Ribosome-Inactivating and Related Proteins
Abstract
:1. Introduction
2. Table of RIPs from plants
Family | Species 1 | Protein | Classific. | Mw 2 | IC50 3 | Source | References |
---|---|---|---|---|---|---|---|
Adoxaceae | Sambucus ebulus L. | Ebulitin α | RIP 1 | 32 kDa | 10 ng/mL | leaves | [46] |
Ebulitin β | RIP 1 | 29 kDa | 10 ng/mL | leaves | [46] | ||
Ebulitin γ | RIP 1 | 29 kDa | 10 ng/mL | leaves | [46] | ||
Ebulin f | RIP 2 | 56 kDa | 96 ng/mL; 0.3 nM (A) 5 | green fruits | [29,47] | ||
Ebulin l | RIP 2 | 56 kDa | 8.5 ng/mL; 0.15 nM (A) 5 | leaves | [29,48,49] | ||
Ebulin r1 | RIP 2 | 56 kDa | 2.3 ng/mL | rhizomes | [49] | ||
Ebulin r2 | RIP 2 | 56 kDa | 2.3 ng/mL | rhizomes | [49] | ||
SEA | RIP 2 | 135,630 Da | 1 nM | bark | [50] | ||
SEAII | lectin | 33.5 kDa | - | rhizomes | [49] | ||
SELfd | lectin | 68 kDa | 820 ng/mL | green fruits | [47] | ||
SELld | lectin | 67,906 Da | - | leaves | [51,52] | ||
SELlm | lectin | 34,239 Da | - | young shoots | [53] | ||
Sambucus nigra L. | α-Nigritin | RIP 1 | 29 kDa | 2.44–34 ng/mL | leaves | [54] | |
β-Nigritin | RIP 1 | 40 kDa | 2.44–34 ng/mL | leaves | [54] | ||
γ-Nigritin | RIP 1 | 27.5 kDa | 2.44–34 ng/mL | leaves | [54] | ||
Nigritin f1 | RIP 1 | 24,095 Da | 100 ng/mL | green and mature fruits | [55] | ||
Nigritin f2 | RIP 1 | 23,565 Da | 100 ng/mL | mature fruits | [55] | ||
basic Nigrin b | RIP 2 | 63,469 Da | 18 pg/mL; 0.3 pM (A) 5 | bark | [56] | ||
Nigrin b = SNA-V | RIP 2 | 120 kDa | 261 pM; 0.03 nM (A) 5 | bark | [29,57,58,59] | ||
Nigrin f = SNA-Vf | RIP 2 | 120 kDa | 1.9 ng/mL; 1.8 ng/mL; 0.03 nM (A) 5 | fruits | [29,60,61,62] | ||
Nigrin l1 | RIP 2 | n.a. 4 | n.a. 4 | leaves | [63] | ||
Nigrin l2 | RIP 2 | n.a. 4 | n.a. 4 | leaves | [63] | ||
Nigrin s | RIP 2 | 57 kDa | ~1 µg/mL | seeds | [64] | ||
SNA-I | RIP 2 | 240 kDa | 150 ng/mL; 600 pM | bark | [58,65,66,67,68] | ||
SNA-I’ | RIP 2 | 120 kDa | 150 ng/mL | bark | [67,69] | ||
SNA-If | RIP 2 | 240 kDa | n.a. 4 | fruits | [69,70] | ||
SNAflu-I | RIP 2 | subunits of 30–33 kDa | n.a. 4 | inflorescen-ces | [71,72] | ||
Adoxaceae | Sambucus nigra L. | SNLRP1 | RIP 2 | 62 kDa | 0.5 µg/mL; 5.74 nM (A) 5 | bark | [29,73,74] |
SNLRP2 | RIP 2 | 60–62 kDa | n.a. 4 | bark | [74] | ||
SNA-ld | lectin | n.a. 4 | - | leaves | [63] | ||
SNA-lm | lectin | n.a. 4 | - | leaves | [63] | ||
SNA-II | lectin | 60 kDa | - | bark | [58,68,75] | ||
SNA-III | lectin | 50 kDa | - | seeds | [58,76] | ||
SNA-IV = SNA-IVf | lectin | 60 kDa | - | fruits | [58,62,77,78] | ||
SNA-IVl | lectin | n.a. 4 | - | leaves | [63] | ||
SNApol-I | lectin | subunits of 26 kDa | - | pollen | [71] | ||
SNApol-II | lectin | subunits of 20 kDa | - | pollen | [71] | ||
TrSNA-I | lectin | 22 kDa | - | bark | [70] | ||
TrSNA-If | lectin | 22 kDa | - | fruits | [70] | ||
Sambucus racemosa L. | basic racemosin b | RIP 2 | n.a. 4 | n.a. 4 | bark | [72] | |
SRA | RIP 2 | 120 kDa | n.a. 4 | bark | [72,79] | ||
SRLbm = SRAbm | lectin | 30 kDa | - | bark | [72,80] | ||
Sambucus sieboldiana (Miq.) Blume ex Graebn. | SSA = SSA-b-1 | RIP 2 | 160 kDa | 985 ng/mL; 16.4 nM (A) 5 | bark | [81,82,83] | |
Sieboldin-b = SSA-b-2 | RIP 2 | 59.4 kDa | 0.9 ng/mL; 0.015 nM (A) 5 | bark | [29,83,84] | ||
SSA-b-3 | lectin | 34,262 Da | 20–30 µg/mL | bark | [83] | ||
SSA-b-4 | lectin | 32,333 Da | 20–30 µg/mL | bark | [83] | ||
Aizoaceae | Mesembryanthe-mum crystallinum L. | RIP1 | RIP 1 | 31.6 kDa | n.a. 4 | leaves | [85] |
Amaranthaceae | Amaranthus caudatus L. | Amaranthin = ACA | lectin | 63.5 kDa | - | seeds | [86,87,88] |
Amaranthus cruentus L. | ACL | lectin | 66 kDa | - | seeds | [89] | |
Amaranthus hypochondriacus L. [Syn.: Amaranthus leucocarpus S. Watson] | A. leucocarpus lectin | lectin | 45 kDa | - | seeds | [90] | |
Amaranthus mangostanus L. | Amaramangin | RIP 1 | 29 kDa | n.a. 4 | seeds | [91] | |
Amaranthus tricolor L. | AAP-27 | RIP 1 | 27 kDa | n.a. 4 | leaves | [92] | |
Amaranthaceae | Amaranthus viridis L. | Amaranthin | RIP 1 | 30 kDa | 25 pM | leaves | [93,94] |
Beta vulgaris L. | Beetin-27 = BE27 | RIP 1 | 27,592 Da | 1.15 ng/mL | leaves | [95,96,97] | |
Beetin-29 = BE29 | RIP 1 | 29 kDa | n.a. 4 | leaves | [95,96,97] | ||
Betavulgin | RIP 1 | 30 kDa | n.a. 4 | seedlings | [98] | ||
Celosia argentea L. [Syn.: Celosia cristata L.] | CCP-25 | RIP 1 | 25 kDa | n.a. 4 | leaves | [99,100] | |
CCP-27 | RIP 1 | 27 kDa | 25 ng/mL | leaves | [99,100,101] | ||
Chenopodium album L. | CAP30 | RIP 1 | 30 kDa | 2.26 pM | leaves | [102,103] | |
Spinacia oleracea L. | SoRIP1 = BP31 | RIP 1 | 31 kDa | n.a. 4 | cell cultures | [104,105,106,107] | |
SoRIP2 | RIP 1 candidate | 36 kDa | n.a. 4 | cell cultures | [106,107] | ||
Araliaceae | Aralia elata (Miq.) Seem. | Aralin | RIP 2 | 62 kDa | n.a. 4 | shoots | [108,109] |
Panax ginseng C.A.Mey | Panaxagin | peculiar RIP 1 candidate/RNase | 52 kDa | 0.28 nM | roots | [110] | |
Panax quinquefolius L. | Quinqueginsin | peculiar RIP 1 candidate/RNase | 53 kDa | 0.26 nM | roots | [111] | |
Asparagaceae | Asparagus officinalis L. | Asparin 1 | RIP 1 | 30.5 kDa | 0.27 nM | seeds | [112,113] |
Asparin 2 | RIP 1 | 29.8 kDa | 0.15 nM | seeds | [112,113] | ||
Drimia maritima (L.) Stearn [Syn.: Charybdis maritima (L.) Speta] | Charybdin | RIP 1 | 29 kDa | 27.2 nM | bulbs | [114] | |
Muscari armeniacum Leichtlin ex Baker | Musarmin 1 | RIP 1 | 28,708 Da | 7 ng/mL | bulbs | [115] | |
Musarmin 2 | RIP 1 | 30,003 Da | 9.5 ng/mL | bulbs | [115] | ||
Musarmin 3 | RIP 1 | 27,626 Da | 4 ng/mL | bulbs | [115] | ||
Musarmin 4 | RIP 1 | 28 kDa | 1.4–8.2 ng/mL; 50–280 nM | recomb. 6 | [116] | ||
Polygonatum multiflorum (L.) All. | PMRIPm | RIP 2 | 60 kDa | n.a. 4 | leaves | [117] | |
PMRIPt | RIP 2 | 240 kDa | n.a. 4 | leaves | [117] | ||
Yucca gloriosa var. tristis Carrière [Syn.: Yucca recurvifolia Salisb.] | Yucca leaf protein = YLP | RIP 1 | 23 kDa | n.a. 4 | leaves | [118,119] | |
Basellaceae | Basella rubra L. | Basella RIP 2a | RIP 1 | 30.6 kDa | 1.70 ng/mL | seeds | [120] |
Basella RIP 2b | RIP 1 | 31.2 kDa | 1.70 ng/mL | seeds | [120] | ||
Basella RIP 3 | RIP 1 | 31.2 kDa | 1.66 ng/mL | seeds | [120] | ||
Caryophyllaceae | Agrostemma githago L. | Agrostin 2 | RIP 1 | 30.6 kDa | 0.6 nM | seeds | [121,122] |
Agrostin 5 | RIP 1 | 29.5 kDa | 0.47 nM | seeds | [121,122] | ||
Agrostin 6 | RIP 1 | 29.6 kDa | 0.57 nM | seeds | [121,122] | ||
Agrostin | RIP 1 | 27 kDa | n.a. 4 | seeds | [123] | ||
Dianthus barbatus L. | Dianthin 29 | RIP 1 | 29 kDa | 1.5 nM | leaves | [124] | |
Dianthus caryophyllus L. | Dianthin 30 | RIP 1 | 29.5 kDa | 9.15 ng/mL; 0.3 nM | leaves | [122,125,126] | |
Dianthin 32 | RIP 1 | 31.7 kDa | 3.6 ng/mL; 0.12 nM | leaves | [125,126] | ||
Dianthus chinensis L. [Syn.: Dianthus sinensis Link] | D. sinensis RIP | RIP 1 | n.a. 4 | n.a. 4 | recomb. 6 | [127] | |
Gypsophila elegans M.Bieb. | Gypsophilin | RIP 1 | 28 kDa | n.a. 4 | leaves | [128] | |
Silene chalcedonica (L.) E.H.L.Krause [Syn.: Lychnis chalcedonica L.] | Lychnin | RIP 1 | 26,131 Da | 0.17 nM | seeds | [113,129,130] | |
Silene glaucifolia Lag. [Syn.: Petrocoptis glaucifolia (Lag.) Boiss.] | Petroglaucin 1 | RIP 1 | 26.7 kDa | 6 ng/mL | whole plants | [131] | |
Petroglaucin 2 | RIP 1 | 27.5 kDa | 0.7 ng/mL | whole plants | [132] | ||
Silene laxipruinosa Mayol & Rosselló [Syn.: Petrocoptis grandiflora Rothm.] | Petrograndin | RIP 1 | 28.6 kDa | 6.6 ng/mL | whole plants | [131] | |
Saponaria ocymoides L. | Ocymoidin | RIP 1 | 30.2 kDa | 46 pM; 4.8 ng/mL | seeds | [133,134] | |
Saponaria officinalis L. | Saporin-L1 = SO-L1 | RIP 1 | 31.6 kDa | 0.25 nM | leaves | [135,136,137,138] | |
Saporin-L2 = SO-L2 | RIP 1 | 31.6 kDa | 0.54 nM | leaves | [135] | ||
Saporin-L3 = SO-L3 | RIP 1 | n.a. 4 | n.a. 4 | leaves | [135] | ||
Saporin-l = SO-l = SO-4 | RIP 1 | n.a. 4 | n.a. 4 | leaves | [139] | ||
Saporin-R1 = SO-R1 | RIP 1 | 30.2 kDa | 0.86 nM | roots | [135] | ||
Saporin-R2 = SO-R2 | RIP 1 | 30.9 kDa | 0.47 nM | roots | [135] | ||
Caryophyllaceae | Saponaria officinalis L. | Saporin-R3 = SO-R3 | RIP 1 | 30.9 kDa | 0.48 nM | roots | [135] |
SO3a | RIP 1 | 22.5 kDa | n.a. 4 | seeds | [140] | ||
SO3b | RIP 1 | 19.4 kDa | n.a. 4 | seeds | [140] | ||
Saporin-S5 = Saporin 5 = SO-S5 | RIP 1 | 30.5 kDa | 0.05 nM; 10.3 ng/mL | seeds | [112,135,141] | ||
Saporin-S6 = Saporin 6 = SO-6 = SO-S6 | RIP 1 | 28,577 Da | 0.06 nM; 0.6 ng/mL | seeds | [112,135,139,141,142,143,144,145] | ||
Saporin-S8 = SO-S8 | RIP 1 | n.a. 4 | n.a. 4 | seeds | [135] | ||
Saporin-S9 = Saporin 9 = SO-S9 | RIP 1 | 28,495 Da | 0.037 nM | seeds | [112,122,135,146] | ||
SAP-C | RIP 1 | 28.5 kDa | 125 pM | recomb. 6 | [147] | ||
SAP-S | RIP 1 | 28,560 Da | 12 pM | seeds | [147] | ||
Myosoton aquaticum (L.) Moench [Syn.: Stellaria aquatica (L.) Scop.] | Stellarin | RIP 1 | 25 kDa | 0.04 nM | leaves | [148] | |
Stellaria media (L.) Vill. | RIP Q3 | RIP 1 | 28.2 kDa | n.a. 4 | recomb. 6 | [149] | |
Vaccaria hispanica (Mill.) Rauschert [Syn.: Vaccaria pyramidata Medik.] | Pyramidatin | RIP 1 | 28.0 kDa | 89 pM; 3.6 ng/mL | seeds | [133] | |
Cucurbitaceae | Benincasa hispida (Thunb.) Cogn. | Hispin | RIP 1 | 21 kDa | 165 pM | seeds | [150] |
α-benincasin | sRIP 1 | 12 kDa | 20 pM; 0.22 ng/mL | seeds | [151] | ||
β-benincasin | sRIP 1 | 12 kDa | 320 pM; 3.4 ng/mL | seeds | [151] | ||
Bryonia cretica subsp. dioica (Jacq.) Tutin. [Syn.: Bryonia dioica L.] | Bryodin 1 = BD1 | RIP 1 | 29 kDa | 0.12 nM; 3.6 ng/mL; 7 pM | roots | [152,153] | |
Bryodin 2 | RIP 1 | 27 kDa | 9 pM | roots | [153] | ||
Bryodin-L | RIP 1 | 28.8 kDa | 0.09 nM | leaves | [113] | ||
Bryodin-R | RIP 1 | n.a. 4 | n.a. 4 | seeds | [154,155] | ||
BDA | lectin/RIP 2 like | 61 kDa | >1500 nm | roots | [73,156] | ||
Cucurbitaceae | Citrullus colocynthis (L.) Schrad. | Colocin 1 | RIP 1 | 26.3 kDa | 0.04 nM | seeds | [113] |
Colocin 2 | RIP 1 | 26.3 kDa | 0.13 nM | seeds | [113] | ||
Cucurbita foetidissima Kunth | Foetidissimin | peculiar RIP 2 | 63 kDa | 25.9 nM | roots | [157] | |
Foetidissimin II | RIP 2 | 61 kDa | 251.6 nM | roots | [158] | ||
Cucumis ficifolius A.Rich. [Syn.: Cucumis figarei Delile ex Naudin] | Cucumis figarei RIP = CF-RIP | RIP 1 candidate | n.a. 4 | n.a. 4 | recomb. 6 | [159] | |
Cucurbita maxima Duchesne | Cucurmoschin | sRIP 1 candidate | 9 kDa | 1.2 µM | seeds | [160] | |
Cucurbita moschata Duchesne [Syn.: Cucurbita moschata (Duchesne ex Lam.) Duchesne ex Poir.] | Cucurmosin | RIP 1 | 27–28 kDa | n.a. 4 | sarcocarp | [161,162,163] | |
Cucurmosin 2 | RIP 1 | 27,183 Da | n.a. 4 | sarcocarp | [164,165] | ||
C. moschata RIP | RIP 1 | 30,665 Da | 0.035 nM; 1.08 ng/mL | skinned fruit | [155] | ||
Moschatin | RIP 1 | 29 kDa | 0.26 nM | seeds | [166] | ||
PRIP 1 | RIP 1 | 31 kDa | 0.82 nM | leaves | [167] | ||
PRIP 2 | RIP 1 | 30.5 kDa | 0.79 nM | leaves | [167] | ||
α-moschin | sRIP 1 candidate | 12 kDa | 17 µM | seeds | [168] | ||
β-moschin | sRIP 1 candidate | 12 kDa | 300 nM | seeds | [168] | ||
Cucurbita pepo L. | Pepocin | RIP 1 | 26 kDa | 15.4 pM | sarcocarp | [169] | |
Cucurbita pepo var. texana (Scheele) D.S.Decker [Syn.: Cucurbita texana (Scheele) A. Gray] | Texanin | RIP 1 | 29.7 kDa | n.a. 4 | fruits | [158] | |
Gynostemma pentaphyllum (Thunb.) Makino | Gynostemmin | RIP 1 | 27 kDa | n.a. 4 | leaves and stems | [170] | |
Lagenaria siceraria (Molina) Standl. | Lagenin | RIP 1 candidate | 20 kDa | 0.21 nM | seeds | [171] | |
Luffa acutangula (L.) Roxb. | Luffaculin-1 | RIP 1 | 28 kDa | 3.6 ng/mL; 124 pM | seeds | [172,173] | |
Luffaculin-2 | RIP 1 | 28 kDa | n.a. 4 | seeds | [173] | ||
Luffangulin | sRIP 1 | 5.6 kDa | 3.5 nM | seeds | [174] | ||
Luffa acutangula fruit lectin | lectin | 48 kDa | - | fruits | [175] | ||
Cucurbitaceae | Luffa cylindrica (L.) M.Roem [Syn.: Luffa aegyptiaca Mill.] | Luffin | RIP 1 | 26 kDa | 0.42 ng/mL | seeds | [176] |
Luffin-a | RIP 1 | 27,021 Da | 1.64 ng/mL | seeds | [177,178] | ||
Luffin-b | RIP 1 | 27,275 Da | 0.84 ng/mL | seeds | [177,178] | ||
α-luffin | RIP 1 | 28 kDa | 10 ng/mL; 34.1 pM (recomb. 6) | seeds | [179,180,181] | ||
β-luffin | RIP 1 | 29 kDa | 50 ng/mL | seeds | [180,182] | ||
LRIP | RIP 1 | 30 kDa | 8 pM | seeds | [183] | ||
Luffacylin | sRIP 1 | 7.8 kDa | 0.14 nM | seeds | [184] | ||
Luffin P1 | sRIP 1 | 5226.1 Da | 0.88 nM | seeds | [185] | ||
Luffin-S | sRIP 1 candidate | 10 kDa | 0.34 nM | seeds | [186] | ||
LuffinS(1) | sRIP 1 candidate | 8 kDa | 130 nM | seeds | [187] | ||
LuffinS(2) = luffin S2 | sRIP 1 candidate | 7.8 kDa | 10 nM | seeds | [187,188] | ||
LuffinS(3) | sRIP 1 candidate | 8 kDa | 630 nM | seeds | [187] | ||
Marah oreganus (Torr. & A. Gray) Howell | MOR-I | RIP 1 | 27,989 Da | 0.063 nM | seeds | [189] | |
MOR-II | RIP 1 | 27,632 Da | 0.071 nM | seeds | [189] | ||
Momordica balsamina L. | Balsamin | RIP 1 | 28.6 kDa | 90.6 ng/mL | seeds | [190] | |
MbRIP-1 | RIP 1 | 30 kDa | n.a. 4 | seeds | [191,192] | ||
Momordin II | RIP 1 | n.a. 4 | n.a. 4 | recomb. 6 | [193] | ||
Momordica charantia L. | MAP 30 | RIP 1 | 30 kDa | 3.3 nM | seeds and fruits | [194,195] | |
α-momorcharin = α-MC = α-MMC | RIP 1 | 28,625–28,795 Da | 0.23 nM | seeds | [196,197,198,199,200,201,202,203,204] | ||
β-momorcharin = β-MC = β-MMC | RIP 1 | 29,074–29,076 Da | 0.19 nM | seeds | [196,197,198,200,201,202,203] | ||
γ-momorcharin = γ-MMC | sRIP 1 | 11.5 kDa | 55 nM | seeds | [205] | ||
δ-momorcharin = δ-MMC | RIP 1 | 30 kDa | 0.15 nM | seeds | [203] | ||
ε-momorcharin | RIP 1 candidate | 24 kDa | 170 nM | fruits | [203] | ||
Momordin | RIP 1 | 31 kDa | n.a. 4 | seeds | [206] | ||
Momordin = Momordica charantia inhibitor | RIP 1 | 23–24 kDa | 1.8 ng/mL | seeds | [207,208,209,210,211,212] | ||
Momordin II | RIP 1 | n.a. 4 | n.a. 4 | seeds | [213] | ||
Cucurbitaceae | Momordica charantia L. | Momordin-a | RIP 1 | 29.4 kDa | n.a. 4 | seeds | [214,215] |
Momordin-b | RIP 1 | 29.4 kDa | n.a. 4 | seeds | [214] | ||
Charantin | sRIP 1 | 9.7 kDa | 400 nM | seeds | [216] | ||
MCL = M. charantia lectin | lectin | 12.4 kDa | - | seeds | [217] | ||
MCL = Momordica charantia seed lectin = Momordica charantia lectin | RIP 2 | 115–124 kDa | 1.74 µg/mL; 5 µg/mL | seeds | [207,218,219,220] | ||
MCL1 | RIP 2 | 60,993 Da | 1.9 nM | seeds | [221] | ||
