acetylenic compounds from the stony coral Montipora sp. J. Nat. Prod. 2000, 63, 1511–1514. [Google Scholar] [CrossRef]
- Alam, N.; Bae, B.H.; Hong, J.; Lee, C.O.; Im, K.S.; Jung, J.H. Cytotoxic diacetylenes from the stony coral Montipora species. J. Nat. Prod. 2001, 64, 1059–1063. [Google Scholar] [CrossRef]
- Bellocci, M.; Sala, G.L.; Prandi, S. The cytolytic and cytotoxic activities of palytoxin. Toxicon 2011, 57, 449–459. [Google Scholar] [CrossRef]
- Mariottini, G.L.; Pane, L. The role of Cnidaria in drug discovery. A review on CNS implications and new perspectives. Rec. Pat. CNS Drug Discov. 2013, 8, 110–122. [Google Scholar] [CrossRef]
- Gabrielson, E.W.; Kuppusamy, P.; Povey, A.C.; Zweier, J.L.; Harris, C.C. Measurement of neutrophil activation and epidermal cell toxicity by palytoxin and 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis 1992, 13, 1671–1674. [Google Scholar] [CrossRef]
- Hoffmann, K.; Hermanns-Clausen, M.; Buhl, C.; Buchler, M.W.; Schemmer, P.; Mebs, D.; Kauferstein, S. A case of palytoxin poisoning due to contact with zoanthid corals through a skin injury. Toxicon 2008, 51, 1535–1537. [Google Scholar] [CrossRef]
- Görögh, T.; Bèress, L.; Quabius, E.S.; Ambrosch, P.; Hoffmann, M. Head and neck cancer cells and xenografts are very sensitive to palytoxin: Decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol. Cancer 2013, 12, 12. [Google Scholar] [CrossRef]
- Tosteson, M.T.; Halperin, J.A.; Kishi, Y.; Tosteson, D.C. Palytoxin induces an increase in the cation conductance of red cells. J. Gen. Physiol. 1991, 98, 969–985. [Google Scholar] [CrossRef]
- Tosteson, M.T.; Scriven, D.R.; Bharadwaj, A.K.; Kishi, Y.; Tosteson, D.C. Interaction of palytoxin with red cells: Structure-function studies. Toxicon 1995, 33, 799–807. [Google Scholar] [CrossRef]
- Tosteson, M.T.; Thomas, J.; Arnadottir, J.; Tosteson, D.C. Effects of palytoxin on cation occlusion and phosphorylation of the (Na+,K+)-ATPase. J. Membr. Biol. 2003, 192, 181–189. [Google Scholar] [CrossRef]
- Bonnard, C.; Lechner, J.F.; Gerwin, B.I.; Fujiki, H.; Harris, C.C. Effects of palytoxin or ouabain on growth and squamous differentiation of human bronchial epithelial cells in vitro. Carcinogenesis 1988, 9, 2245–2249. [Google Scholar] [CrossRef]
- Rouzaire-Dubois, B.; Dubois, J.M. Characterization of palytoxin-induced channels in mouse neuroblastoma cells. Toxicon. 1990, 28, 1147–1158. [Google Scholar] [CrossRef]
- Sagara, T.; Nishibori, N.; Itoh, M.; Morita, K.; Her, S. Palytoxin causes nonoxidative necrotic damage to PC12 cells in culture. J. Appl. Toxicol. 2013, 33, 120–124. [Google Scholar] [CrossRef]
- Bignami, G.S.; Senter, P.D.; Grothaus, P.G.; Fischer, K.J.; Humphreys, T.; Wallace, P.M. N-(4'-hydroxyphenylacetyl)palytoxin: A palytoxin prodrug that can be activated by a monoclonal antibody-penicillin G amidase conjugate. Cancer Res. 1992, 52, 5759–5764. [Google Scholar]
