Scorpions: A Presentation
Abstract
:1. Scorpions: Biology and Physiology
2. Scorpions: The Venomous Function
2.1. The Venom Gland
2.2. The Structure of the Venom Toxins
2.3. The Venom Effects
Site | Toxins | Effects |
---|---|---|
1 | Tetrodotoxin Saxitoxin μ-Conotoxin GIIIa | Blocking ionic conductance |
2 | Batrachotoxin Veratridin Aconitin | Permanent activation |
3 | Scorpion toxins-type | Inhibition of inactivation |
4 | Scorpion toxins-type | Decrease of activation threshold |
5 | Brevetoxins Ciguatoxins | Facilitation of activation and Inhibition of inactivation |
6 | d-Conotoxins | Slowing of inactivation |
7 | Pyrethroids | Decrease of activation threshold Slowing of inactivation |
Toxins | LD50 (g/kg) | Mr |
---|---|---|
Botulinic toxin | 0.00026 | 150,000 |
Batrachotoxin (amphibians) | 2 | 538 * |
Tetrodotoxin (fish) | 9 | 319 * |
Scorpions (Buthidæ) | 10 | 7,000 |
Taipoxin (Elapid snake) | 2 | 46,000 |
Notexin (Elapid snake) | 25 | 13,500 |
-neurotoxins (Elapid snake) | 75 | 7,800 |
d-tubocurarine (Plant) | 200 | 696 * |
2.4. Discussion
Author Contributions
Conflicts of Interest
References
- Vachon, M. Etudes Sur Les Scorpions; Institut Pasteur d’Algérie: El Hamma, Alger, 1952; Volume 1, p. 483. (In French) [Google Scholar]
- Huyart, N.; Calvayrac, R.; Briand, J.; Goyffon, M.; Vuillaume, M. Catalatic properties of hemocyanin in helping to account for the scorpion’s radioresistance. Comp. Biochem. Physiol. 1983, 76B, 153–159. [Google Scholar]
- Vuillaume, M.; Ducancel, F.; Calvayrac, R.; Rabilloud, T.; Hubert, M.; Goyffon, M. Correlations between the catalase-like activity and the H2O2-ATP production of hæmocyanin and its subunits; implications with the radioresistance of the scorpion Androctonus australis. Comp. Biochem. Physiol. 1989, 92B, 17–23. [Google Scholar]
- Quéinnec, E.; Gardes-Albert, M.; Goyffon, M.; Ferradini, C.; Vuillaume, M. Antioxidant activity of hemocyanin; a pulse radiolysis study. Biochim. Biophys. Acta 1990, 1041, 153–159. [Google Scholar] [CrossRef]
- Goyffon, M. Hemocyanin. Venoms. Defensins. In Scorpions of the World; Stockmann, R., Ythier, E., Eds.; NAP: Verrières-le-Buisson, France, 2010; pp. 91–111. [Google Scholar]
- Goyffon, M. Panchronisme et resistance aux agressions de l’environnement chez les scorpions. Bull. Soc. Zool. Fr. 1983, 108, 585–592. (In French) [Google Scholar]
- Cociancich, S.; Goyffon, M.; Bontems, F.; Bulet, P.; Bouet, F.; Ménez, A.; Hoffmann, J. Purification and characterization of a scorpion defensin, a 4kDa antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins. Biochem. Biophys. Res. Commun. 1993, 194, 17–22. [Google Scholar] [CrossRef]
- Goyffon, M.; Roman, V. Radioresistance of scorpions. In Scorpion Biology and Research; Brownell, P., Polis, G., Eds.; Oxford University Press: New York, NY, USA, 2001; pp. 393–405. [Google Scholar]
- Stockmann, R.; Ythier, E. Scorpions of the World; NAP: Verrières-le-Buisson, France, 2010; Volume 1, p. 565. [Google Scholar]
- Gaffin, D.D.; Bumm, L.A.; Taylor, M.S.; Popokina, N.V.; Mann, S. Scorpion fluorescence and reaction to light. Anim. Behav. 2012, 83, 429–436. [Google Scholar] [CrossRef]
- Prendini, L. Phylogeny and classification of the superfamily Scorpionoidea Latreille 1802 (Chelicerata, Scorpiones): An exemplar approach. Cladistics 2000, 16, 1–78. [Google Scholar] [CrossRef]
- Prendini, L.; Wheeler, W.C. Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing. Cladistics 2005, 21, 446–494. [Google Scholar] [CrossRef]