anti-H Lectin | lectin | 150 kDa | - | seeds | [222] | ||
Momordica agglutinin | lectin | 30 kDa | - | seeds | [223] | ||
Momordin | lectin | 22–23 kDa | - | seeds | [223] | ||
protein fraction 1 | lectin | 49 kDa | - | seeds | [224] | ||
protein fraction 2 | lectin | 49 kDa | - | seeds | [224] | ||
Momordica cochinchinensis Spreng. | Cochinin B | RIP 1 | 28 kDa | 0.36 nM | seeds | [225] | |
Momorcochin | RIP 1 | 32 kDa | n.a. 4 | tubers | [200,226] | ||
Momorcochin-S | RIP 1 | 30 kDa | 0.12 nM | seeds | [225,227] | ||
Siraitia grosvenorii (Swingle) C.Jeffrey ex A.M.Lu & Zhi Y.Zhang [Syn.: Momordica grosvenorii Swingle] | Momorgrosvin | RIP 1 | 27.7 kDa | 0.3 nM | seeds | [228] | |
Sechium edule (Jacq.) Sw. | Sechiumin | RIP 1 | 27 kDa | 0.7 nM | seeds | [229] | |
Sechium edule fruit lectin | lectin | 44 kDa | - | fruits | [230] | ||
Trichosanthes anguina L. | Trichoanguin | RIP 1 | 35 kDa | 0.08 nM | seeds | [231] | |
SGSL | lectin/RIP 2 like | 62 kDa | n.a. 4 | seeds | [232,233,234] | ||
Trichosanthes cordata Roxb. | TCA-I | lectin | 59 kDa | n.a. 4 | seeds | [235] | |
TCA-II | lectin | 52 kDa | n.a. 4 | seeds | [235] | ||
Cucurbitaceae | Trichosanthes cucumerina L. | TCSL | lectin/RIP 2 candidate | 69 kDa | n.a. 4 | seeds | [236] |
Trichosanthes cucumeroides (Ser.) Maxim. | β-trichosanthin = β-TCS | RIP 1 | 28 kDa | 2.8 ng/mL; 0.1 nM | root tubers | [200,237,238] | |
Trichosanthes kirilowii Maxim. | α-kirilowin | RIP 1 | 28.8 kDa | 1.2-1.8 ng/mL; 0.044–0.066 mM | seeds | [239] | |
β-kirilowin | RIP 1 | 27.5 kDa | 1.8 ng/mL | seeds | [240] | ||
TAP 29 | RIP 1 | 29 kDa | 3.7 nM | root tubers | [241,242] | ||
TK-35 | RIP 1 | 35,117 Da | 2.45 nM | cell cultures | [243] | ||
Trichobitacin | RIP 1 | 27,228 Da | n.a. 4 | root tubers | [244,245,246] | ||
Trichokirin | RIP 1 | 27 kDa | 0.06–0.13 nM | seeds | [247] | ||
Trichomislin = TCM | RIP 1 | 27,211 Da | 2.26 nM | recomb. 6 | [248] | ||
Trichosanthin = Trichosanthes antiviral protein = TAP = TCS = α-trichosanthin = α-TCS = GLQ223 | RIP 1 | 26–28 kDa | 6.1 ng/mL; 0.23 nM; 0.36 ng/mL; 1.31 nM | root tubers | [198,200,238,248,249,250,251,252,253,254,255,256] | ||
Trichosanthin | RIP 1 | 25 kDa | n.a. 4 | root tubers | [257] | ||
β-trichosanthin = β-TCS | RIP 1 | 26 kDa | 7 ng/mL | root tubers | [255] | ||
γ-trichosanthin = γ-TCS | RIP 1 | 26 kDa | 12 ng/mL | root tubers | [255] | ||
Trichokirin S1 | sRIP 1 | 11,426 Da | 0.7 nM | seeds | [258] | ||
S-Trichokirin | sRIP 1 | 8 kDa | 115 pM | seeds | [259] | ||
Trichosanthrip | sRIP 1 | 10,964 Da | 1.6 ng/mL | seeds | [256] | ||
TKL-1 = Trichosanthes kirilowii lectin-1 | lectin/RIP 2 candidate | 60 kDa | n.a. 4 | root tubers | [260,261] | ||
TK-I | lectin | n.a. 4 | - | root tubers | [262,263] | ||
TK-II | lectin | n.a. 4 | - | root tubers | [262,263] | ||
TK-III | lectin | n.a. 4 | - | root tubers | [262,263] | ||
Trichosanthes kirilowii lectin | lectin | 57 kDa | - | seeds | [264] | ||
Cucurbitaceae | Trichosanthes kirilowii Maximoviczvar. japonica (Miquel) Kitamura | Karasurin-A | RIP 1 | 27,215 Da | 0.1–0.3 ng/mL | root tubers | [265,266,267,268] |
Karasurin-B | RIP 1 | 27,214 Da | 0.1–0.3 ng/mL | root tubers | [267] | ||
Karasurin-C | RIP 1 | 27,401 Da | 0.1–0.3 ng/mL | root tubers | [267] | ||
Trichosanthes lepiniate | Trichomaglin | RIP 1 | 24,673 Da | 10.1 nM | root tuber | [269] | |
Trichosanthes dioica Roxb. | TDSL | lectin/RIP 2 candidate | 55 kDa | n.a. 4 | seeds | [270] | |
Trichosanthes sp. Bac Kan 8-98 | Trichobakin | RIP 1 | 27 kDa | 3.5 pM | leaves | [271] | |
Cupressaceae | Thuja occidentalis L. | Arborvitae RIP | RIP candidate | n.a. 4 | n.a. 4 | seeds | [272] |
Euphorbiaceae | Croton tiglium L. | Crotin I | RIP 1 candidate | 40 kDa | n.a. 4 | seeds | [273,274,275] |
Crotin 2 | RIP 1 | n.a. 4 | n.a. 4 | seeds | [276,277,278] | ||
Euphorbia characias L. | E. characias lectin | lectin | 80 kDa | - | latex | [279] | |
Suregada multiflora (A.Juss.) Baill. [Syn.: Gelonium multiflorum A.Juss.] | Gelonin = GAP 31 | RIP 1 | 30–31 kDa | 0.406 ng/mL; 0.32 nM | seeds | [126,280,281,282,283] | |
Hura Crepitans L. | Hura crepitans RIP | RIP 1 | 28 kDa | n.a. 4 | latex, leaves | [27,112] | |
Hura crepitans RIP-5 | RIP 1 | n.a. 4 | n.a. 4 | latex | [284] | ||
Hura crepitans latex lectin | RIP 2 | 112 kDa | - | latex | [279] | ||
Crepitin | lectin | n.a. 4 | n.a. 4 | latex | [285,286] | ||
Hurin | lectin | 70 kDa | - | seeds | [287,288] | ||
Hura crepitans seed lectin | lectin | 120 kDa | - | seeds | [286] | ||
Jatropha curcas L. | Curcin | RIP 1 | 28.2 kDa | 0.42 nM | seeds | [273,289] | |
Curcin 2 | RIP 1 | 30.1 kDa | n.a. 4 | recomb. 6 | [290,291] | ||
Curcin-L | RIP 1 | 32 kDa | 4 µg/mL | leaves | [292,293] | ||
Jc-SCRIP | RIP 1 | 38,938 Da | n.a. 4 | seed coat | [294] | ||
Manihot palmata Müll. Arg. | Mapalmin | RIP 1 | 32.3 kDa | 0.05 nM | seeds | [113] | |
Euphorbiaceae | Manihot esculenta Crantz. [Syn.: Manihot utilissima Pohl] | Manutin 1 | RIP 1 | n.a. 4 | 0.05 nM | seeds | [284,295] |
Manutin 2 | RIP 1 | n.a. 4 | 0.12 nM | seeds | [295] | ||
Ricinus communis L. | Ricin = crystalline Ricin = Ricin D | RIP 2 | 62.8 kDa | 0.14 nM (A) 5; 814 pM; 5.5 ng/mL | seeds | [59,281,296,297,298,299,300,301,302,303,304,305,306,307,308,309] | |
Ricin E | RIP 2 | 64 kDa | n.a. 4 | seeds | [310,311,312] | ||
RCA = Ricinus communis agglutinin = RCAI = RCA120 = R. communis hemagglutinin = RCB-PHA I | RIP 2 | 118–130 kDa | n.a. 4 | seeds | [303,313,314,315,316,317,318,319,320,321] | ||
RCAII = RCA60 = RCB-PHA II | RIP 2 | 60 kDa | n.a. 4 | seeds | [313,314,316,317] | ||
Ricinus communis, USA | Ricin 1 | RIP 2 | 66 kDa | n.a. 4 | seeds | [303,322] | |
Ricin 2 | RIP 2 | 66 kDa | n.a. 4 | seeds | [303,322] | ||
Ricin 3 | RIP 2 | 66 kDa | n.a. 4 | seeds | [303,322] | ||
Ricinus communis, India | Ricin I | RIP 2 | 64 kDa | n.a. 4 | seeds | [322,323] | |
Ricin II | RIP 2 | 64 kDa | n.a. 4 | seeds | [322,323] | ||
Ricin III | RIP 2 | 64 kDa | n.a. 4 | seeds | [322,323] | ||
Ricinus sanguienus, France | Ricin11 | RIP 2 | 57,805 Da | n.a. 4 | seeds | [322,324] | |
Ricin12 | RIP 2 | 62,163 Da | n.a. 4 | seeds | [322,324] | ||
Ricin2 | RIP 2 | 63,116 Da | n.a. 4 | seeds | [322,324] | ||
Fabaceae | Abrus precatorius L. | Abrin | RIP 2 | 260 kDa | 0.5 nM (A) 5 | seeds | [29,307,315,323,325,326,327,328,329,330] |
Abrin-a = Abrin C = Abrin-III | RIP 2 | 63–65.5 kDa | 60 pM (A) 5 | seeds | [331,332,333,334,335,336,337,338,339,340] | ||
Abrin-b | RIP 2 | 67 kDa | n.a. 4 | seeds | [333,334,335,338] | ||
Abrin-c = Abrin A = Abrin-I | RIP 2 | 60.1–62.5 kDa | n.a. 4 | seeds | [331,332,334,335,336,337] | ||
Abrin-d | RIP 2 | 67 kDa | n.a. 4 | seeds | [334,335,338] | ||
Abrin-II | RIP 2 | 63 kDa | n.a. 4 | seeds | [337] | ||
Fabaceae | Abrus precatorius L. | APA = Abrus precatorius agglutinin = Abrus lectin = AAG | RIP 2 | 126–134 kDa | 3.5 nM | seeds | [315,334,341,342,343,344,345] |
APA-I | RIP 2 | 130 kDa | n.a. 4 | seeds | [337,346] | ||
APA-II | RIP 2 | 128 kDa | n.a. 4 | seeds | [337] | ||
Abrus pulchellus Thwaites | Pulchellin | RIP 2 | 62 kDa | n.a. 4 | seeds | [347,348,349] | |
Pulchellin PI | RIP 2 | 61.5–63 kDa | n.a. 4 | seeds | [350] | ||
Pulchellin PII | RIP 2 | 61.5–63 kDa | n.a. 4 | seeds | [350] | ||
Pulchellin PIII | RIP 2 | 61.5–63 kDa | n.a. 4 | seeds | [350] | ||
Pisum sativum subsp. sativum L. [Syn.: Pisum sativum var. arvense (L.) Poir.] | α-pisavin | RIP 1 | 20.5 kDa | 0.5 nM | seeds | [351] | |
β-pisavin | RIP 1 | 18.7 kDa | 0.5 nM | seeds | [351] | ||
Pisum sativum var. macrocarpon | Sativin | RIP 1 candidate | 38 kDa | 14 µM | legumes | [352] | |
Iridaceae | Iris hollandica var. Professor Blaauw | IrisRIP = IRIP | RIP 1 | 28 kDa | 0.1–0.16 nM | bulbs | [353,354] |
IrisRIP.A1 | RIP 1 | 29 kDa | 0.16 nM | bulbs | [353] | ||
IrisRIP.A2 | RIP 1 | 29 kDa | 0.12 nM | bulbs | [353] | ||
IrisRIP.A3 | RIP 1 | 29 kDa | 0.10 nM | bulbs | [353] | ||
IRA | RIP 2 | 60.4 kDa | n.a. 4 | bulbs | [355] | ||
IRAb | RIP 2 | 65 kDa | n.a. 4 | bulbs | [356,357] | ||
IRAr | RIP 2 | 65 kDa | n.a. 4 | bulbs | [356] | ||
Lamiaceae | Clerodendrum aculeatum (L.) Schltdl. | CA-SRI | RIP 1 candidate | 34 kDa | <0.01 nM | leaves | [358,359] |
Clerodendrum inerme (L.) Gaertn. | CIP-29 | RIP 1 | 29 kDa | 0.548 nM; 16 ng/mL | leaves | [360,361] | |
CIP-34 | RIP 1 candidate | 34 kDa | 87.4 nM; 3 µg/mL | leaves | [360,361] | ||
Leonurus japonicus Houtt. | Leonurin | RIP candidate | n.a. 4 | n.a. 4 | seeds | [362] | |
Lauraceae | Cinnamomum bodinieri H. Lév. | Bodinierin | RIP 2 | 65 kDa | 1.2 nM (A) 5 | kernel | [363] |
Lauraceae | Cinnamomum camphora (L.) J.Presl | Camphorin | RIP 1 | 23 kDa | 0.098 nM | seeds | [364,365] |
Cinnamomin | RIP 2 | 61 kDa | 9.7 nM (A) 5 | seeds | [364,365,366,367] | ||
Cinnamomin 1 | RIP 2 | 61 kDa | n.a. 4 | seeds | [364] | ||
Cinnamomin 2 | RIP 2 | n.a. 4 | n.a. 4 | seeds | [364] | ||
Cinnamomin 3 | RIP 2 | n.a. 4 | n.a. 4 | seeds | [364] | ||
Cinphorin | sRIP 2 | 46 kDa | 1.2 nM | seeds | [367,368] | ||
Cinnamomum parthenoxylon (Jack) Meisn. [Syn.: Cinnamomum porrectum (Roxb.) Kosterm.] | Porrectin | RIP 2 | 64.5 kDa | 0.11 µM | seeds | [369] | |
Malvaceae | Abelmoschus esculentus (L.) Moench | Abelesculin | RIP 1 | 30 kDa | n.a. 4 | seeds | [370] |
Nyctaginaceae | Boerhaavia diffusa L. | Boerhaavia inhibitor | RIP 1 candidate | 16–20 kDa | n.a. 4 | roots | [371,372,373] |
Bougainvillea spectabilis Willd. | BAP I | RIP 1 | 28 kDa | n.a. 4 | roots | [374] | |
Bouganin = Bougainvillea RIP I | RIP 1 | 26.2 kDa | 10.5 ng/mL | leaves | [120,375] | ||
Bougainvillea × buttiana cv. Enid Lancester | BBP-24 | RIP 1 | 24 kDa | n.a. 4 | leaves | [376,377] | |
BBP-28 | RIP 1 | 28 kDa | n.a. 4 | leaves | [376,377] | ||
Bougainvillea × buttiana cv. Mahara | BBAP1 | RIP 1 | 35.49 kDa | n.a. 4 | leaves | [378,379] | |
Mirabilis expansa (Ruiz & Pav.) Standl. | ME1 | RIP 1 | 29,208 Da | n.a. 4 | roots | [380,381] | |
ME2 | RIP 1 | 27 kDa | n.a. 4 | roots | [380] | ||
Mirabilis jalapa L. | MAP | RIP 1 | 27,788 Da | 5.4 ng/mL | roots/seeds | [373,382,383] | |
MAP-2 | RIP 1 | 30,412 Da | 41.4 ng/mL | seeds | [383] | ||
MAP-3 | RIP 1 | 29,771 Da | 13.3 ng/mL | seeds | [383] | ||
MAP-4 | RIP 1 | 29,339 Da | 15.3 ng/mL | seeds and leaves | [383] | ||
MAP-S | RIP 1 | 27,789 Da | n.a. 4 | seeds | [146] | ||
Olacaceae | Malania oleifera Chun & S. K. Lee | Malanin | lectin/RIP 2 candidate | 61875 Da | n.a. 4 | seeds | [384] |
Olacaceae | Ximenia americana L. | Riproximin = Rpx | RIP 2 | 56 kDa | n.a. 4 | fruit kernels | [385,386] |
Rpx-I | RIP 2 | 50 kDa | n.a. 4 | fruit kernels | [386] | ||
Rpx-II | RIP 2 | 53 kDa | n.a. 4 | fruit kernels | [386] | ||
Passifloraceae | Adenia digitata (Harv.) Engl. | Modeccin = Modeccin 4B | RIP 2 | 57–63 kDa | 4 µg/mL; 2.52 µg/mL; 66 ng/mL (A) 5 | roots | [387,388,389,390] |
Modeccin 6B | RIP 2 | 57 kDa | 0.31 µg/mL | roots | [390] | ||
Adenia ellenbeckii Harms | A. ellenbeckii lectin | RIP 2 candidate | 60 kDa | 10.1 µg/mL; 1.2 µg/mL (A) 5 | caudex | [45] | |
Adenia fruticosa Burtt Davy | A. fruticosa lectin | lectin | 30 kDa | >100 µg/mL | caudex | [45] | |
Adenia glauca Schinz | A. glauca lectin | RIP 2 candidate | n.a. 4 | >10 µg/mL; >5 µg/mL (A) 5 | caudex | [45] | |
Adenia goetzei Harms (unresolved name) | A. goetzei lectin | RIP 2 | 60 kDa | 55.1 µg/mL; 0.7 µg/mL (A) 5 | caudex | [45] | |
Adenia keramanthus Harms | A. keramanthus lectin | RIP 2 candidate | 60–65 kDa | 10.0 µg/mL; 1.1 µg/mL (A) 5 | caudex | [45] | |
Adenia lanceolata Engl. | Lanceolin | RIP 2 | 60 kDa | 5.2 µg/mL; 1.1 µg/mL (A) 5 | caudex | [45,391,392] | |
Adenia racemosa W. J. de Wilde | A. racemosa lectin | lectin | 30 kDa | >400 µg/mL | caudex | [45] | |
Adenia spinosa Burtt Davy | A. spinosa lectin | RIP 2 candidate | n.a. 4 | 4.7 µg/mL; 0.8 µg/mL (A) 5 | caudex | [45] | |
Adenia stenodactyla Harms | Stenodactylin | RIP 2 | 60 kDa | 5.6 µg/mL; 0.5 µg/mL (A) 5 | caudex | [45,391,392] | |
Adenia venenata Forssk. | A. venenata lectin | RIP 2 candidate | 60 kDa | 2.4 µg/mL; 0.4 µg/mL (A) 5 | caudex | [45] | |
Adenia volkensii Harms | Volkensin | RIP 2 | 62 kDa | 5 µg/mL; 84 nM; 0.37 nM (A) 5 22 ng/mL (A) 5; 7.5 µg/mL; 0.66 µg/mL (A) 5 | roots | [45,393,394,395] | |
Phytolaccaceae | Phytolacca americana L. | α-PAP | RIP 1 | 33,068 kDa | n.a. 4 | recomb. 6 | [396,397] |
PAP = Phytolacca americana protein = pokeweed antiviral protein | RIP 1 | 29–30 kDa | 0.29 nM | leaves | [29,398,399,400,401,402,403] | ||
PAP-I | RIP 1 | 30 kDa | 2 pM | spring leaves | [404] | ||
PAP-II | RIP 1 | 30–31 kDa | 4 pM | early summer leaves | [399,400,404,405] | ||
PAP-III | RIP 1 | 30 kDa | 3 pM | late summer leaves | [404] | ||
PAP-C | RIP 1 | 29 kDa | 0.062 nM; 2 ng/mL | cell cultures | [406] | ||
PAP-H | RIP 1 | 29.5 kDa | n.a. 4 | hairy roots | [407] | ||
PAP-R | RIP 1 | 29.8 kDa | 0.05 nM | roots | [113] | ||
PAP-S | RIP 1 | 30 kDa | 36-83 nM; 1.09–2.5 ng/mL | seeds | [399,408] | ||
PAP-S1 | RIP 1 | n.a. 4 | n.a. 4 | recomb. 6 | [397] | ||
PAP-S2 | RIP 1 | n.a. 4 | n.a. 4 | recomb. 6 | [397] | ||
Phytolacca dioica L. | Diocin 1 | RIP 1 | 30,047 Da | 19.74 ng/mL; 0.658 nM | leaves of young plants | [409] | |
Diocin 2 | RIP 1 | 29,910 Da | 6.85 ng/mL; 0.229 nM | leaves of young plants | [409] | ||
PD-L1 | RIP 1 | 32,715 Da | 102 pM; 3.32 ng/mL; 8.5 pM | leaves | [410,411] | ||
PD-L2 | RIP 1 | 31,542 Da | 110 pM; 3.46 ng/mL | leaves | [410,412] | ||
PD-L3 | RIP 1 | 30,356 Da | 228 pM; 6.93 ng/mL | leaves | [410,412] | ||
PD-L4 | RIP 1 | 29185 Da | 134 pM; 3.92 ng/mL | leaves | [410,413] | ||
PD-S1 | RIP 1 | 30.9 kDa | 0.12 nM | seeds | [414] | ||
PD-S2 | RIP 1 | 29,586 Da | 0.06 nM | seeds | [414,415] | ||
PD-S3 | RIP 1 | 32 kDa | 0.08 nM | seeds | [414] | ||
Phytolaccaceae | Phytolacca dodecandra L’Hér. | Dodecandrin | RIP 1 | 29 kDa | n.a. 4 | leaves | [416,417] |
Dodecandrin C | RIP 1 | 31–32 kDa | n.a. 4 | cell cultures | [417] | ||
Phytolacca heterotepala H. Walter | Heterotepalin 4 | RIP 1 | 29,326 Da | 82 pM | leaves | [418] | |
Heterotepalin 5b | RIP 1 | 30,477 Da | 52 pM | leaves | [418] | ||
Phytolacca insularis Nakai | Insularin = PIP = Phytolacca insularis antiviral protein | RIP 1 | 31 kDa | n.a. 4 | recomb. 6 | [7,419] | |
