Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characterization
2.2. Zearalenone Adsorption Screening and Correlation with Physicochemical Characteristics
Sample Number | XRD Result | HCl | d-spacing (10−10 m) | CEC (cmolc kg−1) | pH | Ca2+ (cmolc kg−1) | K+ (cmolc kg−1) | Mg2+ (cmolc kg−1) | Na+ (cmolc kg−1) | Swelling (mL) | MF (%) | RH (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Zeolite | + | 9.5 | 172.9 | 8.3 | 16.8 | 102.4 | 0.8 | 24.6 | 2.1 | 94.4 | 4.6 |
2 | Sepiolite, smectite | + | 12.4 | 31.9 | 7.7 | 7.3 | 1.5 | 9.8 | 1.3 | 7.7 | 96.0 | 8.7 |
3 | Clinoptilolite | − | 10.2 | 120.3 | 7.7 | 8.4 | 58.7 | 1.2 | 10.2 | 2.5 | 97.7 | 4.9 |
4 | Zeolite | − | 12.5 | 413.5 | 10.3 | n.d. | 35.4 | 0.1 | 363.3 | 0.0 | 93.8 | 7.1 |
5 | Humic substance, quartz | − | 26.2 | 185.9 | 4.2 | 7.2 | 1.5 | 3.4 | 19.2 | 2.5 | 15.8 | 10.6 |
6 | Mixed layer montmorillonite, quartz | − | 19.1 | 51.0 | 7.7 | 10.0 | 10.7 | 3.8 | 21.8 | 2.7 | 78.6 | 3.4 |
7 | Montmorillonite | ++ | 12.8 | 82.9 | 9.8 | 12.5 | 2.8 | 4.0 | 63.8 | 43.7 | 97.1 | 10.1 |
8 | Montmorillonite | − | 15.5 | 100.5 | 3.7 | 19.2 | 1.8 | 3.0 | 0.8 | 2.2 | 95.9 | 13.3 |
9 | Sepiolite, montmorillonite, quartz (t), dolomite (t), albite (t) | + | 12.1 | 39.3 | 8.2 | 8.2 | 0.6 | 10.2 | 0.6 | 7.9 | 96.3 | 5.4 |
10 | Montmorillonite, sepiolite, quartz (t), calcite (t) | ++ | 12.4 | 56.7 | 8.5 | 16.9 | 0.6 | 8.0 | 26.9 | 9.1 | 96.9 | 9.1 |
11 | Montmorillonite, quartz (t), calcite (t), feldspars (t) | ++ | 12.6 | 64.1 | 9.3 | 19.6 | 3.0 | 6.7 | 54.3 | 31.8 | 98.3 | 11.9 |
12 | Humic substance, quartz | − | 25.9 | 166.4 | 4.4 | 1.3 | 11.5 | 0.9 | 18.4 | 2.5 | 6.0 | 12.4 |
13 | Sepiolite, montmorillonite, calcite (t), quartz (t) | + | 12.2 | 22.1 | 7.1 | 17.7 | 2.2 | 9.3 | 4.4 | 5.9 | 80.3 | 6.7 |
14 | Montmorillonite | − | 9.2 | 109.4 | 5.6 | 21.7 | 17.2 | 1.9 | 4.2 | 2.9 | 92.8 | 7.2 |
15 | Calcite, dolomite, organic material | ++ | 6.9 | 12.6 | 5.7 | 35.5 | 19.1 | 4.2 | 26.0 | 7.5 | 38.9 | 5.1 |
16 | Thenardite, montmorillonite, quartz, organic material | 14.8 | 7.8 | 4.1 | 2.3 | 26.0 | 7.0 | 131.8 | 4.0 | 27.3 | 6.4 | |
17 | Montmorillonite | − | 12.6 | 71.8 | 8.0 | 9.5 | 4.0 | 2.7 | 49.5 | 7.6 | 90.2 | 9.8 |
18 | Clinoptilolite | − | 10.2 | 176.6 | 7.4 | 15.2 | 44.7 | 2.0 | 6.0 | 2.5 | 96.3 | 4.7 |
19 | Quartz, mica, montmorillonite, kaolin | − | 14.7 | 59.7 | 7.9 | 18.1 | 1.9 | 9.0 | 0.3 | 4.3 | 95.4 | 7.9 |
20 | Mica, kaolin, quartz, montmorillonite | + | 14.7 | 59.6 | 7.9 | 14.4 | 2.5 | 8.7 | 0.6 | 3.5 | 97.0 | 9.0 |
21 | Mixed layered smectite | + | 12.4 | 23.7 | 9.9 | 13.3 | 0.7 | 19.2 | 47.7 | 24.2 | 97.5 | 7.5 |
22 | Mica, calcite, smectite | + | 15.5 | 77.9 | 8.0 | 33.9 | 1.8 | 4.1 | 0.9 | 4.3 | 88.6 | 11.4 |
23 | Montmorillonite, sepiolite, calcite (t) | ++ | 12.4 | 46.5 | 7.9 | 24.2 | 1.4 | 4.7 | 55.2 | 8.6 | 92.7 | 7.3 |
24 | Montmorillonite, mica, feldspars | − | 12.3 | 7.0 | 6.2 | 8.1 | 12.9 | 3.3 | 4.9 | 3.8 | 94.8 | 5.2 |
25 | Calcite, montmorillonite (t) | ++ | 13.1 | 26.1 | 6.6 | 55.8 | 10.7 | 2.4 | 11.6 | 3.7 | 97.0 | 3.0 |