- Mion, G.; Larreche, S.; Goyffon, M. Aspects Cliniques et Thérapeutiques des Envenimations Graves; Urgence Pratique: Ganges, France, 2010; Volume 1, p. 255. (In French) [Google Scholar]
- Goyffon, M.; Billiald, P. Apport de l’étude structurale et immunochimique de l’hémocyanine à la systématique des scorpions. Mém. Soc. Entomol. Fr. 2002, 6, 65–72. (In French) [Google Scholar]
- Morel, G. Recherches Sur L’action de Bactéries Entomopathogènes Chez le Scorpion Buthus occitanus Am. Thesis, University of Montpellier, Montpellier, France, 1972; p. 166. [Google Scholar]
- Ehret-Sabatier, L.; Loew, D.; Goyffon, M.; Fehlbaum, P.; Hoffmann, J.A.; van Dorsselaer, A.; Bulet, P. Characterization of novel cystein-rich antimicrobial peptides from the scorpion blood. J. Biol. Chem. 1996, 271, 29537–29544. [Google Scholar] [CrossRef]
- Zhu, S.; Peigneur, S.; Gao, B.; Tytgat, J. Evolution of a neurotoxin from a defensin. Toxicon 2012, 60, 120. [Google Scholar]
- Martin-Eauclaire, M.F.; Bougis, P.E. Potassium channels blockers from the venom of Androctonus mauretanicus mauretanicus. J. Toxicol. 2012, 2012, 103608. [Google Scholar] [CrossRef]
- Tytgat, J.; Chandy, K.G.; Garcia, M.L.; Gutman, G.A.; Martin-Eauclaire, M.F.; van der Walt, J.J.; Possani, L.D. A unified nomenclature for short-chain peptides isolated from scorpion venoms: Alpha-KTx molecular subfamilies. Trends Pharmacol. Sci. 1999, 20, 444–447. [Google Scholar] [CrossRef]
- Srinavasan, K.N.; Sivaraja, V.; Huys, I.; Sasaki, T.; Cheng, B.; Kumar, T.K.; Sato, K.; Tytgat, J.; Yu, C.; San, B.C.; et al. Kappa-Hefutoxin 1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity. J. Biol. Chem. 2004, 277, 30040–30047. [Google Scholar]
- Lange, A.; Giller, K.; Hornig, S.; Martin-Eauclaire, M.F.; Pongs, O.; Becker, S.; Baldus, M. Toxin-induced conformational change in potassium channel revealed by solid-state NMR. Nature 2006, 440, 959–962. [Google Scholar] [CrossRef]
- Stehling, E.G.; Sforça, M.L.; Zanchin, N.I.T.; Oyama, S., Jr.; Pignatelli, A.; Belluzzi, O.; Polverini, E.; Corsini, R.; Spisni, A.; Pertinhez, T.A. Looking over toxin-K+ channel interactions. Clues for the structural and functional characterization of a-KTx Toxin Tc32, a Kv1.3 channel blocker. Biochemistry 2012, 51, 1885–1894. [Google Scholar] [CrossRef]
- DeBin, J.A.; Strichartz, G.R. Chloride channel inhibition by the venom of the scorpion Leiurus quinquestriatus. Toxicon 1991, 11, 1403–1408. [Google Scholar]
- DeBin, J.A.; Maggio, J.E.; Strichartz, G.R. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am. J. Physiol. 1993, 264, C361–C369. [Google Scholar]
- Fu, Y.J.; Yin, L.T.; Liang, A.H.; Zhang, C.F.; Wang, W.; Chai, B.F.; Yang, J.Y.; Fan, X.J. Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. Neurosci. Lett. 2007, 412, 62–67. [Google Scholar]
- Deshane, J.; Garner, C.C.; Sontheimer, H. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. J. Biol. Chem. 2003, 278, 4135–4144. [Google Scholar] [CrossRef]
- Shirmardi, S.P.; Shamsael, M.; Gandomkar, M.; Ghannadi-Maragheb, M. Synthesis and biodistribution study of a chlorotoxin derivative peptide labeled with 131-iodine for tumor therapy. Iran. J. Radiat. Res. 2011, 8, 243–248. [Google Scholar]
- Clavreul, A.; Guette, C.; Faguer, R.; Tétaud, C.; Boissard, A.; Lemaire, L.; Rousseau, A.; Avril, T.; Henry, C.; Coqueret, O.; et al. Glioblastoma-associated stroma cells (GASCs) from histologically normal surgical margins have a myofibroblast phenotype and angiogenic properties. J. Pathol. 2014, 233, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Sontheimer, H.W.; Ullrich, N. Method of Diagnostic and Treating Gliomas Patent EP0953153 B1, 2013.