PIP2 = P. insularis antiviral protein 2 | RIP 1 | 29.6 kDa | 0.04 nM | recomb. 6 | [420] | ||
Poaceae | Hordeum vulgare L. | Barley toxin = Barley translation inhibitor = Barley Protein Synthesis Inhibitor = BPSI = RIP 30 | RIP 1 | 30 kDa | 0.47 nM | seeds | [281,421,422,423,424] |
Barley toxin I = Barley translation inhibitor I | RIP 1 | 30 kDa | 25 ng/mL | seeds | [422] | ||
Barley toxin II = Barley translation inhibitor II = Barley Protein Synthesis Inhibitor II = BPSI II | RIP 1 | 29,836 Da | 25 ng/mL | seeds | [281,421,422,425] | ||
Barley toxin III = Barley translation inhibitor III | RIP 1 | 30 kDa | 15 ng/mL | seeds | [281,422] | ||
JIP60 | RIP 3/peculiar RIP 1 | 60 kDa | n.a. 4 | recomb. 6 | [5,426] | ||
Poaceae | Oryza sativa L. | Oryza sativa RIP | RIP 1 | 27 kDa | n.a. 4 | recomb. 6 | [427] |
Secale cereale L. | RPSI | RIP 1 | 30,171 Da | 0.42 µg/mL | seeds | [421,428] | |
Triticum aestivum L. | Tritin | RIP 1 | 30 kDa | n.a. 4 | germ | [421,429,430,431] | |
Tritin 1 | RIP 1 | 30 kDa | 250 ng/mL | whole wheat | [432] | ||
Tritin 2 | RIP 1 | 30 kDa | 250 ng/mL | whole wheat | [432] | ||
Tritin 3 | RIP 1 | 30 kDa | 250 ng/mL | whole wheat | [432] | ||
Tritin-S | RIP 1 | 32.1–32.8 kDa | n.a. 4 | seeds | [433] | ||
Tritin-L | RIP 1 | 37.0–37.9 kDa | n.a. 4 | leaves | [433] | ||
Zea mays L. | b-32 = maize RIP = maize proRIP1 | RIP 3/peculiar RIP 1 | 34 kDa | 28–60 pM; 0.7–1.5 ng/mL; 0.065 nM | seeds | [4,434,435,436,437,438] | |
Maize proRIP2 | RIP 3/peculiar RIP 1 | 31.1 kDa | n.a. 4 | recomb. 6 | [436,437] | ||
Ranunculaceae | Eranthis hyemalis (L.) Salisb. | EHL | RIP 2 | 62 kDa | n.a. 4 | root tubers | [439,440] |
Santalaceae | Phoradendron californicum Nutt. | PCL | RIP 2 | 69 kDa | n.a. 4 | n.n | [441] |
Viscum album L. (Himalayan mistletoe) | HmRip | RIP 2 | 65 kDa | n.a. 4 | leaves | [442,443,444] | |
HmRip 1 | RIP 2 | 65 kDa | n.a. 4 | leaves | [442,443,444] | ||
HmRip 2 | RIP 2 | 65 kDa | n.a. 4 | leaves | [442,443,444] | ||
HmRip 3 | RIP 2 | 65 kDa | n.a. 4 | leaves | [442,443,444] | ||
HmRip 4 | RIP 2 | 65 kDa | n.a. 4 | leaves | [442,443,444] | ||
Viscum album L. (European mistletoe) | ML-I = Mistletoe lectin I = Viscumin = Eu-ML = EML-1 = VAA-I | RIP 2 | 115–125 kDa | 2.6 µg/mL; 0.21 µg/mL (A) 5; 3.7 pM (A) 5 | leaves | [234,445,446,447,448,449,450,451,452,453,454] | |
ML-II = Mistletoe lectin II = VAA-II | RIP 2 | 60–64 kDa | n.a. 4 | leaves | [448,450,451,452] | ||
ML-III = Mistletoe lectin III = VAA-III | RIP 2 | 50–61 kDa | n.a. 4 | leaves | [448,450,451,452] | ||
Santalaceae | Viscum articulatum Burm. f. | Articulatin-D | RIP 2 | 66 kDa | n.a. 4 | whole plant | [455] |
Viscum coloratum (Kom.) Nakai [Syn.: Viscum album subsp. coloratum Kom.] | KML | RIP 2 | n.a. 4 | n.a. 4 | leaves | [456] | |
KML-C | RIP 2 | 59.5 kDa | n.a. 4 | leaves | [454,457] | ||
KML-IIL | RIP 2 | 60 kDa | n.a. 4 | leaves | [457] | ||
KML-IIU | RIP 2 | 64 kDa | n.a. 4 | leaves | [457] | ||
VCA | RIP 2 | 60 kDa | n.a. 4 | leaves | [458,459] | ||
Solanaceae | Nicotiana tabacum L. | CIP31 | RIP-like protein | 31 kDa | n.a. 4 | leaves | [460] |
TRIP | RIP 1 candidate | 26 kDa | 100 ng/mL | leaves | [461] | ||
Thymelaeaceae | Phaleria macrocarpa (Scheff.) Boerl. | P. macrocarpa RIP | RIP candidate | n.a. 4 | n.a. 4 | seeds | [462] |
3. Exceptions Prove the Rule
3.1. Small RIPs
Protein | Source | Mw | Classification | References |
---|---|---|---|---|
α-benincasin | Benincasa hispida (Cucurbitaceae) | 12 kDa | sRIP 1 | [151] |
β-benincasin | Benincasa hispida (Cucurbitaceae) | 12 kDa | sRIP 1 | [151] |
Charantin | Momordica charantia (Cucurbitaceae) | 9.7 kDa | sRIP 1 | [216] |
Cinphorin | Cinnamomum camphora (Lauraceae) | 46 kDa | sRIP 2 | [367,368] |
Luffacylin | Luffa cylindrica (Cucurbitaceae) | 7.8 kDa | sRIP 1 | [184] |
Luffangulin | Luffa acutangula (Cucurbitaceae) | 5.6 kDa | sRIP 1 | [174] |
Luffin P1 | Luffa cylindrica (Cucurbitaceae) | 5226.1 Da | sRIP 1 | [185] |
γ-momorcharin | Momordica charantia (Cucurbitaceae) | 11.5 kDa | sRIP 1 | [205] |
S-trichokirin | Trichosanthes kirilowii (Cucurbitaceae) | 8 kDa | sRIP 1 | [259] |
Trichokirin S1 | Trichosanthes kirilowii (Cucurbitaceae) | 11426 Da | sRIP 1 | [258] |
Trichosanthrip | Trichosanthes kirilowii (Cucurbitaceae) | 10964 Da | sRIP 1 | [256] |
Protein | Source | Mw | IC50 | Classification | References |
---|---|---|---|---|---|
A. ellenbeckii lectin | Adenia ellenbeckii (Passifloraceae) | 60 kDa | 10.1 µg/mL; 1.2 µg/mL | RIP 2 candidate | [45] |
A. glauca lectin | Adenia glauca (Passifloraceae) | n.a. | >10 µg/mL; >5 µg/mL | RIP 2 candidate | [45] |
A. keramanthus lectin | Adenia keramanthus (Passifloraceae) | 60–65 kDa | 10.0 µg/mL; 1.1 µg/mL | RIP 2 candidate | [45] |
A. spinosa lectin | Adenia spinosa (Passifloraceae) | n.a. | 4.7 µg/mL; 0.8 µg/mL | RIP 2 candidate | [45] |
A. venenata lectin | Adenia venenata (Passifloraceae) | 60 kDa | 2.4 µg/mL; 0.4 µg/mL | RIP 2 candidate | [45] |
Arborvitae RIP | Thuja occidentalis (Cupressaceae) | n.a. | n.a. | RIP candidate | [272] |
BDA | Bryonia cretica subsp. dioica (Cucurbitaceae) | 61 kDa | >1500 nm | RIP 2-like lectin | [73,156] |
Boerhaavia inhibitor | Boerhaavia diffusa (Nyctaginaceae) | 16–20 kDa | n.a. | RIP 1 candidate | [371,372,373] |
CA-SRI | Clerodendrum aculeatum (Lamiaceae) | 34 kDa | <0.01 nM | RIP 1 candidate | [358,359] |
CF-RIP | Cucumis ficifolius (Cucurbitaceae) | n.a. | n.a. | RIP 1 candidate | [159] |
CIP-34 | Clerodendrum inerme (Lamiaceae) | 34 kDa | 87.4 nM; 3 µg/mL | RIP 1 candidate | [360,361] |
CIP31 | Nicotiana tabacum (Solanaceae) | 31 kDa | n.a. | RIP 1-like protein | [460] |
Crotin I | Croton tiglium (Euphorbiaceae) | 40 kDa | n.a. | RIP 1 candidate | [273,275] |
Cucurmoschin | Cucurbita maxima (Cucurbitaceae) | 9 kDa | 1.2 µM | small RIP 1 candidate | [160] |
Foetidissimin | Cucurbita foetidissima (Cucurbitaceae) | 63 kDa | 25.9 nM | peculiar RIP 2 | [157] |
Lagenin | Lagenaria siceraria (Cucurbitaceae) | 20 kDa | 0.21 nM | RIP 1 candidate | [171] |
Leonurin | Leonurus japonicus (Laminariaceae) | n.a. | n.a. | RIP candidate | [362] |
Luffin-S | Luffa cylindrica (Cucurbitaceae) | 10 kDa | 0.34 nM | small RIP 1 candidate | [186] |
LuffinS(1) | Luffa cylindrica (Cucurbitaceae) | 8 kDa | 130 nM | small RIP 1 candidate | [187] |
LuffinS(2) = luffin S2 | Luffa cylindrica (Cucurbitaceae) | 7.8 kDa | 10 nM | small RIP 1 candidate | [187,188] |
LuffinS(3) | Luffa cylindrica (Cucurbitaceae) | 8 kDa | 630 nM | small RIP 1 candidate | [187] |
Malanin | Malania oleifera (Olacaceae) | 61,875 Da | n.a. | lectin/RIP 2 candidate | [384] |
ε-momorcharin | Momordica charantia (Cucurbitaceae) | 24 kDa | 170 nM | RIP 1 candidate | [203] |
α-moschin | Cucurbita moschata (Cucurbitaceae) | 12 kDa | 17 µM | small RIP 1 candidate | [168] |
β-moschin | Cucurbita moschata (Cucurbitaceae) | 12 kDa | 300 nM | small RIP 1 candidate | [168] |
Panaxagin | Panax ginseng (Araliaceae) | 52 kDa | 0.28 nM | peculiar RIP 1 candidate/RNase | [110] |
P. macrocarpa RIP | Phaleria macrocarpa (Thymelaceae) | n.a. | n.a. | RIP candidate | [462] |
Quinqueginsin | Panax quinquefolius (Araliaceae) | 53 kDa | 0.26 nM | peculiar RIP 1 candidate/RNase | [111] |
Sativin | Pisum sativum var. macrocarpon (Fabaceae) | 38 kDa | 14 µM | RIP 1 candidate | [352] |
SGSL | Trichosanthes anguina (Cucurbitaceae) | 62 kDa | n.a. | RIP 2-like lectin | [234] |
SoRIP2 | Spinacia oleraceae (Amaranthaceae) | 36 kDa | n.a. | RIP 1 candidate | [106,107] |
TCSL | Trichosanthes cucumerina (Cucurbitaceae) | 69 kDa | n.a. | lectin/RIP 2 candidate | [236] |
TDSL | Trichosanthes dioica (Cucurbitaceae) | 55 kDa | n.a. | lectin/RIP 2 candidate | [270] |
TKL-1 | Trichosanthes kirilowii (Cucurbitaceae) | 60 kDa | n.a. | lectin/RIP 2 candidate | [260] |
TRIP | Nicotiana tabacum (Solanaceae) | 26 kDa | 100 ng/mL | RIP 1 candidate | [461] |
3.2. RIP Candidates and RIP-Like Proteins
3.3. Dimeric, Tetrameric, and Octameric Type 2 RIPs and Dimeric Lectins
Structure | Protein | Source | Mw | References |
---|---|---|---|---|
Octameric [A-s-s-B-s-s-B-s-s-A]2 | SNA-I | Sambucus nigra (Adoxaceae) | 240 kDa | [66,69] |
SNA-If | Sambucus nigra (Adoxaceae) | 240 kDa | [69] | |
Octameric [A-s-s-B]4 | Abrin | Abrus precatorius (Fabaceae) | 260 kDa | [328] |
PMRIPt | Polygonatum multiflorum (Asparagaceae) | 240 kDa | [117] | |
Tetrameric [A-s-s-B-s-s-B-s-s-A] | SEA | Sambucus ebulus (Adoxaceae) | 135,630 Da | [50] |
SNAflu-I | Sambucus nigra (Adoxaceae) | subunits of 30–33 kDa | [71,72] | |
SRA | Sambucus sieboldiana (Adoxaceae) | 120 kDa | [79] | |
SSA | Sambucus sieboldiana (Adoxaceae) | 160 kDa | [81] | |
Tetrameric [A-s-s-B]2 | APA | Abrus precatorius (Fabaceae) | 126–134 kDa | [315,341,342,345] |
Hura crepitans latex lectin | Hura crepitans (Euphorbiaceae) | 112 kDa | [279] | |
MCL | Momordica charantia (Cucurbitaceae) | 115–124 kDa | [207,218,219,220] | |
ML-I | Viscum album (Santalaceae) | 115–125 kDa | [445,447,450,451,452] | |
Nigrin b | Sambucus nigra (Adoxaceae) | 120 kDa | [58] | |
Nigrin f | Sambucus nigra (Adoxaceae) | 120 kDa | [62] | |
SNA-I’ | Sambucus nigra (Adoxaceae) | 120 kDa | [67] | |
Tetrameric [A-s-s-B]α[A-s-s-B]β | RCA | Ricinus communis (Euphorbiaceae) | 118–130 kDa | [316,323] |
Homodimeric lectins [B]2 | E. characias lectin | Euphorbia characias (Euphorbiaceae) | 80 kDa | [279] |
Luffa acutangula fruit lectin | Luffa acutangula (Cucurbitaceae) | 48 kDa | [175] | |
Protein fraction 1 | Momordica charantia (Cucurbitaceae) | 49 kDa | [224] | |
Protein fraction 2 | Momordica charantia (Cucurbitaceae) | 49 kDa | [224] | |
Sechium edule fruit lectin | Sechium edule (Cucurbitaceae) | 44 kDa | [230] | |
SELld | Sambucus ebulus (Adoxaceae) | 67,906 Da | [52] | |
SELfd | Sambucus ebulus (Adoxaceae) | 68 kDa | [47] | |
SNAld | Sambucus nigra (Adoxaceae) | n.a. | [63] |
3.4. Non-Toxic Type 2 RIPs
3.5. Demotion of Some RIPs
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Endo, Y.; Mitsui, K.; Motizuki, M.; Tsurugi, K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J. Biol. Chem. 1987, 262, 5908–5912. [Google Scholar] [PubMed]
- Barbieri, L.; Valbonesi, P.; Bondioli, M.; Alvarez, M.L.; dal Monte, P.; Landini, M.P.; Stirpe, F. Adenine glycosylase activity in mammalian tissues: An equivalent of ribosome-inactivating proteins. FEBS Lett. 2001, 505, 196–197. [Google Scholar] [CrossRef] [PubMed]
- Kurinov, I.V.; Rajamohan, F.; Venkatachalam, T.K.; Uckun, F.M. X-ray crystallographic analysis of the structural basis for the interaction of pokeweed antiviral protein with guanine residues of ribosomal RNA. Protein Sci. 1999, 8, 2399–2405. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.A.; Morgan, A.E.; Hey, T.D. Characterization and molecular cloning of a proenzyme form of a ribosome-inactivating protein from maize. Novel mechanism of proenzyme activation by proteolytic removal of a 2.8-kilodalton internal peptide segment. J. Biol. Chem. 1991, 266, 23422–23427. [Google Scholar] [PubMed]
- Reinbothe, S.; Reinbothe, C.; Lehmann, J.; Becker, W.; Apel, K.; Parthier, B. Jip60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc. Natl. Acad. Sci. USA 1994, 91, 7012–7016. [Google Scholar] [CrossRef] [PubMed]
- Rustgi, S.; Pollmann, S.; Buhr, F.; Springer, A.; Reinbothe, C.; von Wettstein, D.; Reinbothe, S. Jip60-Mediated, jasmonate- and senescence-induced molecular switch in translation toward stress and defense protein synthesis. Proc. Natl. Acad. Sci. USA 2014, 111, 14181–14186. [Google Scholar] [CrossRef] [PubMed]
- Girbés, J.T.; Ferreras, J.M.; Arias, F.J.; Stirpe, F. Description, distribution, activity and phylogenetic relationship of ribosome-inactivating proteins in plants, fungi and bacteria. Mini Rev. Med. Chem. 2004, 4, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F. Ribosome-inactivating proteins. Toxicon 2004, 44, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-S.; Liu, W.-Y. Progress in topography of ribosomal RNA and RNA N-glycosidase research (ii). Prog. Biochem. Biophys. 1994, 21, 113–117. [Google Scholar]
- Zhou, K.-J.; Fu, Z.-J.; Chen, M.-H.; Qiu, W.; Pan, K.-Z. Crystal structure of crotin ii at 2.5 å resolution. Chin. J. Struct. Chem. 1997, 21, 23–27. [Google Scholar]
- Stirpe, F. Ribosome-inactivating proteins: From toxins to useful proteins. Toxicon 2013, 67, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-Y.; Ramamoorthy, R.; Bhalla, R.; Luan, H.-F.; Venkatesh, P.N.; Cai, M.; Ramachandran, S. Genome-wide survey of the rip domain family in oryza sativa and their expression profiles under various abiotic and biotic stresses. Plant Mol. Biol. 2008, 67, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.S.; Yang, J.H.; Liu, W.Y. Isolation and enzymatic characterization of lamjapin, the first ribosome-inactivating protein from cryptogamic algal plant (Laminaria japonica a). Eur. J. Biochem. 2002, 269, 4746–4752. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Ng, T.B. Isolation of pleuturegin, a novel ribosome-inactivating protein from fresh sclerotia of the edible mushroom pleurotus tuber-regium. Biochem. Biophys. Res. Commun. 2001, 288, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Ng, T.B. First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophys. 2001, 393, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.K.; Ng, T.B. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom hypsizigus marmoreus. Biochem. Biophys. Res. Commun. 2001, 285, 1071–1075. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Ng, T.B. Flammulin: A novel ribosome-inactivating protein from fruiting bodies of the winter mushroom flammulina velutipes. Biochem. Cell Biol. 2000, 78, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.H.; Wang, H.X.; Ng, T.B. Marmorin, a new ribosome inactivating protein with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the mushroom Hypsizigus marmoreus. Appl. Microbiol. Biotechnol. 2008, 81, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.Z.; Yu, M.M.; Ooi, L.S.; Ng, T.B.; Chang, S.T.; Sun, S.S.; Ooi, V.E. Isolation and characterization of a type 1 ribosome-inactivating protein from fruiting bodies of the edible mushroom (Volvariella volvacea). J. Agric. Food Chem. 1998, 46, 788–792. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.E.; Ussery, M.A.; Leppla, S.H.; Rothman, S.W. Inhibition of protein synthesis by shiga toxin: Activation of the toxin and inhibition of peptide elongation. FEBS Lett. 1980, 117, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Hauf, N.; Chakraborty, T. Suppression of nf-kappa b activation and proinflammatory cytokine expression by shiga toxin-producing Escherichia coli. J. Immunol. 2003, 170, 2074–2082. [Google Scholar] [CrossRef] [PubMed]