26 | Mixed layered montmorillonite, quartz, feldspars | − | 21.5 | 27.9 | 7.7 | 9.3 | 1.4 | 2.6 | 4.9 | 2.5 | 98.0 | 2.0 |
27 | Montmorillonite | − | 12.7 | 111.7 | 9.5 | 8.7 | 1.3 | 4.0 | 69.5 | 5.7 | 86.8 | 13.2 |
Parameters | Free ZEN concentration pH 2.5 | Free ZEN concentration pH 6.5 | Free ZEN concentration pH 8.0 | Average free ZEN concentration | |
---|---|---|---|---|---|
Free ZEN concentration pH 2.5 | R | 1 | 0.887 ** | 0.874 ** | 0.948 ** |
Sig. | - | 0.000 | 0.000 | 0.000 | |
Free ZEN concentration pH 6.5 | R | 0.887 ** | 1 | 0.955 ** | 0.979 ** |
Sig. | 0.000 | - | 0.000 | 0.000 | |
Free ZEN concentration pH 8.0 | R | 0.874 ** | 0.955 ** | 1 | 0.976 ** |
Sig. | 0.000 | 0.000 | - | 0.000 | |
Average free ZEN concentration | R | 0.948 ** | 0.979 ** | 0.976 ** | 1 |
Sig. | 0.000 | 0.000 | 0.000 | - | |
d-spacing | R | −0.631 ** | −0.632 ** | −0.659 ** | −0.662 ** |
Sig. | 0.000 | 0.000 | 0.000 | 0.000 | |
Swelling | R | 0.090 | 0.122 | 0.182 | 0.137 |
Sig. | 0.654 | 0.545 | 0.364 | 0.495 | |
CEC | R | 0.319 | 0.237 | 0.266 | 0.282 |
Sig. | 0.104 | 0.234 | 0.179 | 0.153 | |
pH | R | 0.192 | 0.285 | 0.357 | 0.290 |
Sig. | 0.339 | 0.149 | 0.067 | 0.142 | |
Ca2+ | R | 0.257 | 0.258 | 0.256 | 0.266 |
Sig. | 0.205 | 0.204 | 0.207 | 0.189 | |
K+ | R | 0.394 * | 0.379 | 0.360 | 0.389 * |
Sig. | 0.042 | 0.051 | 0.065 | 0.045 | |
Mg2+ | R | −0.399 * | −0.316 | −0.227 | −0.321 |
Sig. | 0.039 | 0.108 | 0.254 | 0.102 | |
Na+ | R | 0.302 | 0.240 | 0.267 | 0.278 |
Sig. | 0.125 | 0.227 | 0.178 | 0.160 | |
RH | R | 0.082 | −0.006 | 0.055 | 0.045 |
Sig. | 0.684 | 0.977 | 0.785 | 0.824 | |
MF | R | 0.421 * | 0.419 * | 0.525 ** | 0.472 * |
Sig. | 0.029 | 0.030 | 0.005 | 0.013 |
3. Experimental Section
3.1. Mycotoxin Binders, Chemical Products and Reagents
3.2. CEC and Exchangeable Base Cations
3.3. Other Characterization Tests
3.4. Zearalenone Adsorption Screening
3.5. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wu, F. Measuring the economic impacts of Fusarium toxins in animal feeds. Anim. Feed Sci. Technol. 2007, 137, 363–374. [Google Scholar] [CrossRef]
- Jard, G.; Liboz, T.; Mathieu, F.; Guyonvarc’h, A.; Lebrihi, A. Review of mycotoxin reduction in food and feed: From prevention in the field to detoxification by adsorption or transformation. Food Addit. Contam. A 2011, 28, 1590–1609. [Google Scholar] [CrossRef] [Green Version]
- Kolosova, A.; Stroka, J. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin J. 2011, 4, 225–256. [Google Scholar] [CrossRef]
- Kabak, B.; Dobson, A.D.W. Biological strategies to counteract the effects of mycotoxins. J. Food Prot. 2009, 72, 2006–2016. [Google Scholar] [PubMed]
- Commission Regulation (EC) No 386/2009 of 12 May 2009 amending regulation (EC) No 1831/2003 of the European Parliament and of the Council as regards the establishment of a new functional group of feed additives. L 118. Available online: http://faolex.fao.org/docs/pdf/eur87494.pdf (accessed on 4 Janurary 2015).
- European Union register of feed additives pursuant to regulation (EC) no 1831/2003 appendixes 3e & 4(I). Annex I: List of additives. Available online: http://ec.europa.eu/food/food/animalnutrition/feedadditives/comm_register_feed_additives_1831-03.pdf (accessed on 4 Janurary 2015).