- Mamelak, A.M.; Rosenfeld, S.; Bucholz, R.; Raubitschek, A.; Nabors, L.B.; Fiveash, J.B.; Shen, S.; Khazaeli, M.B.; Colcher, D.; Liu, A.; et al. Phase I Single-Dose study of intracavitary-administered Iodine-131-TM-601 in adults with recurrent high-grade glioma. J. Clin. Oncol. 2006, 24, 3644–3650. [Google Scholar] [CrossRef]
- Jacoby, D.B.; Dyskin, E.; Yalcin, M.; Kesavan, K.; Dahlberg, W.; Ratlif, J.; Johnson, E.W.; Mousa, S.A. Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. Anticancer Res. 2010, 20, 39–46. [Google Scholar]
- Sunagar, K.; Undheim, E.A.B.; Chan, A.H.C.; Koludarov, I.; Munoz-Gomez, S.A.; Antunes, A.; Fry, B.G. Evolution stings: The origin and diversification of scorpion toxin peptide scaffolds. Toxins 2013, 5, 2456–2487. [Google Scholar] [CrossRef]
- Zlotkin, E.; Miranda, F.; Rochat, H. Chemistry and pharmacology of Buthinæ scorpion venoms. In Arthropod Venoms; Bettini, S., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; pp. 317–369. [Google Scholar]
- Mebs, D. Animaux Venimeux et Vénéneux; Lavoisier: Cachan, France, 2006; Volume 1, p. 345. [Google Scholar]
- Clot-Faybesse, O.; Guieu, R.; Rochat, H.; Devaux, C. Toxicity during early development of the mouse nervous system of a scorpion neurotoxin active on sodium channels. Life Sci. 2000, 66, 185–192. [Google Scholar] [CrossRef]
- Chippaux, J.P.; Goyffon, M. Epidemiology of scorpionism: A global appraisal. Acta Trop. 2008, 107, 71–79. [Google Scholar] [CrossRef]
- Nicastro, G.; Franzoni, L.; de Chiara, C.; Mancin, A.C.; Giglio, J.R.; Spisni, A. Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Eur. J. Biochem. 2003, 270, 1969–1979. [Google Scholar] [CrossRef]
- Fry, B.G. From genome to “venome”: Molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 2005, 15, 403–420. [Google Scholar] [CrossRef]
- Yount, N.Y.; Kupferwasser, D.; Spisni, A.; Dutz, S.M.; Ramjan, Z.H.; Sharma, S.L; Waring, A.J.; Yeaman, M.R. Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proc. Natl. Acad. Sci. USA 2009, 106, 14972–14977. [Google Scholar]
- Whittington, C.; Papenfuss, A.T.; Bansal, P.; Torres, A.M.; Wong, E.S.; Deakin, J.E.; Graves, T.; Alsop, A.; Schatzkamer, K.; Kremitzki, C.; et al. Defensins and the convergent evolution of platypus and reptile venom genes. Genome Res. 2008, 18, 986–994. [Google Scholar] [CrossRef]
- Dufton, M.J. Venomous mammals. Pharmac. Ther. 1992, 53, 199–215. [Google Scholar] [CrossRef]
- Cao, Z.; Yu, Y.; Wu, Y.; Hao, P.; Di, Z.; He, Y.; Chen, Z.; Yang, W.; Shen, Z.; He, X.; et al. The genome of Buthus martensii reveals a unique adaptation model of arthropods. Nat. Commun. 2013, 4, 1–9. [Google Scholar]
- Andreotti, N.; Sabatier, J.M. The deciphered genome of Mesobuthus martensii uncovers the resistance mysteries of scorpion to its own venom and toxins at the ion channel level. Toxins 2013, 5, 2209–2211. [Google Scholar] [CrossRef]
- Legros, C.; Martin-Eauclaire, M.F.; Cattaert, D. The myth of scorpion suicide: Are scorpions insensitive to their own venom? J. Exp. Biol. 1998, 201, 2625–2636. [Google Scholar]
- Zhu, S.; Peigneur, S.; Gao, B.; Umetsu, Y.; Ohki, S.; Tytgat, J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014. [Google Scholar] [CrossRef]
- Bernard, C. Introduction à L’etude de La Medecine Experimentale (Introduction for the Study of Experimental Medicine); Baillière: Paris, France, 1865; Volume 1. (In French) [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Goyffon, M.; Tournier, J.-N. Scorpions: A Presentation. Toxins 2014, 6, 2137-2148. https://doi.org/10.3390/toxins6072137
Goyffon M, Tournier J-N. Scorpions: A Presentation. Toxins. 2014; 6(7):2137-2148. https://doi.org/10.3390/toxins6072137
Chicago/Turabian StyleGoyffon, Max, and Jean-Nicolas Tournier. 2014. "Scorpions: A Presentation" Toxins 6, no. 7: 2137-2148. https://doi.org/10.3390/toxins6072137
APA StyleGoyffon, M., & Tournier, J. -N. (2014). Scorpions: A Presentation. Toxins, 6(7), 2137-2148. https://doi.org/10.3390/toxins6072137