- Shih, N.R.; McDonald, K.A.; Jackman, A.P.; Girbés, T.; Iglesias, R. Bifunctional plant defence enzymes with chitinase and ribosome inactivating activities from Trichosanthes kirilowii cell cultures. Plant Sci. 1997, 130, 145–150. [Google Scholar] [CrossRef]
- Li, X.D.; Chen, W.F.; Liu, W.Y.; Wang, G.H. Large-scale preparation of two new ribosome-inactivating proteins—Cinnamomin and camphorin from the seeds of Cinnamomum camphora. Protein Expr. Purif. 1997, 10, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, A.; Chambery, A.; di Maro, A.; Mastroianni, A.; Parente, A.; Berisio, R. Crystallization and preliminary X-ray diffraction analysis of pd-l1, a highly glycosylated ribosome inactivating protein with dnase activity. Protein Pept. Lett. 2007, 14, 407–409. [Google Scholar] [CrossRef] [PubMed]
- Lombard, S.; Helmy, M.E.; Pieroni, G. Lipolytic activity of ricin from ricinus sanguineus and ricinus communis on neutral lipids. Biochem. J. 2001, 358, 773–781. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Battelli, M.G.; Stirpe, F. Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta 1993, 1154, 237–282. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Barbieri, L.; Gorini, P.; Valbonesi, P.; Bolognesi, A.; Polito, L. Activities associated with the presence of ribosome-inactivating proteins increase in senescent and stressed leaves. FEBS Lett. 1996, 382, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.Y.; Bhalla, R.; Ramamoorthy, R.; Luan, H.F.; Venkatesh, P.N.; Cai, M.; Ramachandran, S. Over-expression of osrip18 increases drought and salt tolerance in transgenic rice plants. Transgenic Res. 2012, 21, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Ferreras, J.M.; Citores, L.; Iglesias, R.; Jiménez, P.; Girbés, T. Sambucus ribosome-inactivating proteins and lectins. In Toxic Plant Proteins; Lord, J.M., Hartley, M.R., Eds.; Springer: Berlin, Heidelberg, Germany, 2010; Volume 18, pp. 107–131. [Google Scholar]
- Byers, V.S.; Levin, A.S.; Waites, L.A.; Starrett, B.A.; Mayer, R.A.; Clegg, J.A.; Price, M.R.; Robins, R.A.; Delaney, M.; Baldwin, R.W.; et al. A phase i/ii study of trichosanthin treatment of HIV disease. Aids 1990, 4, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Fracasso, G.; Bellisola, G.; Castelletti, D.; Tridente, G.; Colombatti, M. Immunotoxins and other conjugates: Preparation and general characteristics. Mini Rev. Med. Chem. 2004, 4, 545–562. [Google Scholar] [CrossRef] [PubMed]
- Kreitman, R.J. Immunotoxins for targeted cancer therapy. AAPS J. 2006, 8, E532–E551. [Google Scholar] [CrossRef] [PubMed]
- Gilabert-Oriol, R.; Weng, A.; von Mallinckrodt, B.; Melzig, M.F.; Fuchs, H.; Thakur, M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: A lethal cocktail with tumor specific efficacy. Curr. Pharm. Des. 2014, 20, 6584–6643. [Google Scholar] [CrossRef] [PubMed]
- Hebestreit, P.; Weng, A.; Bachran, C.; Fuchs, H.; Melzig, M.F. Enhancement of cytotoxicity of lectins by saponinum album. Toxicon 2006, 47, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Heisler, I.; Sutherland, M.; Bachran, C.; Hebestreit, P.; Schnitger, A.; Melzig, M.F.; Fuchs, H. Combined application of saponin and chimeric toxins drastically enhances the targeted cytotoxicity on tumor cells. J. Control. Release 2005, 106, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Bachran, C.; Durkop, H.; Sutherland, M.; Bachran, D.; Muller, C.; Weng, A.; Melzig, M.F.; Fuchs, H. Inhibition of tumor growth by targeted toxins in mice is dramatically improved by saponinum album in a synergistic way. J. Immunother. 2009, 32, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Bottger, S.; Westhof, E.; Siems, K.; Melzig, M.F. Structure-activity relationships of saponins enhancing the cytotoxicity of ribosome-inactivating proteins type i (rip-i). Toxicon 2013, 73, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Weng, A.; Jenett-Siems, K.; Gorick, C.; Melzig, M.F. Enhancement of cytotoxicity of ribosome-inactivating-protein type i by saponinum album is not based on stimulation of phagocytosis. J. Pharm. Pharmacol. 2008, 60, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Weng, A.; Bachran, C.; Fuchs, H.; Melzig, M.F. Soapwort saponins trigger clathrin-mediated endocytosis of saporin, a type I ribosome-inactivating protein. Chem. Biol. Interact. 2008, 176, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Weng, A.; Thakur, M.; von Mallinckrodt, B.; Beceren-Braun, F.; Gilabert-Oriol, R.; Wiesner, B.; Eichhorst, J.; Bottger, S.; Melzig, M.F.; Fuchs, H.; et al. Saponins modulate the intracellular trafficking of protein toxins. J. Control. Release 2012, 164, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, K.; Boston, R.S. Ribosome-inactivating proteins: A plant perspective. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 785–816. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Hao, Q.; van Damme, E.J. Ribosome-inactivating proteins from plants: More than RNA N-glycosidases? FASEB J. 2001, 15, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Battelli, M.G. Ribosome-inactivating proteins: Progress and problems. Cell. Mol. Life Sci. 2006, 63, 1850–1866. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Kaur, I.; Perugini, M.A.; Gupta, R.C. Ribosome-inactivating proteins: Current status and biomedical applications. Drug Discov. Today 2012, 17, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, E.; Lubelli, C.; Polito, L.; Barbieri, L.; Bolognesi, A.; Stirpe, F. Ribosome-inactivating proteins and other lectins from Adenia (passifloraceae). Toxicon 2005, 46, 658–663. [Google Scholar] [CrossRef] [PubMed]
- De Benito, F.M.; Citores, L.; Iglesias, R.; Ferreras, J.M.; Soriano, F.; Arias, J.; Mendez, E.; Girbes, T. Ebulitins: A new family of type 1 ribosome-inactivating proteins (rRNA N-glycosidases) from leaves of Sambucus ebulus L. That coexist with the type 2 ribosome-inactivating protein ebulin 1. FEBS Lett. 1995, 360, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Argueso, P.; Jimenez, P.; Mendez, E.; Girbes, T. Presence of polymerized and free forms of the non-toxic type 2 ribosome-inactivating protein ebulin and a structurally related new homodimeric lectin in fruits of Sambucus ebulus L. Planta 1998, 204, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Pascal, J.M.; Day, P.J.; Monzingo, A.F.; Ernst, S.R.; Robertus, J.D.; Iglesias, R.; Perez, Y.; Ferreras, J.M.; Citores, L.; Girbes, T.; et al. 2.8-a crystal structure of a nontoxic type-ii ribosome-inactivating protein, ebulin l. Proteins 2001, 43, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Argueso, P.; Jimenez, P.; Testera, A.; Camafeita, E.; Mendez, E.; Girbes, T.; et al. Characterization of a new non-toxic two-chain ribosome-inactivating protein and a structurally-related lectin from rhizomes of dwarf elder (Sambucus ebulus L.). Cell. Mol. Biol. 1997, 43, 485–499. [Google Scholar] [PubMed]
- Iglesias, R.; Citores, L.; Ferreras, J.M.; Perez, Y.; Jimenez, P.; Gayoso, M.J.; Olsnes, S.; Tamburino, R.; di Maro, A.; Parente, A.; et al. Sialic acid-binding dwarf elder four-chain lectin displays nucleic acid N-glycosidase activity. Biochimie 2010, 92, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Benitez, J.; Rojo, M.A.; Munoz, R.; Ferreras, J.M.; Jiménez, P.; Girbés, T. Design and cytotoxicity analysis of a conjugate containing the new dgalactose-binding lectin selld and the non-toxic type 2 ribosome-inactivating protein nigrin b. Lett. Drug Des. Discov. 2004, 1, 361–367. [Google Scholar] [CrossRef]
- Rojo, M.A.; Citores, L.; Arias, F.J.; Ferreras, J.M.; Jimenez, P.; Girbes, T. Cdna molecular cloning and seasonal accumulation of an ebulin l-related dimeric lectin of dwarf elder (Sambucus ebulus L.) leaves. Int. J. Biochem. Cell Biol. 2003, 35, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Citores, L.; Rojo, M.A.; Jimenez, P.; Ferreras, J.M.; Iglesias, R.; Aranguez, I.; Girbes, T. Transient occurrence of an ebulin-related D-galactose-lectin in shoots of Sambucus ebulus L. Phytochemistry 2008, 69, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Girbés, J.T.; de Benito, F.M.; Citores, L.; Iglesias, R.; Ferreras, J.M. Alpha-, Beta- and Gamma-Nigritins, Their Purification from sambucus nigra, and Their Use for Inhibition of Ribosomes. Patent No. Es 2095190 a1, 1 February 1997. [Google Scholar]
- De Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Citores, L.; Camafeita, E.; Mendez, E.; Girbes, T. Constitutive and inducible type 1 ribosome-inactivating proteins (rips) in elderberry (Sambucus nigra L.). FEBS Lett. 1998, 428, 75–79. [Google Scholar] [CrossRef] [PubMed]
- De Benito, F.M.; Citores, L.; Iglesias, R.; Ferreras, J.M.; Camafeita, E.; Mendez, E.; Girbes, T. Isolation and partial characterization of a novel and uncommon two-chain 64-kda ribosome-inactivating protein from the bark of elder (Sambucus nigra L.). FEBS Lett. 1997, 413, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Girbés, J.T.; Citores, L.; Ferreras, J.M.; Rojo, M.A.; Iglesias, R.; Munoz, R.; Arias, F.J.; Calonge, M.; Garcia, J.R.; Mendez, E.; et al. Isolation and partial characterization of nigrin b, a non-toxic novel type 2 ribosome-inactivating protein from the bark of Sambucus nigra L. Plant Mol. Biol. 1993, 22, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, E.J.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. Characterization and molecular cloning of sambucus nigra agglutinin v (nigrin b), a galnac-specific type-2 ribosome-inactivating protein from the bark of elderberry (Sambucus nigra). Eur. J. Biochem. 1996, 237, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Battelli, M.G.; Citores, L.; Buonamici, L.; Ferreras, J.M.; de Benito, F.M.; Stirpe, F.; Girbes, T. Toxicity and cytotoxicity of nigrin b, a two-chain ribosome-inactivating protein from Sambucus nigra: Comparison with ricin. Arch. Toxicol. 1997, 71, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M.; Jiménez, P.; Argüeso, P.; Farias, G.; Méndez, E.; Girbés, T. Isolation and characterization of a new non-toxic two-chain ribosome-inactivating protein from fruits of elder (Sambucus nigra L.). J. Exp. Bot. 1996, 47, 1577–1585. [Google Scholar] [CrossRef]
- Girbés, T.; Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M. A non-toxic two-chain ribosome-inactivating protein co-exists with a structure-related monomeric lectin (sna iii) in elder (Sambucus nigra) fruits. Biochem. J. 1996, 315, 343–344. [Google Scholar] [PubMed]
- Van Damme, E.J.; Roy, S.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. The major elderberry (Sambucus nigra) fruit protein is a lectin derived from a truncated type 2 ribosome-inactivating protein. Plant J. 1997, 12, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Ferreras, J.M.; Citores, L.; de Benito, F.M.; Arias, F.J.; Rojo, M.A.; Munoz, R.; Iglesias, R. Ribosome-inactivating proteins and lectins from Sambucus. Curr. Top. Phytochem. 2000, 3, 113–128. [Google Scholar]
- Citores, L.; Iglesias, R.; Muñoz, R.; Ferreras, J.M.; Jimenez, P.; Girbes, T. Elderberry (Sambucus nigra L.) seed proteins inhibit protein synthesis and display strong immunoreactivity with rabbit polyclonal antibodies raised against the type 2 ribosome-inactivating protein nigrin b. J. Exp. Bot. 1994, 45, 513–516. [Google Scholar] [CrossRef]
- Broekaert, W.F.; Nsimba-Lubaki, M.; Peeters, B.; Peumans, W.J. A lectin from elder (Sambucus nigra L.) bark. Biochem. J. 1984, 221, 163–169. [Google Scholar] [PubMed]
- Van Damme, E.J.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. The neuac(alpha-2,6)-gal/galnac-binding lectin from elderberry (Sambucus nigra) bark, a type-2 ribosome-inactivating protein with an unusual specificity and structure. Eur. J. Biochem. 1996, 235, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, E.J.; Roy, S.; Barre, A.; Citores, L.; Mostafapous, K.; Rouge, P.; van Leuven, F.; Girbes, T.; Goldstein, I.J.; Peumans, W.J.; et al. Elderberry (Sambucus nigra) bark contains two structurally different neu5ac(alpha2,6)gal/galnac-binding type 2 ribosome-inactivating proteins. Eur. J. Biochem. 1997, 245, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Shahidi-Noghabi, S.; van Damme, E.J.; de Vos, W.H.; Smagghe, G. Internalization of Sambucus nigra agglutinins i and ii in insect midgut cf-203 cells. Arch. Insect Biochem. Physiol. 2011, 76, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peumans, W.J.; van Damme, E.J. The sambucus nigra type-2 ribosome-inactivating protein sna-I' exhibits in planta antiviral activity in transgenic tobacco. FEBS Lett. 2002, 516, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Roy, S.; Barre, A.; Rouge, P.; van Leuven, F.; van Damme, E.J. Elderberry (Sambucus nigra) contains truncated neu5ac(alpha-2,6)gal/galnac-binding type 2 ribosome-inactivating proteins. FEBS Lett. 1998, 425, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Karpova, I.S.; Korets’ka, N.V.; Pal’chykovs’ka, L.H.; Nehruts’ka, V.V. Lectins from Sambucus nigra L. inflorescences: Isolation and investigation of biological activity using procaryotic test-systems. Ukr. Biokhim. Zh. 2007, 79, 145–152. [Google Scholar]
- Ferreras, J.M.; Citores, L.; Iglesias, R.; Jimenez, P.; Girbes, T. Use of ribosome-inactivating proteins from Sambucus for the construction of immunotoxins and conjugates for cancer therapy. Toxins 2011, 3, 420–441. [Google Scholar] [CrossRef] [PubMed]