- Vale, C.; Gómez-Limia, B.; Vieytes, M.R.; Botana, L.M. Mitogen-activated protein kinases regulate palytoxin-induced calcium influx and cytotoxicity in cultured neurons. Br. J. Pharmacol. 2007, 152, 256–266. [Google Scholar] [CrossRef]
- Vale, C.; Alfonso, A.; Sunol, C.; Vieytes, M.R.; Botana, L.M. Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin. J. Neurosci. Res. 2006, 83, 1393–1406. [Google Scholar] [CrossRef]
- Vale-Gonzalez, C.; Gomez-Limia, B.; Vieytes, M.R.; Botana, L.M. Effects of the marine phycotoxin palytoxin on neuronal pH in primary cultures of cerebellar granule cells. J. Neurosci. Res. 2007, 85, 90–98. [Google Scholar] [CrossRef]
- Kerbrat, A.S.; Amzil, Z.; Pawlowiez, R.; Golubic, S.; Sibat, M.; Darius, H.T.; Chinain, M.; Laurent, D. First evidence of Palytoxin and 42-Hydroxy-palytoxin in the marine cyanobacterium Trichodesmium. Mar. Drugs 2011, 9, 543–560. [Google Scholar] [CrossRef]
- Pelin, M.; Sosa, S.; Della Loggia, R.; Poli, M.; Tubaro, A.; Decorti, G.; Florio, C. The cytotoxic effect of palytoxin on Caco-2 cells hinders their use for in vitro absorption studies. Food Chem. Toxicol 2012, 50, 206–211. [Google Scholar] [CrossRef]
- Pettit, G.R.; Fujii, Y.; Hasler, J.A.; Schmidt, J.M. Isolation and characterization of palystatins A-D. J. Nat. Prod. 1982, 45, 272–276. [Google Scholar] [CrossRef]
- Giraldi, T.; Ferlan, I.; Romeo, D. Antitumor activity of equinatoxin. Chem. Biol. Interact. 1976, 13, 199–203. [Google Scholar] [CrossRef]
- Batista, U.; Macek, P.; Sedmak, B. The cytotoxic and cytolytic activity of equinatoxin II from the sea anemone Actinia equina. Cell Biol. Int. Rep. 1990, 14, 1013–1024. [Google Scholar] [CrossRef]
- Zorec, R.; Tester, M.; Macek, P.; Mason, W.T. Cytotoxicity of equinatoxin II from the sea anemone Actinia equina involves ion channel formation and an increase in intracellular calcium activity. J. Membr. Biol. 1990, 118, 243–249. [Google Scholar] [CrossRef]
- Batista, U.; Sentjurc, M. EPR study of the sea anemone cytolysin, equinatoxin II, cytotoxicity on V-79 cells. Cell Biol. Int. 1995, 19, 215–222. [Google Scholar] [CrossRef]
- Mariottini, G.L.; Robbiano, L.; Carli, A. Toxicity of Actinia equina (Cnidaria: Anthozoa) crude venom on cultured cells. Boll. Soc. Ital. Biol. Sper. 1998, 74, 103–110. [Google Scholar]
- Potrich, C.; Tomazzolli, R.; Dalla Serra, M.; Anderluh, G.; Malovrh, P.; Maček, P.; Menestrina, G.; Tejuca, M. Cytotoxic activity of a tumor protease-activated pore-forming toxin. Bioconjugate Chem. 2005, 16, 369–376. [Google Scholar] [CrossRef]
- Koblinski, J.E.; Ahram, M.; Sloane, B.F. Unraveling the role of proteases in cancer. Clin. Chim. Acta 2000, 291, 113–135. [Google Scholar] [CrossRef]
- Podgorski, I.; Sloane, B.F. Cathepsin B and its role(s) in cancer progression. Biochem. Soc. Symp. 2003, 70, 263–276. [Google Scholar]