- Burt, R. Soil Survey Investigations Report No 45; USDA-NRCS: Lincoln, NE, USA, 2011.
- Deng, Y.J.; Velazquez, A.L.B.; Billes, F.; Dixon, J.B. Bonding mechanisms between aflatoxin B1 and smectite. Appl. Clay Sci. 2010, 50, 92–98. [Google Scholar] [CrossRef]
- Phillips, T.D.; Afriyie-Gyawu, E.; Williams, J.; Huebner, H.; Ankrah, N.A.; Ofori-Adjei, D.; Jolly, P.; Johnson, N.; Taylor, J.; Marroquin-Cardona, A.; et al. Reducing human exposure to aflatoxin through the use of clay: A review. Food Addit. Contam. 2008, 25, 134–145. [Google Scholar] [CrossRef]
- Fletcher, P.; Sposito, G. The chemical modeling of clay electrolyte interactions for montmorillonite. Clay Miner. 1989, 24, 375–391. [Google Scholar] [CrossRef]
- Chang, P.H.; Li, Z.H.; Jiang, W.T.; Jean, J.S. Adsorption and intercalation of tetracycline by swelling clay minerals. Appl. Clay Sci. 2009, 46, 27–36. [Google Scholar] [CrossRef]
- Vidal, O.; Dubacq, B. Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity. Geochim. Cosmochim. Acta 2009, 73, 6544–6564. [Google Scholar] [CrossRef]
- Morrow, C.P.; Yazaydin, A.O.; Krishnan, M.; Bowers, G.M.; Kalinichev, A.G.; Kirkpatrick, R.J. Structure, energetics, and dynamics of smectite clay interlayer hydration: Molecular dynamics and metadynamics investigation of Na-hectorite. J. Phys. Chem. C 2013, 117, 5172–5187. [Google Scholar] [CrossRef]
- Picollo, A. The Supramolecular Structure of Humic Substance, a Novel Understanding of Humus Chemistry and Implication in Soil Science. Adv. Agron. 1999, 75, 57–134. [Google Scholar]
- Kulshrestha, P.; Giese, R.F.; Aga, D.S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: Insights on factors affecting its mobility in soil. Environ. Sci. Technol. 2004, 38, 4097–4105. [Google Scholar] [CrossRef] [PubMed]
- Kanora, A.; Maes, D. The role of mycotoxins in pig reproduction: A review. Vet. Med. Czech. 2009, 54, 565–576. [Google Scholar]
- Cozzini, P.; Dellafiora, L. In silico approach to evaluate molecular interaction between mycotoxins and the estrogen receptors ligand binding domain: A case study on zearalenone and its metabolites. Toxicol. Lett. 2012, 214, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Sabater-Vilar, M.; Malekinejad, H.; Selman, M.H.J.; van der Doelen, M.A.M.; Fink-Gremmels, J. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 2007, 163, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Yiannikouris, A.; Kettunen, H.; Apajalahti, J.; Pennala, E.; Moran, C.A. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit. Contam. A 2013, 30, 1641–1650. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent advances on the use of adsorbent materials for detoxification of Fusarium mycotoxins. Food Addit. Contam. 2005, 22, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Marroquin-Cardona, A.; Deng, Y.; Taylor, J.F.; Hallmark, C.T.; Johnson, N.M.; Phillips, T.D. In vitro and in vivo characterization of mycotoxin-binding additives used for animal feeds in Mexico. Food Addit. Contam. A 2009, 26, 733–743. [Google Scholar] [CrossRef]