- Battelli, M.G.; Barbieri, L.; Bolognesi, A.; Buonamici, L.; Valbonesi, P.; Polito, L.; van Damme, E.J.; Peumans, W.J.; Stirpe, F. Ribosome-inactivating lectins with polynucleotide: Adenosine glycosidase activity. FEBS Lett. 1997, 408, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, E.J.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. Isolation and molecular cloning of a novel type 2 ribosome-inactivating protein with an inactive b chain from elderberry (Sambucus nigra) bark. J. Biol. Chem. 1997, 272, 8353–8360. [Google Scholar] [CrossRef] [PubMed]
- Kaku, H.; Peumans, W.J.; Goldstein, I.J. Isolation and characterization of a second lectin (sna-ii) present in elderberry (Sambucus nigra L.) bark. Arch. Biochem. Biophys. 1990, 277, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Kellens, J.T.; Allen, A.K.; van Damme, E.J. Isolation and characterization of a seed lectin from elderberry (Sambucus nigra L.) and its relationship to the bark lectins. Carbohydr. Res. 1991, 213, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Mach, L.; Scherf, W.; Ammann, M.; Poetsch, J.; Bertsch, W.; Marz, L.; Glossl, J. Purification and partial characterization of a novel lectin from elder (Sambucus nigra L.) fruit. Biochem. J. 1991, 278 Pt 3, 667–671. [Google Scholar] [PubMed]
- Mach, L.; Kerschbaumer, R.; Schwihla, H.; Glossl, J. Elder (Sambucus nigra L.)-fruit lectin (sna-iv) occurs in monomeric, dimeric and oligomeric isoforms. Biochem. J. 1996, 315 Pt 3, 1061. [Google Scholar] [PubMed]
- Nsimba-Lubaki, M.; Peumans, W.J.; Allen, A.K. Isolation and characterization of glycoprotein lectins from the bark of three species of elder, sambucus ebulus, S. Nigra and S. Racemosa. Planta 1986, 168, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Rojo, M.A.; Citores, L.; Jimenez, P.; Ferreras, J.M.; Arias, F.J.; Mendez, E.; Girbes, T. Isolation and characterization of a new D-galactose-binding lectin from Sambucus racemosa L. Protein Pept. Lett. 2003, 10, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Tazaki, K.; Shibuya, N. Purification and partial characterization of a lectin from the bark of Japanese elderberry (Sambucus sieboldiana). Plant Cell Physiol. 1989, 30, 899–903. [Google Scholar]
- Kaku, H.; Tanaka, Y.; Tazaki, K.; Minami, E.; Mizuno, H.; Shibuya, N. Sialylated oligosaccharide-specific plant lectin from japanese elderberry (Sambucus sieboldiana) bark tissue has a homologous structure to type ii ribosome-inactivating proteins, ricin and abrin. cDNA cloning and molecular modeling study. J. Biol. Chem. 1996, 271, 1480–1485. [Google Scholar] [CrossRef] [PubMed]
- Rojo, M.A.; Kaku, H.; Ishii-Minami, N.; Minami, E.; Yato, M.; Hisajima, S.; Yamaguchi, T.; Shibuya, N. Characterization and cDNA cloning of monomeric lectins that correspond to the b-chain of a type 2 ribosome-inactivating protein from the bark of Japanese elderberry (Sambucus sieboldiana). J. Biochem. 2004, 135, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Rojo, M.A.; Yato, M.; Ishii-Minami, N.; Minami, E.; Kaku, H.; Citores, L.; Girbes, T.; Shibuya, N. Isolation, cdna cloning, biological properties, and carbohydrate binding specificity of sieboldin-b, a type ii ribosome-inactivating protein from the bark of Japanese elderberry (Sambucus sieboldiana). Arch. Biochem. Biophys. 1997, 340, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Rippmann, J.F.; Michalowski, C.B.; Nelson, D.E.; Bohnert, H.J. Induction of a ribosome-inactivating protein upon environmental stress. Plant Mol. Biol. 1997, 35, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Rinderle, S.J.; Goldstein, I.J.; Matta, K.L.; Ratcliffe, R.M. Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the t-(or cryptic t)-antigen. J. Biol. Chem. 1989, 264, 16123–16131. [Google Scholar] [PubMed]
- Rinderle, S.J.; Goldstein, I.J.; Remsen, E.E. Physicochemical properties of amaranthin, the lectin from Amaranthus caudatus seeds. Biochemistry 1990, 29, 10555–10561. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.R.; Chen, Y.F.; Rinderle, S.J.; Resau, J.H.; Luk, G.D.; Lynch, H.T.; Goldstein, I.J. Use of the lectin from Amaranthus caudatus as a histochemical probe of proliferating colonic epithelial cells. Cancer Res. 1991, 51, 657–665. [Google Scholar] [PubMed]
- Koeppe, S.J.; Rupnow, J.H. Purification and characterization of a lectin from the seeds of Amaranth (Amaranthus cruentus). J. Food Sci. 1988, 53, 1412–1417. [Google Scholar] [CrossRef]
- Zenteno, E.; Ochoa, J.-L. Purification of a lectin from Amaranthus leucocarpus by affinity chromatography. Phytochemistry 1988, 27, 313–317. [Google Scholar] [CrossRef]
- Chen, M.-H.; Wang, Y.-Q.; Wang, Z. Amaramangin Isolated from Plant Seed as Ribosome Inactivating Protein and Uses in Therapy. Patent No. Cn 1491961 a, 28 April 2004. [Google Scholar]
- Roy, S.; Sadhana, P.; Begum, M.; Kumar, S.; Lodha, M.L.; Kapoor, H.C. Purification, characterization and cloning of antiviral/ribosome inactivating protein from Amaranthus tricolor leaves. Phytochemistry 2006, 67, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.Y.; An, C.S.; Liu, J.R.; Paek, K.H. A ribosome-inactivating protein from Amaranthus viridis. Biosci. Biotechnol. Biochem. 1997, 61, 1613–1614. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.Y.; An, C.S.; Liu, J.R.; Kwak, S.S.; Lee, H.S.; Kim, J.K.; Paek, K.H. Molecular cloning of a cdna encoding ribosome inactivating protein from Amaranthus viridis and its expression in E. Coli. Mol. Cells 2000, 10, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Girbés, T.; de Torre, C.; Iglesias, R.; Ferreras, J.M.; Méndez, E. Rip for viruses. Nature 1996, 379, 777–778. [Google Scholar] [CrossRef] [PubMed]
- Girbés, J.T.; Citores, L.; de Benito, F.M.; Iglesias, R.; Ferreras, J.M. Ribosome-Inactivating Proteins Beetin-27 and Beetin-29 and Their Use as Antivirals in Mammals and Plants. Patent No. Es 2115520 a1, 16 June 1998. [Google Scholar]
- Iglesias, R.; Perez, Y.; de Torre, C.; Ferreras, J.M.; Antolin, P.; Jimenez, P.; Rojo, M.A.; Mendez, E.; Girbes, T. Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (rips) in sugar beet (beta vulgaris) leaves. J. Exp. Bot. 2005, 56, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Hornung, E.; Wajant, H.; Jeske, H.; Mundry, K.W. Cloning of a cdna encoding a new ribosome-inactivating protein from beta Vulgaris vulgaris (mangold). Gene 1996, 170, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Balasubrahmanyam, A.; Baranwal, V.K.; Lodha, M.L.; Varma, A.; Kapoor, H.C. Purification and properties of growth stage-dependent antiviral proteins from the leaves of Celosia cristata. Plant Sci. 2000, 154, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, A.; Kapoor, H.C. Modifications in the purification protocol of Celosia cristata antiviral proteins lead to protein that can be N-terminally sequenced. Protein Pept. Lett. 2004, 11, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Begam, M.; Kumar, S.; Roy, S.; Campanella, J.J.; Kapoor, H.C. Molecular cloning and functional identification of a ribosome inactivating/antiviral protein from leaves of post-flowering stage of Celosia cristata and its expression in E. Coli. Phytochemistry 2006, 67, 2441–2449. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-J.; Lee, S.-M.; Kim, Y.-T.; Hwang, Y.-S. Purification and characterization of an antiviral ribosome-inactivating protein from Chenopodium album L. Agric. Chem. Biotechnol. 2000, 43, 125–130. [Google Scholar]
- Park, J.S.; Hwang, D.J.; Lee, S.M.; Kim, Y.T.; Choi, S.B.; Cho, K.J. Ribosome-inactivating activity and cDNA cloning of antiviral protein isoforms of Chenopodium album. Mol. Cells 2004, 17, 73–80. [Google Scholar] [PubMed]
- Prestle, J.; Schonfelder, M.; Adam, G.; Mundry, K.W. Type 1 ribosome-inactivating proteins depurinate plant 25s rRNA without species specificity. Nucleic Acids Res. 1992, 20, 3179–3182. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, T.; Megumi, C.; Komai, F.; Masuda, K.; Oosawa, K. Accumulation of a 31-kDa glycoprotein in association with the expression of embryogenic potential by spinach callus in culture. Physiol. Plant. 2002, 114, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Kawade, K.; Ishizaki, T.; Masuda, K. Differential expression of ribosome-inactivating protein genes during somatic embryogenesis in spinach (Spinacia oleracea). Physiol. Plant. 2008, 134, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Kawade, K.; Masuda, K. Transcriptional control of two ribosome-inactivating protein genes expressed in spinach (Spinacia oleracea) embryos. Plant Physiol. Biochem. 2009, 47, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Tomatsu, M.; Ohnishi-Kameyama, M.; Shibamoto, N. Aralin, a new cytotoxic protein from Aralia elata, inducing apoptosis in human cancer cells. Cancer Lett. 2003, 199, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Tomatsu, M.; Kondo, T.; Yoshikawa, T.; Komeno, T.; Adachi, N.; Kawasaki, Y.; Ikuta, A.; Tashiro, F. An apoptotic inducer, aralin, is a novel type ii ribosome-inactivating protein from Aralia elata. Biol. Chem. 2004, 385, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; Wang, H. Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci. 2001, 68, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Ng, T.B. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem. Biophys. Res. Commun. 2000, 269, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Gasperi-Campani, A.; Barbieri, L.; Falasca, A.; Abbondanza, A.; Stevens, W.A. Ribosome-inactivating proteins from the seeds of Saponaria officinalis L. (soapwort), of Agrostemma githago L. (corn cockle) and of Asparagus officinalis L. (asparagus), and from the latex of Hura crepitans L. (sandbox tree). Biochem. J. 1983, 216, 617–625. [Google Scholar] [PubMed]
- Bolognesi, A.; Barbieri, L.; Abbondanza, A.; Falasca, A.I.; Carnicelli, D.; Battelli, M.G.; Stirpe, F. Purification and properties of new ribosome-inactivating proteins with rna N-glycosidase activity. Biochim. Biophys. Acta 1990, 1087, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Touloupakis, E.; Gessmann, R.; Kavelaki, K.; Christofakis, E.; Petratos, K.; Ghanotakis, D.F. Isolation, characterization, sequencing and crystal structure of charybdin, a type 1 ribosome-inactivating protein from charybdis maritima agg. FEBS J. 2006, 273, 2684–2692. [Google Scholar] [CrossRef] [PubMed]
- Arias, F.J.; Antolin, P.; de Torre, C.; Barriuso, B.; Iglesias, R.; Rojo, M.A.; Ferreras, J.M.; Benvenuto, E.; Mendez, E.; Girbes, T.; et al. Musarmins: Three single-chain ribosome-inactivating protein isoforms from bulbs of Muscari armeniacum L. And miller. Int. J. Biochem. Cell Biol. 2003, 35, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Girbés, J.T.; Barriuso, B.; Antolin, P.; Arias, F.J.; Munoz, R. Muscari Ribosome-Inactivating Protein Musarmin 4,Its Production in Bacterial and Plant Systems, and Its Uses in Therapy. Patent No. Wo 2004106522 a1, 9 December 2004. [Google Scholar]
- Van Damme, E.J.; Hao, Q.; Charels, D.; Barre, A.; Rouge, P.; van Leuven, F.; Peumans, W.J. Characterization and molecular cloning of two different type 2 ribosome-inactivating proteins from the monocotyledonous plant Polygonatum multiflorum. Eur. J. Biochem. 2000, 267, 2746–2759. [Google Scholar] [CrossRef] [PubMed]
- Osawa, N.; Hiramatsu, A. Purification and chemical properties of an inhibitor of plant virus infection from leaves of Yucca recurvifolia salisb. Agric. Biol. Chem. 1987, 51, 891–896. [Google Scholar] [CrossRef]
- Hayashi, K.; Nishino, H.; Niwayama, S.; Shiraki, K.; Hiramatsu, A. Yucca leaf protein (ylp) stops the protein synthesis in hsv-infected cells and inhibits virus replication. Antivir. Res. 1992, 17, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, A.; Polito, L.; Olivieri, F.; Valbonesi, P.; Barbieri, L.; Battelli, M.G.; Carusi, M.V.; Benvenuto, E.; del Vecchio Blanco, F.; di Maro, A.; et al. New ribosome-inactivating proteins with polynucleotide: Adenosine glycosidase and antiviral activities from Basella rubra L. And bougainvillea spectabilis willd. Planta 1997, 203, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Misawa, M.; Ko, K.; Misato, T. Effect of cullural conditions on the growth of Agrostemma githago cells in suspension culture and the concomitant production of an anti-plant virus substance. Physiol. Plant. 1977, 41, 313–320. [Google Scholar] [CrossRef]
- Stirpe, F.; Barbieri, L. Ribosome-inactivating proteins up to date. FEBS Lett. 1986, 195, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hebestreit, P.; Melzig, M.F. Cytotoxic activity of the seeds from Agrostemma githago var. Githago. Planta Med. 2003, 69, 921–925. [Google Scholar] [CrossRef] [PubMed]
- Prestle, J.; Hornung, E.; Schonfelder, M.; Mundry, K.W. Mechanism and site of action of a ribosome-inactivating protein type 1 from dianthus barbatus which inactivates Escherichia coli ribosomes. FEBS Lett. 1992, 297, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Williams, D.G.; Onyon, L.J.; Legg, R.F.; Stevens, W.A. Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). Biochem. J. 1981, 195, 399–405. [Google Scholar] [PubMed]
- Falasca, A.; Gasperi-Campani, A.; Abbondanza, A.; Barbieri, L.; Stirpe, F. Properties of the ribosome-inactivating proteins gelonin, Momordica charantia inhibitor, and dianthins. Biochem. J. 1982, 207, 505–509. [Google Scholar] [PubMed]
- Cho, H.J.; Lee, S.J.; Kim, S.; Kim, B.D. Isolation and characterization of cDNAs encoding ribosome inactivating protein from Dianthus sinensis L. Mol. Cells 2000, 10, 135–141. [Google Scholar] [PubMed]