- Soletti, R.C.; de Faria, G.P.; Vernal, J.; Terenzi, H.; Anderluh, G.; Borges, H.L.; Moura-Neto, V.; Gabilan, N.H. Potentiation of anticancer-drug cytotoxicity by sea anemone pore-forming proteins in human glioblastoma cells. Anti-Cancer Drugs 2008, 19, 517–525. [Google Scholar] [CrossRef]
- Soletti, R.C.; Alves, T.; Vernal, J.; Terenzi, H.; Anderluh, G.; Borges, H.L.; Gabilan, N.H.; Moura-Neto, V. Inhibition of MAPK/ERK, PKC and CaMKII signaling blocks cytolysin-induced human glioma cell death. Anti-Cancer Res. 2010, 30, 1209–1215. [Google Scholar]
- Kahn, S.A.; Biasoli, D.; Garcia, C.; Geraldo, L.H.; Pontes, B.; Sobrinho, M.; Frauches, A.C.; Romão, L.; Soletti, R.C.; Assunção Fdos, S.; et al. Equinatoxin II potentiates temozolomide- and etoposide-induced glioblastoma cell death. Curr. Top. Med. Chem. 2012, 12, 2082–2093. [Google Scholar]
- Mariottini, G.L.; Bussotti, S.; Carli, A. Cytotoxic effects produced on a continuous cell line by the nematocyst venom of Anemonia. sulcata (Cnidaria: Anthozoa). I. Cytotechnology 1993, 11, S158–S159. [Google Scholar]
- Carli, A.; Mariottini, G.L.; Pane, L. Ecological and Medical Aspects of Jellyfish Poisoning. In Epidemiological Studies Related to the Environmental Quality Criteria for Bathing Waters, Shellfish-Growing Waters and Edible Marine Organisms; UNEP: Athens, Greece, 1995; pp. 1–21. [Google Scholar]
- Carli, A.; Bussotti, S.; Mariottini, G.L.; Robbiano, L. Toxicity of jellyfish and sea-anemone venoms on cultured V79 cells. Toxicon 1996, 34, 496–500. [Google Scholar] [CrossRef]
- Marino, A.; Valveri, V.; Muià, C.; Crupi, R.; Rizzo, G.; Musci, G.; La Spada, G. Cytotoxicity of the nematocyst venom from the sea anemone Aiptasia mutabilis. Comp. Biochem. Physiol. C 2004, 139, 295–301. [Google Scholar]
- Mariottini, G.L.; Pane, L. Mediterranean jellyfish venoms: A review on Scyphomedusae. Mar. Drugs 2010, 8, 1122–1152. [Google Scholar] [CrossRef]
- Fedorov, S.; Dyshlovoy, S.; Monastyrnaya, M.; Shubina, L.; Leychenko, E.; Kozlovskaya, E.; Jin, J.-O.; Kwak, J.-Y.; Bode, A.M.; Dong, Z.; et al. The anticancer effects of actinoporin RTX-A from the sea anemone Heteractis crispa (=Radianthus macrodactylus). Toxicon 2010, 55, 811–817. [Google Scholar] [CrossRef]
- Young, M.R.; Li, J.J.; Rincon, M.; Flavell, R.A.; Sathyanarayana, B.K.; Hunziker, R.; Colburn, N. Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc. Natl. Acad. Sci. USA 1999, 96, 9827–9832. [Google Scholar] [CrossRef]
- Amit, S.; Ben-Neriah, Y. NF-κB activation in cancer: A challenge for ubiquitination- and proteasome-based therapeutic approach. Semin. Cancer Biol. 2003, 13, 15–28. [Google Scholar] [CrossRef]
- Monroy-Estrada, H.I.; Chirino, Y.I.; Soria-Mercado, I.E.; Sánchez-Rodríguez, J. Toxins from the Caribbean sea anemone Bunodeopsis globulifera increase cisplatin-induced cytotoxicity of lung adenocarcinoma cells. J. Venom. Anim. Toxins 2013, 19, 12. [Google Scholar]