- Ramos, A.J.; Hernandez, E.; Pla-Delfina, J.M.; Merino, M. Intestinal absorption of zearalenone and in vitro study of non-nutritive sorbent materials. Int. J. Pharm. 1996, 128, 129–137. [Google Scholar] [CrossRef]
- Joannis-Cassan, C.; Tozlovanu, M.; Hadjeba-Medjdoub, K.; Ballet, N.; Pfohl-Leszkowicz, A. Binding of zearalenone, aflatoxin B1, and ochratoxin A by yeast-based products: A method for quantification of adsorption performance. J. Food Prot. 2011, 74, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.; Takahashi, N.; Sakao, K.; Goto, T. Adsorption of zearalenone to Japanese acid clay and influencing factors. Mycotoxin Res. 2014, 30, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Commission Recommendation of 17 August 2006 on the presence of deoxynivalenol, zearalenone, ochratoxin A, T-2 and HT-2 and fumonisins in products intended for animal feeding. L 229/7. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006H0576 (accessed on 4 January 2015).
- Chemicalize. Available online: http://www.chemicalize.org (accessed on 23 December 2014).
- Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.H.; Soper, A.K.; Greathouse, J.A. Surface geochemistry of the clay minerals. Proc. Natl. Acad. Sci. USA 1999, 96, 3358–3364. [Google Scholar] [CrossRef] [PubMed]
- Diaz, D.E.; Hagler, W.M.; Hopkins, B.A.; Whitlow, L.W. Aflatoxin binders I: In vitro binding assay for aflatoxin B1 by several potential sequestering agents. Mycopathologia 2003, 156, 223–226. [Google Scholar] [CrossRef]
- Reeuwijk, L.P.V. Procedure for Soil Analysis; International Soil Reference Information Centre: Wageningen, the Netherlands, 2002; Volume 6. [Google Scholar]
- De Baere, S.; Osselaere, A.; Devreese, M.; Vanhaecke, L.; De Backer, P.; Croubels, S. Development of a liquid-chromatography tandem mass spectrometry and ultra-high-performance liquid chromatography high-resolution mass spectrometry method for the quantitative determination of zearalenone and its major metabolites in chicken and pig plasma. Anal. Chim. Acta 2012, 756, 37–48. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Mil, T.; Devreese, M.; De Baere, S.; Van Ranst, E.; Eeckhout, M.; De Backer, P.; Croubels, S. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration. Toxins 2015, 7, 21-33. https://doi.org/10.3390/toxins7010021
De Mil T, Devreese M, De Baere S, Van Ranst E, Eeckhout M, De Backer P, Croubels S. Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration. Toxins. 2015; 7(1):21-33. https://doi.org/10.3390/toxins7010021
Chicago/Turabian StyleDe Mil, Thomas, Mathias Devreese, Siegrid De Baere, Eric Van Ranst, Mia Eeckhout, Patrick De Backer, and Siska Croubels. 2015. "Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration" Toxins 7, no. 1: 21-33. https://doi.org/10.3390/toxins7010021
APA StyleDe Mil, T., Devreese, M., De Baere, S., Van Ranst, E., Eeckhout, M., De Backer, P., & Croubels, S. (2015). Characterization of 27 Mycotoxin Binders and the Relation with in Vitro Zearalenone Adsorption at a Single Concentration. Toxins, 7(1), 21-33. https://doi.org/10.3390/toxins7010021