- Yoshinari, S.; Koresawa, S.; Yokota, S.; Sawamoto, H.; Tamura, M.; Endo, Y. Gypsophilin, a new type 1 ribosome-inactivating protein from gypsophila elegans: Purification, enzymatic characterization, and subcellular localization. Biosci. Biotechnol. Biochem. 1997, 61, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Fermani, S.; Tosi, G.; Farini, V.; Polito, L.; Falini, G.; Ripamonti, A.; Barbieri, L.; Chambery, A.; Bolognesi, A. Structure/function studies on two type 1 ribosome inactivating proteins: Bouganin and lychnin. J. Struct. Biol. 2009, 168, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Chambery, A.; de Donato, A.; Bolognesi, A.; Polito, L.; Stirpe, F.; Parente, A. Sequence determination of lychnin, a type 1 ribosome-inactivating protein from Lychnis chalcedonica seeds. Biol. Chem. 2006, 387, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Arias, F.J.; Rojo, M.A.; Ferreras, J.M.; Iglesias, R.; Munoz, R.; Soriano, F.; Mendez, E.; Barbieri, L.; Girbes, T. Isolation and characterization of two new N-glycosidase type-1 ribosome-inactivating proteins, unrelated in amino-acid sequence, from petrocoptis species. Planta 1994, 194, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Arias, F.J.; Rojo, M.A.; Ferreras, J.M.; Iglesias, R.; Munoz, R.; Rocher, A.; Mendez, E.; Barbieri, L.; Girbes, T. Isolation and partial characterization of a new ribosome-inactivating protein from Petrocoptis glaucifolia (lag.) boiss. Planta 1992, 186, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, A.; Olivieri, F.; Battelli, M.G.; Barbieri, L.; Falasca, A.I.; Parente, A.; del Vecchio Blanco, F.; Stirpe, F. Ribosome-inactivating proteins (RNA N-glycosidases) from the seeds of Saponaria ocymoides and Vaccaria pyramidata. Eur. J. Biochem. 1995, 228, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Di Massimo, A.M.; di Loreto, M.; Pacilli, A.; Raucci, G.; D’Alatri, L.; Mele, A.; Bolognesi, A.; Polito, L.; Stirpe, F.; de Santis, R.; et al. Immunoconjugates made of an anti-egf receptor monoclonal antibody and type 1 ribosome-inactivating proteins from Saponaria ocymoides or Vaccaria pyramidata. Br. J. Cancer 1997, 75, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Ferreras, J.M.; Barbieri, L.; Girbes, T.; Battelli, M.G.; Rojo, M.A.; Arias, F.J.; Rocher, M.A.; Soriano, F.; Mendez, E.; Stirpe, F.; et al. Distribution and properties of major ribosome-inactivating proteins (28 s rRNA N-glycosidases) of the plant Saponaria officinalis L. (caryophyllaceae). Biochim. Biophys. Acta 1993, 1216, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Gorini, P.; Valbonesi, P.; Castiglioni, P.; Stirpe, F. Unexpected activity of saporins. Nature 1994, 372, 624. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.C.; Sturm, M.B.; Almo, S.C.; Schramm, V.L. Transition state analogues in structures of ricin and saporin ribosome-inactivating proteins. Proc. Natl. Acad. Sci. USA 2009, 106, 20276–20281. [Google Scholar] [CrossRef] [PubMed]
- Sturm, M.B.; Tyler, P.C.; Evans, G.B.; Schramm, V.L. Transition state analogues rescue ribosomes from saporin-l1 ribosome inactivating protein. Biochemistry 2009, 48, 9941–9948. [Google Scholar] [PubMed]
- Soria, M.R.; Benatti, L.; Nitti, G.; Ceriotti, A.; Solinas, M.; Lappi, D.A.; Lorenzetti, R. Studies on ribosome-inactivating proteins from saponaria officinalis. Target. Diagn. Ther. 1992, 7, 193–212. [Google Scholar]
- Yang, Y.-D.; Zhou, K.-J.; Pan, K.-Z.; Zhang, R.-Z.; Chen, R.-M.; Rao, P.-F. Purification and characterization of saporins. Prog. Biochem. Biophys. 2000, 27, 57–61. [Google Scholar]
- Ghosh, P.; Batra, J.K. The differential catalytic activity of ribosome-inactivating proteins saporin 5 and 6 is due to a single substitution at position 162. Biochem. J. 2006, 400, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Lappi, D.A.; Esch, F.S.; Barbieri, L.; Stirpe, F.; Soria, M. Characterization of a Saponaria officinalis seed ribosome-inactivating protein: Immunoreactivity and sequence homologies. Biochem. Biophys. Res. Commun. 1985, 129, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Benatti, L.; Nitti, G.; Solinas, M.; Valsasina, B.; Vitale, A.; Ceriotti, A.; Soria, M.R. A saporin-6 cdna containing a precursor sequence coding for a carboxyl-terminal extension. FEBS Lett. 1991, 291, 285–288. [Google Scholar] [CrossRef] [PubMed]
- De Angelis, F.; di Tullio, A.; Spano, L.; Tucci, A. Mass spectrometric study of different isoforms of the plant toxin saporin. J. Mass Spectrom. 2001, 36, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, A.; Marshall, R.S.; Savino, C.; Fabbrini, M.S.; Ceriotti, A. Toxic Plant Proteins, Plant Cell Monographs; Springer Verlag: Heidelberg, Germany, 2010; Volume 18, pp. 55–78. [Google Scholar]
- Di Maro, A.; Ferranti, P.; Mastronicola, M.; Polito, L.; Bolognesi, A.; Stirpe, F.; Malorni, A.; Parente, A. Reliable sequence determination of ribosome- inactivating proteins by combining electrospray mass spectrometry and edman degradation. J. Mass Spectrom. 2001, 36, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Fabbrini, M.S.; Rappocciolo, E.; Carpani, D.; Solinas, M.; Valsasina, B.; Breme, U.; Cavallaro, U.; Nykjaer, A.; Rovida, E.; Legname, G.; et al. Characterization of a saporin isoform with lower ribosome-inhibiting activity. Biochem. J. 1997, 322 Pt 3, 719–727. [Google Scholar] [PubMed]
- Yoshinari, S.; Tamura, M.; Endo, Y. A new type-1 ribosome-inactivating protein from the leaves of Stellaria aquatica: Purification and characterization. Viva Orig. 1996, 24, 225–236. [Google Scholar]
- Zheng, Y.-H.; Zhao, H.-G.; Shan, Y.; Zhou, J.-J.; He, S.-I. Cloning and sequence analysis of ribosome inactivating protein gene from Stellaria media. Acta Bot. Boreali-Occident. Sin. 2010, 1, 14–20. [Google Scholar]
- Ng, T.B.; Parkash, A. Hispin, a novel ribosome inactivating protein with antifungal activity from hairy melon seeds. Protein Expr. Purif. 2002, 26, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; Parkash, A.; Tso, W.W. Purification and characterization of alpha- and beta-benincasins, arginine/glutamate-rich peptides with translation-inhibiting activity from wax gourd seeds. Peptides 2003, 24, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Barbieri, L.; Battelli, M.G.; Falasca, A.I.; Abbondanza, A.; Lorenzoni, E.; Stevens, W.A. Bryodin, a ribosome-inactivating protein from the roots of Bryonia dioica L. (white bryony). Biochem. J. 1986, 240, 659–665. [Google Scholar] [PubMed]
- Siegall, C.B.; Gawlak, S.L.; Chace, D.; Wolff, E.A.; Mixan, B.; Marquardt, H. Characterization of ribosome-inactivating proteins isolated from bryonia dioica and their utility as carcinoma-reactive immunoconjugates. Bioconjug. Chem. 1994, 5, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Montecucchi, P.C.; Lazzarini, A.M.; Barbieri, L.; Stirpe, F.; Soria, M.; Lappi, D. N-Terminal sequence of some ribosome-inactivating proteins. Int. J. Pept. Protein Res. 1989, 33, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Polito, L.; Bolognesi, A.; Ciani, M.; Pelosi, E.; Farini, V.; Jha, A.K.; Sharma, N.; Vivanco, J.M.; Chambery, A.; et al. Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochim. Biophys. Acta 2006, 1760, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Peumans, W.J.; Nsimba-Lubaki, M.; Carlier, A.R.; van Driessche, E. A lectin from Bryonia dioica root stocks. Planta 1984, 160, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Halaweish, F.T. Isolation and identification of foetidissimin: A novel ribosome-inactivating protein from Cucurbita foetidissima. Plant Sci. 2003, 164, 387–393. [Google Scholar] [CrossRef]
- Zhang, D.; Halaweish, F.T. Isolation and characterization of ribosome-inactivating proteins from Cucurbitaceae. Chem. Biodivers. 2007, 4, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Ohki, S.T.; Osaki, T. Cloning and analysis of a cdna coding a putative ribosome-inactivating protein from Cucumis figarei. Plant Biotechnol. 2000, 17, 337–340. [Google Scholar] [CrossRef]
- Wang, H.X.; Ng, T.B. Isolation of cucurmoschin, a novel antifungal peptide abundant in arginine, glutamate and glycine residues from black pumpkin seeds. Peptides 2003, 24, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Ye, X.; Cai, J.; Lin, Y. Crystallization and preliminary crystallographic study of cucurmosin, a ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 665–666. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-L.; Zhou, E.X.; Ye, X.-M.; Meehan, E.J.; Chen, M.-H.; Liqing, C. Molecular replacement studies of cucurmosin from Cucurbita moschata: Structure homology with trichosanthin. Chin. J. Struct. Chem. 2003, 22, 165–168. [Google Scholar]
- Hou, X.; Meehan, E.J.; Xie, J.; Huang, M.; Chen, M.; Chen, L. Atomic resolution structure of cucurmosin, a novel type 1 ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. J. Struct. Biol. 2008, 164, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.-M.; Chen, M.-H.; Xie, J.-M.; Peng, Q.; Chen, L.-Q.; Huang, M.-D. Crystallization and preliminary crystallographic studies of cucurmosin 2, a ribosome-inactivating protein from the sarcocarp of Cucurbita moschata. Chin. J. Struct. Chem. 2009, 28, 215–217. [Google Scholar]
- Chen, M.-H. Cucurmosin 2 from Cucurbita Moschata Melon Pulp and Its Application to Prepare the Medical Preparations as Antitumor Agent or Anti Aids Agent. Patent No. Cn 101386644 a, 18 March 2009. [Google Scholar]
- Xia, H.C.; Li, F.; Li, Z.; Zhang, Z.C. Purification and characterization of moschatin, a novel type i ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells. Cell Res. 2003, 13, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.-J.; Lee, S.-M.; Kim, Y.-T.; Hwang, Y.-S. Purification and properties of ribosome-inactivating proteins from the leaves of Cucurbita moschata duchesne. J. Korean Agric. Chem. Soc. 1997, 40, 375–379. [Google Scholar]
- Ng, T.B.; Parkash, A.; Tso, W.W. Purification and characterization of moschins, arginine-glutamate-rich proteins with translation-inhibiting activity from brown pumpkin (Cucurbita moschata) seeds. Protein Expr. Purif. 2002, 26, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Yoshinari, S.; Yokota, S.; Sawamoto, H.; Koresawa, S.; Tamura, M.; Endo, Y. Purification, characterization and subcellular localization of a type-1 ribosome-inactivating protein from the sarcocarp of Cucurbita pepo. Eur. J. Biochem. 1996, 242, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, G.-Q.; Wu, Z.-J.; Lin, Q.-Y.; Xie, L.-H. Purification of a novel anti-tmv protein from Gynostemma pentaphyllum and sequence analysis of its partial DNA coding region. J. Agric. Biotechnol. 2003, 4, 365–369. [Google Scholar]
- Wang, H.X.; Ng, T.B. Lagenin, a novel ribosome-inactivating protein with ribonucleolytic activity from bottle gourd (Lagenaria siceraria) seeds. Life Sci. 2000, 67, 2631–2638. [Google Scholar] [CrossRef] [PubMed]
- Yeung, H.W.; Li, W.W.; Ng, T.B. Isolation of a ribosome-inactivating and abortifacient protein from seeds of Luffa acutangula. Int. J. Pept. Protein Res. 1991, 38, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.-K.; Chen, M.-H.; Xie, J.-M.; Zhao, R.; Ye, X.-M.; Shi, X.-L.; Wang, Z.-R. Purification and characterization of two luffaculins, ribosome-inactivating proteins from seeds of Luffa acutangula. Chin. J. Biochem. Mol. Biol. 2002, 18, 609–613. [Google Scholar]
- Wang, H.; Ng, T.B. Luffangulin, a novel ribosome inactivating peptide from ridge gourd (Luffa acutangula) seeds. Life Sci. 2002, 70, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Anantharam, V.; Patanjali, S.R.; Swamy, M.J.; Sanadi, A.R.; Goldstein, I.J.; Surolia, A. Isolation, macromolecular properties, and combining site of a chito-oligosaccharide-specific lectin from the exudate of ridge gourd (Luffa acutangula). J. Biol. Chem. 1986, 261, 14621–14627. [Google Scholar] [PubMed]
- Kishida, K.; Masuho, Y.; Hara, T. Protein-synthesis inhibitory protein from seeds of Luffa cylindria roem. FEBS Lett. 1983, 153, 209–212. [Google Scholar] [CrossRef]
- Kamenosono, M.; Nishida, H.; Funatsu, G. Isolation and characterization of two luffins, protein-biosynthesis inhibitory proteins from the seeds of Luffa cylindrica. Agric. Biol. Chem. 1988, 52, 1223–1227. [Google Scholar] [CrossRef]
- Ng, T.B.; Wong, R.N.; Yeung, H.W. Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (cucurbitaceae). Biochem. Int. 1992, 27, 197–207. [Google Scholar] [PubMed]
- Kataoka, J.; Habuka, N.; Miyano, M.; Masuta, C.; Koiwai, A. Nucleotide sequence of cdna encoding alpha-luffin, a ribosome-inactivating protein from Luffa cylindrica. Plant Mol. Biol. 1992, 18, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Liu, D. Isolation and purification of alpha- and beta-luffins, ribosome inactivating protein from seeds of Luffa cylindrica. Prog. Biochem. Biophys. 1995, 22, 464–468. [Google Scholar]
- Liu, L.; Wang, R.; He, W.; He, F.; Huang, G. Cloning and soluble expression of mature alpha-luffin from Luffa cylindrica and its antitumor activities in vitro. Acta Biochim. Biophys. Sin. 2010, 42, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, J.; Habuka, N.; Miyano, M.; Masuta, C.; Koiwai, A. Nucleotide sequence of cdna encoding beta-luffin, another ribosome-inactivating protein from Luffa cylindrica. Plant Mol. Biol. 1992, 19, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, S.; Enghlid, J.J.; Bryant, H.L., Jr.; Xu, F.J. Characterization of a translation inhibitory protein from Luffa aegyptiaca. Biochem. Biophys. Res. Commun. 1989, 160, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Parkash, A.; Ng, T.B.; Tso, W.W. Isolation and characterization of luffacylin, a ribosome inactivating peptide with anti-fungal activity from sponge gourd (Luffa cylindrica) seeds. Peptides 2002, 23, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, X.X.; Xia, H.C.; Zeng, R.; Hu, W.G.; Li, Z.; Zhang, Z.C. Purification and characterization of luffin p1, a ribosome-inactivating peptide from the seeds of Luffa cylindrica. Peptides 2003, 24, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Ling, J.; Zhong, X.; Liu, W.; Zhang, R.; Yang, H.; Cao, H.; Zhang, Z. Luffin-s—A small novel ribosome-inactivating protein from Luffa cylindrica. Characterization and mechanism studies. FEBS Lett. 1994, 347, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Xiong, C.Y.; Zhang, Z.C. Isolation, purification and characterization of a group of novel small molecular ribosome inactivating protein—Luffins from seeds of Luffa cylindrica. Acta Biochim. Biophys. Sin. 1998, 30, 142–146. [Google Scholar] [PubMed]
- Li, F.; Hu, W.; Tai, N.; Zhang, Z. Gene Cloning of Luffin s2, a New Small Ribosome-Inactivating Protein from Seeds of Luffa cylindrica, and Expression in Escherichia coli. Available online: http://www.uniprot.org/uniprot/Q7XBB8 (accessed on 1 October 2003).