- Neeman, I.; Calton, G.J.; Burnett, J.W. Cytotoxicity and dermonecrosis of sea nettle (Chrysaora quinquecirrha) venom. Toxicon 1980, 18, 55–63. [Google Scholar] [CrossRef]
- Neeman, I.; Calton, G.J.; Burnett, J.W. An ultrastructural study of the cytotoxic effect of the venoms from the sea nettle (Chrysaora quinquecirrha) and Portuguese man-of-war (Physalia physalis) on cultured Chinese hamster ovary K-1 cells. Toxicon 1980, 18, 495–501. [Google Scholar] [CrossRef]
- Cao, C.J.; Eldefrawi, M.E.; Eldefrawi, A.T.; Burnett, J.W.; Mioduszewski, R.J.; Menking, D.E.; Valdes, J.J. Toxicity of sea nettle toxin to human hepatocytes and the protective effects of phosphorylating and alkylating agents. Toxicon 1998, 36, 269–281. [Google Scholar] [CrossRef]
- Houck, H.E.; Lipsky, M.M.; Marzella, L.; Burnett, J.V. Toxicity of sea nettle (Chrysaora quinquecirrha) fishing tentacle nematocyst venom in cultured rat hepatocytes. Toxicon 1996, 34, 771–778. [Google Scholar] [CrossRef]
- Helmholz, H.; Johnston, B.D.; Ruhnau, C.; Prange, A. Gill cell toxicity of northern boreal scyphomedusae Cyanea capillata and Aurelia aurita measured by an in vitro cell assay. Hydrobiologia 2010, 645, 223–234. [Google Scholar] [CrossRef]
- Li, C.; Li, P.; Feng, J.; Li, R.; Yu, H. Cytotoxicity of the venom from the nematocysts of jellyfish Cyanea nozakii Kishinouye. Toxicol. Ind. Health 2012, 28, 186–192. [Google Scholar] [CrossRef]
- Mariottini, G.L.; Giacco, E.; Pane, L. The Mauve Stinger Pelagia noctiluca (Forsskål, 1775). Distribution, ecology, toxicity and epidemiology of stings. A review. Mar. Drugs 2008, 6, 496–513. [Google Scholar]
- Mariottini, G.L.; Sottofattori, E.; Mazzei, M.; Robbiano, L.; Carli, A. Cytotoxicity of the venom of Pelagia noctiluca Forskal (Cnidaria: Scyphozoa). Toxicon 2002, 40, 695–698. [Google Scholar] [CrossRef]
- Ayed, Y.; Boussabbeh, M.; Zakhama, W.; Bouaziz, C.; Abid, S.; Hassen, B. Induction of cytotoxicity of Pelagia noctiluca venom causes reactive oxygen species generation, lipid peroxydation induction and DNA damage in human colon cancer cells. Lipids Health Dis. 2011, 10, 232. [Google Scholar] [CrossRef]
- Ayed, Y.; Chayma, B.; Hayla, A.; Abid, S.; Bacha, H. Is cell death induced by nematocysts extract of medusa Pelagia noctiluca related to oxidative stress? Environ. Toxicol. 2013, 28, 498–506. [Google Scholar] [CrossRef]
- Addad, S.; Exposito, J.-Y.; Faye, C.; Ricard-Blum, S.; Lethias, C. Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications. Mar. Drugs 2011, 9, 967–983. [Google Scholar] [CrossRef]
- Orduña-Novoa, K.; Segura-Puertas, L.; Sánchez-Rodríguez, J.; Meléndez, A.; Nava-Ruíz, C.; Rembao, D.; Santamaría, A.; Galván-Arzate, S. Possible antitumoral effect of the crude venom of Cassiopea xamachana (Cnidaria: Scyphozoa) on tumors of the central nervous system induced by N-Ethyl-N-Nitrosourea (ENU) in rats. Proc. West. Pharmacol. Soc. 2003, 46, 85–87. [Google Scholar]