- Shih, N.J.; McDonald, K.A.; Girbes, T.; Iglesias, R.; Kohlhoff, A.J.; Jackman, A.P. Ribosome-inactivating proteins (rips) of wild oregon cucumber (marah oreganus). Biol. Chem. 1998, 379, 721–725. [Google Scholar] [PubMed]
- Kaur, I.; Yadav, S.K.; Hariprasad, G.; Gupta, R.C.; Srinivasan, A.; Batra, J.K.; Puri, M. Balsamin, a novel ribosome-inactivating protein from the seeds of balsam apple Momordica balsamina. Amino Acids 2012, 43, 973–981. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, G.S.; Pandey, N.; Sinha, M.; Singh, S.B.; Kaur, P.; Sharma, S.; Singh, T.P. Crystal structures of a type-1 ribosome inactivating protein from Momordica balsamina in the bound and unbound states. Biochim. Biophys. Acta 2012, 1824, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, G.S.; Yamini, S.; Kumar, M.; Sinha, M.; Kaur, P.; Sharma, S.; Singh, T.P. First structural evidence of sequestration of mRNA cap structures by type 1 ribosome inactivating protein from Momordica balsamina. Proteins 2013, 81, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Ortigao, M.; Better, M. Momordin ii, a ribosome inactivating protein from Momordica balsamina, is homologous to other plant proteins. Nucleic Acids Res. 1992, 20, 4662. [Google Scholar] [CrossRef] [PubMed]
- Lee-Huang, S.; Huang, P.L.; Nara, P.L.; Chen, H.C.; Kung, H.F.; Huang, P.; Huang, H.I.; Huang, P.L. Map 30: A new inhibitor of hiv-1 infection and replication. FEBS Lett. 1990, 272, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lee-Huang, S.; Huang, P.L.; Chen, H.C.; Huang, P.L.; Bourinbaiar, A.; Huang, H.I.; Kung, H.F. Anti-hiv and anti-tumor activities of recombinant map30 from bitter melon. Gene 1995, 161, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Yeung, H.W.; Li, W.W.; Chan, W.Y.; Law, L.K.; Ng, T.B. Alpha and beta momorcharins. Int. J. Pept. Protein Res. 1986, 28, 518–524. [Google Scholar] [CrossRef]
- Yeung, H.W.; Ng, T.B.; Li, W.W.; Cheung, W.K. Partial chemical characterization of alpha- and beta-momorcharins. Planta Med. 1987, 53, 164–166. [Google Scholar] [CrossRef] [PubMed]
- Yeung, H.W.; Li, W.W.; Feng, Z.; Barbieri, L.; Stirpe, F. Trichosanthin, alpha-momorcharin and beta-momorcharin: Identity of abortifacient and ribosome-inactivating proteins. Int. J. Pept. Protein Res. 1988, 31, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Li, W.W.; Yeung, H.W.; Chen, S.Z.; Wang, Y.P.; Lin, X.Y.; Dong, Y.C.; Wang, J.H. Crystals of alpha-momorcharin. A new ribosome-inactivating protein. J. Mol. Biol. 1990, 214, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; Chan, W.Y.; Yeung, H.W. Proteins with abortifacient, ribosome inactivating, immunomodulatory, antitumor and anti-aids activities from cucurbitaceae plants. Gen. Pharmacol. 1992, 23, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Fong, W.P.; Poon, Y.T.; Wong, T.M.; Mock, J.W.; Ng, T.B.; Wong, R.N.; Yao, Q.Z.; Yeung, H.W. A highly efficient procedure for purifying the ribosome-inactivating proteins alpha- and beta-momorcharins from Momordica charantia seeds, N-terminal sequence comparison and establishment of their N-glycosidase activity. Life Sci. 1996, 59, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.-J.; Qian, R.-Q.; Lu, B.-Y.; Gu, Z.-W.; Jin, S.-W.; Wang, Y. Isolation and characterization of alpha-, beta-momorcharins. Acta Chim. Sin. 1998, 56, 1135–1144. [Google Scholar]
- Tse, P.M.F.; Ng, T.B.; Fong, W.P.; Wong, R.N.S.; Wan, C.C.; Mak, N.K.; Yeung, H.W. New ribosome-inactivating proteins from seeds and fruits of the bitter gourd Momordica charantia. Int. J. Biochem. Cell Biol. 1999, 31, 895–901. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, P.; Meng, Y.F.; Xu, F.; Zhang, D.W.; Cheng, J.; Lin, H.H.; Xi, D.H. Alpha-momorcharin, a rip produced by bitter melon, enhances defense response in tobacco plants against diverse plant viruses and shows antifungal activity in vitro. Planta 2013, 237, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.; Lu, B.Y.; Liu, W.Y.; Jin, S.W. Characterization of the enzymatic mechanism of gamma-momorcharin, a novel ribosome-inactivating protein with lower molecular weight of 11,500 purified from the seeds of bitter gourd (Momordica charantia). Biochem. Biophys. Res. Commun. 1996, 229, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Tsurugi, K.; Lambert, J.M. The site of action of six different ribosome-inactivating proteins from plants on eukaryotic ribosomes: The RNA N-glycosidase activity of the proteins. Biochem. Biophys. Res. Commun. 1988, 150, 1032–1036. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Zamboni, M.; Lorenzoni, E.; Montanaro, L.; Sperti, S.; Stirpe, F. Inhibition of protein synthesis in vitro by proteins from the seeds of Momordica charantia (bitter pear melon). Biochem. J. 1980, 186, 443–452. [Google Scholar] [PubMed]
- Takemoto, D.J.; Jilka, C.; Rockenbach, S.; Hughes, J.V. Purification and characterization of a cytostatic factor with anti-viral activity from the bitter melon. Prep. Biochem. 1983, 13, 371–393. [Google Scholar] [PubMed]
- Stirpe, F.; Bailey, S.; Miller, S.P.; Bodley, J.W. Modification of ribosomal RNA by ribosome-inactivating proteins from plants. Nucleic Acids Res. 1988, 16, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- Cunnick, J.E.; Sakamoto, K.; Chapes, S.K.; Fortner, G.W.; Takemoto, D.J. Induction of tumor cytotoxic immune cells using a protein from the bitter melon (Momordica charantia). Cell. Immunol. 1990, 126, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Husain, J.; Tickle, I.J.; Wood, S.P. Crystal structure of momordin, a type i ribosome inactivating protein from the seeds of Momordica charantia. FEBS Lett. 1994, 342, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-H.; Ren, H.; Yu, C. Studies on ribosome inactivating protein of Momordica charantia L. Chin. Tradit. Herb. Drugs 1996, 27, 441–442. [Google Scholar]
- Valbonesi, P.; Barbieri, L.; Bolognesi, A.; Bonora, E.; Polito, L.; Stirpe, F. Preparation of highly purified momordin ii without ribonuclease activity. Life Sci. 1999, 65, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Minami, Y.; Nakahara, Y.; Funatsu, G. Isolation and characterization of two momordins, ribosome-inactivating proteins from the seeds of bitter gourd (Momordica charantia). Biosci. Biotechnol. Biochem. 1992, 56, 1470–1471. [Google Scholar] [CrossRef]
- Minami, Y.; Funatsu, G. The complete amino acid sequence of momordin-a, a ribosome-inactivating protein from the seeds of bitter gourd (Momordica charantia). Biosci. Biotechnol. Biochem. 1993, 57, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Parkash, A.; Ng, T.B.; Tso, W.W. Purification and characterization of charantin, a napin-like ribosome-inactivating peptide from bitter gourd (Momordica charantia) seeds. J. Pept. Res. 2002, 59, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ng, T.B. Ribosome inactivating protein and lectin from bitter melon (Momordica charantia) seeds: Sequence comparison with related proteins. Biochem. Biophys. Res. Commun. 1998, 253, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Lorenzoni, E.; Stirpe, F. Inhibition of protein synthesis in vitro by a lectin from Momordica charantia and by other haemagglutinins. Biochem. J. 1979, 182, 633–635. [Google Scholar] [PubMed]
- Ng, T.B.; Wong, C.M.; Li, W.W.; Yeung, H.W. Isolation and characterization of a galactose binding lectin with insulinomimetic activities. From the seeds of the bitter gourd Momordica charantia (family cucurbitaceae). Int. J. Pept. Protein Res. 1986, 28, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Sultan, N.A.; Swamy, M.J. Energetics of carbohydrate binding to Momordica charantia (bitter gourd) lectin: An isothermal titration calorimetric study. Arch. Biochem. Biophys. 2005, 437, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Toyama, J.; Akashi, R. Molecular characterization of a galactose-binding lectin from Momordica charantia seeds and its expression in tobacco cells. Asian J. Plant Sci. 2009, 8, 544–550. [Google Scholar] [CrossRef]
- Toyama, J.; Tanaka, H.; Horie, A.; Uchiyama, T.; Akashi, R. Purification and characterization of anti-h lectin from the seed of Momordica charantia and the inter-specific differences of hemagglutinating activity in cucurbitaceae. Asian J. Plant Sci. 2008, 7, 647–653. [Google Scholar] [CrossRef]
- Lin, J.Y.; Hou, M.J.; Chen, Y.C. Isolation of toxic and non-toxic lectins from the bitter pear melon Momordica charantia linn. Toxicon 1978, 16, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S. Purification and partial characterization of two lectins from Momordica charantia. Experientia 1980, 36, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Chuethong, J.; Oda, K.; Sakurai, H.; Saiki, I.; Leelamanit, W. Cochinin b, a novel ribosome-inactivating protein from the seeds of Momordica cochinchinensis. Biol. Pharm. Bull. 2007, 30, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Yeung, H.W.; Ng, T.B.; Wong, N.S.; Li, W.W. Isolation and characterization of an abortifacient protein, momorcochin, from root tubers of Momordica cochinchinensis (family cucurbitaceae). Int. J. Pept. Protein Res. 1987, 30, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Bolognesi, A.; Barbieri, L.; Carnicelli, D.; Abbondanza, A.; Cenini, P.; Falasca, A.I.; Dinota, A.; Stirpe, F. Purification and properties of a new ribosome-inactivating protein with RNA N-glycosidase activity suitable for immunotoxin preparation from the seeds of Momordica cochinchinensis. Biochim. Biophys. Acta 1989, 993, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.Y.; Ng, T.B. Isolation and characterization of a new ribosome inactivating protein, momorgrosvin, from seeds of the monk’s fruit Momordica grosvenorii. Life Sci. 2001, 68, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.H.; Chow, L.P.; Lin, J.Y. Sechiumin, a ribosome-inactivating protein from the edible gourd, sechium edule swartz—Purification, characterization, molecular cloning and expression. Eur. J. Biochem. 1998, 255, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Vozari-Hampe, M.M.; Viegas, C.; Saucedo, C.; Rosseto, S.; Manica, G.G.; Hampe, O.G. A lectin from Sechium edule fruit exudate. Phytochemistry 1992, 31, 1477–1480. [Google Scholar] [CrossRef]
- Chow, L.P.; Chou, M.H.; Ho, C.Y.; Chuang, C.C.; Pan, F.M.; Wu, S.H.; Lin, J.Y. Purification, characterization and molecular cloning of trichoanguin, a novel type i ribosome-inactivating protein from the seeds of Trichosanthes anguina. Biochem. J. 1999, 338 Pt 1, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Komath, S.S.; Nadimpalli, S.K.; Swamy, M.J. Purification in high yield and characterisation of the galactose-specific lectin from the seeds of snake gourd (Trichosanthes anguina). Biochem. Mol. Biol. Int. 1996, 39, 243–252. [Google Scholar] [PubMed]
- Manoj, N.; Jeyaprakash, A.A.; Pratap, J.V.; Komath, S.S.; Kenoth, R.; Swamy, M.J.; Vijayan, M. Crystallization and preliminary X-ray studies of snake gourd lectin: Homology with type ii ribosome-inactivating proteins. Acta Crystallogr. D Biol. Crystallogr. 2001, 57, 912–914. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Pohlentz, G.; Bobbili, K.B.; Jeyaprakash, A.A.; Chandran, T.; Mormann, M.; Swamy, M.J.; Vijayan, M. The sequence and structure of snake gourd (Trichosanthes anguina) seed lectin, a three-chain nontoxic homologue of type ii rips. Acta Crystallogr. D Biol. Crystallogr. 2013, 69, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Sultan, N.A.; Kavitha, M.; Swamy, M.J. Purification and physicochemical characterization of two galactose-specific isolectins from the seeds of Trichosanthes cordata. IUBMB Life 2009, 61, 457–469. [Google Scholar] [CrossRef] [PubMed]
- Padma, P.; Komath, S.S.; Nadimpalli, S.K.; Swamy, M.J. Purification in high yield and characterization of a new galactose-specific lectin from the seeds of Trichosanthes cucumerina. Phytochemistry 1999, 50, 363–371. [Google Scholar] [CrossRef]
- Yeung, H.W.; Li, W.W. Beta-trichosanthin: A new abortifacient protein from the Chinese drug, wangua, Trichosanthes cucumeroides. Int. J. Pept. Protein Res. 1987, 29, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.B.; Feng, Z.; Li, W.W.; Yeung, H.W. Improved isolation and further characterization of beta-trichosanthin, a ribosome-inactivating and abortifacient protein from tubers of Trichosanthes cucumeroides (cucurbitaceae). Int. J. Biochem. 1991, 23, 561–567. [Google Scholar]
- Wong, R.N.; Dong, T.X.; Ng, T.B.; Choi, W.T.; Yeung, H.W. Alpha-kirilowin, a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii (family cucurbitaceae): A comparison with beta-kirilowin and other related proteins. Int. J. Pept. Protein Res. 1996, 47, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.X.; Ng, T.B.; Yeung, H.W.; Wong, R.N. Isolation and characterization of a novel ribosome-inactivating protein, beta-kirilowin, from the seeds of Trichosanthes kirilowii. Biochem. Biophys. Res. Commun. 1994, 199, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Lee-Huang, S.; Huang, P.L.; Kung, H.F.; Li, B.Q.; Huang, P.L.; Huang, P.; Huang, H.I.; Chen, H.C. Tap 29: An anti-human immunodeficiency virus protein from Trichosanthes kirilowii that is nontoxic to intact cells. Proc. Natl. Acad. Sci. USA 1991, 88, 6570–6574. [Google Scholar] [CrossRef] [PubMed]
- Thorup, J.E.; McDonald, K.A.; Jackman, A.P.; Bhatia, N.; Dandekar, A.M. Ribosome-inactivating protein production from Trichosanthes kirilowii plant cell cultures. Biotechnol. Prog. 1994, 10, 345–352. [Google Scholar] [CrossRef]
- Remi Shih, N.J.; McDonald, K.A.; Dandekar, A.M.; Girbés, T.; Iglesias, R.; Jackman, A.P. A novel type-1 ribosome-inactivating protein isolated from the supernatant of transformed suspension cultures of Trichosanthes kirilowii. Plant Cell Rep. 1998, 17, 531–537. [Google Scholar] [CrossRef]
- Jin, S.-W.; Xiang, B.-P.; Cao, B.-X.; Wang, Y. Trichobitacin—A new ribosome-inactivating protein i. The isolation, physicochemical and biological properties of trichobitacin. Chin. J. Chem. 1997, 15, 160–168. [Google Scholar] [CrossRef]