- Lee, H.; Jung, E.-S.; Kang, C.; Yoon, W.D.; Kim, J.-S.; Kim, E. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity. Toxicon 2011, 58, 277–284. [Google Scholar] [CrossRef]
- Burnett, J.W.; Ordonez, J.V.; Calton, G.J. Differential toxicity of Physalia physalis (Portuguese man-o’war) nematocysts separated by flow cytometry. Toxicon 1986, 24, 514–518. [Google Scholar] [CrossRef]
- Edwards, L.P.; Whitter, E.; Hessinger, D.A. Apparent membrane pore formation by Portuguese man-of-war (Physalia physalis) venom in intact cultured cells. Toxicon 2002, 40, 1299–1305. [Google Scholar] [CrossRef]
- Diaz-Garcia, C.M.; Fuentes-Silva, D.; Sanchez-Soto, C.; Domínguez-Pérez, D.; García-Delgado, N.; Varela, C.; Mendoza-Hernández, G.; Rodriguez-Romero, A.; Castaneda, O.; Hiriart, M. Toxins from Physalia physalis (Cnidaria) raise the intracellular Ca2+ of beta-cells and promote insulin secretion. Curr. Med. Chem. 2012, 19, 5414–5423. [Google Scholar] [CrossRef]
- Zhang, M.; Fishman, Y.; Sher, D.; Zlotkin, E. Hydralysin, a novel animal group-selective paralytic and cytolytic protein from a noncnidocystic origin in Hydra. Biochemistry 2003, 42, 8939–8944. [Google Scholar] [CrossRef]
- Sun, L.-K.; Yoshii, Y.; Hyodo, A.; Tsurushima, H.; Saito, A.; Harakuni, T.; Li, Y.-P.; Nozaki, M.; Morine, N. Apoptosis induced by box jellyfish (Chiropsalmus quadrigatus) toxin in glioma and vascular endothelial cell lines. Toxicon 2002, 40, 441–446. [Google Scholar] [CrossRef]
- Winter, K.L.; Isbister, G.K.; McGowan, S.; Konstantakopoulos, N.; Seymour, J.E.; Hodgson, W.C. A pharmacological and biochemical examination of the geographical variation of Chironex fleckeri venom. Toxicol. Lett. 2010, 192, 419–424. [Google Scholar] [CrossRef]
- Saggiomo, S.L.A.; Seymour, J.E. Cardiotoxic effects of venom fractions from the Australian box jellyfish Chironex fleckeri on human myocardiocytes. Toxicon 2012, 60, 391–395. [Google Scholar] [CrossRef]
- Proksch, P.; Edrada-Ebel, R.A.; Ebel, R. Drugs from the sea—Opportunities and obstacles. Mar. Drugs 2003, 1, 5–17. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mariottini, G.L.; Pane, L. Cytotoxic and Cytolytic Cnidarian Venoms. A Review on Health Implications and Possible Therapeutic Applications. Toxins 2014, 6, 108-151. https://doi.org/10.3390/toxins6010108
Mariottini GL, Pane L. Cytotoxic and Cytolytic Cnidarian Venoms. A Review on Health Implications and Possible Therapeutic Applications. Toxins. 2014; 6(1):108-151. https://doi.org/10.3390/toxins6010108
Chicago/Turabian StyleMariottini, Gian Luigi, and Luigi Pane. 2014. "Cytotoxic and Cytolytic Cnidarian Venoms. A Review on Health Implications and Possible Therapeutic Applications" Toxins 6, no. 1: 108-151. https://doi.org/10.3390/toxins6010108
APA StyleMariottini, G. L., & Pane, L. (2014). Cytotoxic and Cytolytic Cnidarian Venoms. A Review on Health Implications and Possible Therapeutic Applications. Toxins, 6(1), 108-151. https://doi.org/10.3390/toxins6010108