- Xiang, B.-P.; Jin, S.-W.; Cao, B.-X.; Fu, G.-X.; Wang, Y. Trichobitacin ii. Determination of the partial primary structure of trichobitacin. Acta Chim. Sin. 1998, 56, 302–307. [Google Scholar]
- Zheng, Y.T.; Ben, K.L.; Jin, S.W. Anti-hiv-1 activity of trichobitacin, a novel ribosome-inactivating protein. Acta Pharmacol. Sin. 2000, 21, 179–182. [Google Scholar] [PubMed]
- Casellas, P.; Dussossoy, D.; Falasca, A.I.; Barbieri, L.; Guillemot, J.C.; Ferrara, P.; Bolognesi, A.; Cenini, P.; Stirpe, F. Trichokirin, a ribosome-inactivating protein from the seeds of trichosanthes kirilowii maximowicz. Purification, partial characterization and use for preparation of immunotoxins. Eur. J. Biochem. 1988, 176, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Mi, S.L.; An, C.C.; Wang, Y.; Chen, J.Y.; Che, N.Y.; Gao, Y.; Chen, Z.L. Trichomislin, a novel ribosome-inactivating protein, induces apoptosis that involves mitochondria and caspase-3. Arch. Biochem. Biophys. 2005, 434, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.-W.; Jin, S.-W.; Qian, W.-W.; Zhang, X.-L.; Cao, B.-X.; Wang, Q.-H.; Fu, Y.-H.; Xu, S.-Z.; Yao, Y.-Z.; Liu, Y.-F.; et al. Chemistry of trichosanthin iii: Amino acid sequence of cnbr degradation fragment cba. Acta Chim. Sin. 1983, 41, 1190–1192. [Google Scholar]
- Gu, Z.-W.; Qian, R.-R.; Jin, S.-W.; Qian, W.-W.; Liu, Y.-F.; Zhu, S.-Q.; Cao, B.-S.; Wang, S.-F.; Xu, S.-Z.; Zhang, L.-Q.; et al. Chemistry of trichosanthin iv: The principal structure of trichosanthin. Acta Chim. Sin. 1984, 42, 943–945. [Google Scholar]
- McGrath, M.S.; Hwang, K.M.; Caldwell, S.E.; Gaston, I.; Luk, K.C.; Wu, P.; Ng, V.L.; Crowe, S.; Daniels, J.; Marsh, J.; et al. Glq223: An inhibitor of human immunodeficiency virus replication in acutely and chronically infected cells of lymphocyte and mononuclear phagocyte lineage. Proc. Natl. Acad. Sci. USA 1989, 86, 2844–2848. [Google Scholar] [CrossRef] [PubMed]
- Collins, E.J.; Robertus, J.D.; LoPresti, M.; Stone, K.L.; Williams, K.R.; Wu, P.; Hwang, K.; Piatak, M. Primary amino acid sequence of alpha-trichosanthin and molecular models for abrin A-chain and alpha-trichosanthin. J. Biol. Chem. 1990, 265, 8665–8669. [Google Scholar] [PubMed]
- Shaw, P.C.; Chan, W.L.; Yeung, H.W.; Ng, T.B. Minireview: Trichosanthin—A protein with multiple pharmacological properties. Life Sci. 1994, 55, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, N.; McDonald, K.A.; Jackman, A.P.; Dandekar, A.M. A simplified procedure for the purification of trichosanthin (a type 1 ribosome inactivating protein) from Trichosanthes kirilowii root tubers. Protein Expr. Purif. 1996, 7, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, P.; Mak, N.K.; Luong, P.B.; Wong, R.N.S. Isolation and characterization of new isoforms of trichosanthin from Trichosanthes kirilowii. Plant Sci. 2002, 162, 79–85. [Google Scholar] [CrossRef]
- Shu, S.H.; Xie, G.Z.; Guo, X.L.; Wang, M. Purification and characterization of a novel ribosome-inactivating protein from seeds of Trichosanthes kirilowii maxim. Protein Expr. Purif. 2009, 67, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Maraganore, J.M.; Joseph, M.; Bailey, M.C. Purification and characterization of trichosanthin. Homology to the ricin a chain and implications as to mechanism of abortifacient activity. J. Biol. Chem. 1987, 262, 11628–11633. [Google Scholar] [PubMed]
- Li, F.; Yang, X.X.; Hu, W.G.; Xia, H.C.; Li, Z.; Zhang, Z.C. Purification and characterization of trichokirin-s1, a novel ribosome-inactivating peptide from seeds of Trichosanthes kirilowii. Acta Biochim. Biophys. Sin. 2003, 35, 841–846. [Google Scholar] [PubMed]
- Tai, N.W.; Li, F.; Li, Z.; Zhuang, D.H.; Zhang, Z.C. Purification and partial characterization of s-trichokirin, a new small ribosome-inactivating protein, from seeds of Trichosanthes kirilowii. Acta Biochim. Biophys. Sin. (Shanghai) 2000, 32, 495–498. [Google Scholar]
- Li, M.; Wang, Y.P.; Chai, J.J.; Wang, K.Y.; Bi, R.C. Molecular-replacement studies of Trichosanthes kirilowii lectin 1: A structure belonging to the family of type 2 ribosome-inactivating proteins. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 1073–1075. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chai, J.-J.; Wang, X.-P.; Wang, R.-Y.; Bi, R.-C. Crystal structure of Trichosanthes kirilowii lectin-1 and its relation to the type 2 ribosome inactivating proteins. Protein Pept. Lett. 2001, 8, 81–87. [Google Scholar] [CrossRef]
- Yeung, H.W.; Ng, T.B.; Wong, D.M.; Wong, C.M.; Li, W.W. Chemical and biological characterization of the galactose binding lectins from Trichosanthes kirilowii root tubers. Int. J. Pept. Protein Res. 1986, 27, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Yeung, H.W.; Wong, D.M.; Ng, T.B.; Li, W.W. Purification of three isolectins from root tubers of Trichosanthes kirilowii (tianhuafen). Int. J. Pept. Protein Res. 1986, 27, 325–333. [Google Scholar] [CrossRef]
- Falasca, A.I.; Abbondanza, A.; Barbieri, L.; Bolognesi, A.; Rossi, C.A.; Stirpe, F. Purification and partial characterization of a lectin from the seeds of Trichosanthes kirilowii maximowicz. FEBS Lett. 1989, 246, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, S.; Takeda, T.; Ogihara, Y. Isolation and characterization of a new abortifacient protein, karasurin, from root tubers of Trichosanthes kirilowii max. Var. Japonicum kitam. Chem. Pharm. Bull. 1991, 39, 716–719. [Google Scholar] [CrossRef] [PubMed]
- Toyokawa, S.; Takeda, T.; Kato, Y.; Wakabayashi, K.; Ogihara, Y. The complete amino acid sequence of an abortifacient protein, karasurin. Chem. Pharm. Bull. 1991, 39, 1244–1249. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Mizukami, H.; Takeda, T.; Ogihara, Y. Amino acid sequences and ribosome-inactivating activities of karasurin-b and karasurin-c. Biol. Pharm. Bull. 1996, 19, 1485–1489. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Kurihara, S.; Yoshikawa, T.; Mizukami, H. Effect of N- and C-terminal deletions on the RNA N-glycosidase activity and the antigenicity of karasurin-a, a ribosome-inactivating protein from Trichosanthes kirilowii var. Japonica. Biotechnol. Lett. 2004, 26, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Xu, Y.Z.; Wu, J.; Pu, Z.; Jin, S.W.; Liu, W.Y.; Xia, Z.X. Purification and characterization of trichomaglin—A novel ribosome-inactivating protein with abortifacient activity. Biochem. Mol. Biol. Int. 1999, 47, 185–193. [Google Scholar] [PubMed]
- Sultan, N.A.; Kenoth, R.; Swamy, M.J. Purification, physicochemical characterization, saccharide specificity, and chemical modification of a gal/galnac specific lectin from the seeds of Trichosanthes dioica. Arch. Biochem. Biophys. 2004, 432, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Chi, P.V.; Truong, H.Q.; Ha, N.T.; Chung, W.I.; Binh, L.T. Characterization of trichobakin, a type i ribosome-inactivating protein from Trichosanthes sp. Bac kan 8-98. Biotechnol. Appl. Biochem. 2001, 34, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.-X.; Liu, W.-Y.; Qian, K.-X. Investigation on isolation and functional mechanism of ribosome-inactivating protein from arborvitae seeds. J. Zhejiang Univ. 2005, 39, 423–426. [Google Scholar]
- Stirpe, F.; Pession-Brizzi, A.; Lorenzoni, E.; Strocchi, P.; Montanaro, L.; Sperti, S. Studies on the proteins from the seeds of croton tiglium and of jatropha curcas. Toxic properties and inhibition of protein synthesis in vitro. Biochem. J. 1976, 156, 1–6. [Google Scholar] [PubMed]
- Sperti, S.; Montanaro, L.; Mattioli, A.; Testoni, G.; Stirpe, F. Inhibition of protein synthesis in vitro by crotins and ricin. Effect on the steps of peptide chain elongation. Biochem. J. 1976, 156, 7–13. [Google Scholar] [PubMed]
- Chen, M.H.; Zhou, K.J.; Fu, Z.J.; Pan, K.Z. Preliminary crystallographic studies of crotin ii. J. Mol. Biol. 1993, 234, 908–909. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, R.; Escarmis, C.; Alegre, C.; Ferreras, J.M.; Girbes, T. Fusidic acid-dependent ribosomal complexes protect escherichia coli ribosomes from the action of the type 1 ribosome-inactivating protein crotin 2. FEBS Lett. 1993, 318, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Ferreras, J.M.; Alegre, C.; Iglesias, R.; Girbes, T. Sensitivity of translation by brevibacterium lactofermentum ribosomes to type 1 and type 2 ribosome-inactivating proteins. Biosci. Biotechnol. Biochem. 1994, 58, 1458–1462. [Google Scholar] [CrossRef] [PubMed]
- Alegre, C.; Iglesias, R.; Ferreras, J.M.; Citores, L.; Girbes, T. Sensitivity of ribosomes from agrobacterium tumefaciens to the ribosome-inactivating protein crotin 2 depending on the translocational state. Cell. Mol. Biol. 1996, 42, 151–158. [Google Scholar] [PubMed]
- Barbieri, L.; Falasca, A.; Franceschi, C.; Licastro, F.; Rossi, C.A.; Stirpe, F. Purification and properties of two lectins from the latex of the euphorbiaceous plants hura crepitans l. (sand-box tree) and Euphorbia characias L. (mediterranean spurge). Biochem. J. 1983, 215, 433–439. [Google Scholar] [PubMed]
- Stirpe, F.; Olsnes, S.; Pihl, A. Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin a. J. Biol. Chem. 1980, 255, 6947–6953. [Google Scholar] [PubMed]
- Ebert, R.F.; Spryn, L.A. Immunotoxin construction with a ribosome-inactivating protein from barley. Bioconjug. Chem. 1990, 1, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, M.G.; Kohr, W.A.; Beattie, K.L.; Beattie, W.G.; Marks, W.; Toman, P.D.; Cheung, L. Amino acid sequence analysis, gene construction, cloning, and expression of gelonin, a toxin derived from gelonium multiflorum. J. Interferon Cytokine Res. 1995, 15, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Singh, R.C.; Dubey, R.K.; Alam, A. Purification and characterisation of gelonin from seeds of Gelonium multiflorum. Indian J. Biochem. Biophys. 1999, 36, 258–265. [Google Scholar] [PubMed]
- Ferreras, J.M.; Iglesias, R.; Barbieri, L.; Alegre, C.; Bolognesi, A.; Rojo, M.A.; Carbajales, M.L.; Escarmis, C.; Girbes, T. Effects and molecular action of ribosome-inactivating proteins on ribosomes from Streptomyces lividans. Biochim. Biophys. Acta 1995, 1243, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, W.G.; Seidl, D. Crepitin, a phytohemagglutinin from Hura crepitans. Experientia 1969, 25, 891–892. [Google Scholar] [CrossRef] [PubMed]
- Falasca, A.; Franceschi, C.; Rossi, C.A.; Stirpe, F. Mitogenic and haemagglutinating properties of a lectinpurified from Hura crepitans seeds. Biochim. Biophys. Acta 1980, 632, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, S.J.; McPherson, A. Abrin and hurin: Two new lymphocyte mitogens. Cell 1975, 4, 263–268. [Google Scholar] [CrossRef] [PubMed]
- McPherson, A.; Hoover, S. Purification o mitogenic proteins from hura crepitans and Robinia pseudaccacia. Biochem. Biophys. Res. Commun. 1979, 89, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhou, X.; Wang, J.; Jiang, P.; Tang, K. Purification and characterization of curcin, a toxic lectin from the seed of Jatropha curcas. Prep. Biochem. Biotechnol. 2010, 40, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Ming-Xing, H.; Ying, X.; Xin-Shen, Z.; Fang, C. Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J. Biosci. 2005, 30, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-X.; Hou, P.; Wei, Q.; Xu, Y.; Chen, F. A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant. Growth Regul. 2008, 54, 115–123. [Google Scholar] [CrossRef]
- Qin, X.; Zheng, X.; Shao, C.; Gao, J.; Jiang, L.; Zhu, X.; Yan, F.; Tang, L.; Xu, Y.; Chen, F.; et al. Stress-induced curcin-l promoter in leaves of Jatropha curcas l. And characterization in transgenic tobacco. Planta 2009, 230, 387–395. [Google Scholar] [CrossRef]
- Qin, X.; Shao, C.; Hou, P.; Gao, J.; Lei, N.; Jiang, L.; Ye, S.; Gou, C.; Luo, S.; Zheng, X.; et al. Different functions and expression profiles of curcin and curcin-L in Jatropha curcas L. Z. Naturforsch C 2010, 65, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Nuchsuk, C.; Wetprasit, N.; Roytrakul, S.; Choowongkomon, K.; Thienprasert, N.T.; Yokthongwattana, C.; Arpornsuwan, T.; Ratanapo, S. Bioactivities of jc-scrip, a type 1 ribosome-inactivating protein from Jatropha curcas seed coat. Chem. Biol. Drug Des. 2013, 82, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Carnicelli, D.; Brigotti, M.; Alvergna, P.; Pallanca, A.; Sperti, S.; Montanaro, L. Cofactor requirement of ribosome-inactivating proteins from plants. J. Exp. Bot. 1997, 48, 1519–1523. [Google Scholar] [CrossRef]
- Osborne, T.B.; Mendel, L.B.; Harris, I.F. A study of the proteins of the castor bean, with special reference to the isolation of ricin. Am. J. Physiol. 1905, 14, 259–286. [Google Scholar]
- Kabat, E.A.; Heidelberger, M.; Bezer, A.E. A study of the purification and properties of ricin. J. Biol. Chem. 1947, 168, 629–639. [Google Scholar] [PubMed]
- Kunitz, M.; McDonald, M.R. Isolation of crystalline ricin. J. Gen. Physiol. 1948, 32, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, M.; Takahashi, T.; Funatsu, G.; Hayashi, K.; Funatsu, M. Biochemical studies on ricin. I. Purification of ricin. J. Biochem. 1964, 55, 587–592. [Google Scholar] [PubMed]
- Ishiguro, M.; Takahashi, T.; Hayashi, K.; Funatsu, M. Biochemical studies on ricin. II. Molecular weight and some physicochemical properties of crystalline ricin d. J. Biochem. 1964, 56, 325–327. [Google Scholar] [PubMed]
- Ishiguro, M.; Funatsu, G.; Funatsu, M. Biochemical studies on ricin part iii. Reinvestigation on the purification of ricin. Agric. Biol. Chem. 1971, 35, 724–728. [Google Scholar] [CrossRef]
- Funatsu, M.; Funatsu, G.; Ishiguro, M.; Nanno, S.; Hara, K. Structure and toxic function of ricin. II: Subunit structure of ricin d. Proc. Jpn. Acad 1971, 47, 718–723. [Google Scholar]
- Cawley, D.B.; Hedblom, M.L.; Houston, L.L. Homology between ricin and ricinus communis agglutinin: Amino terminal sequence analysis and protein synthesis inhibition studies. Arch. Biochem. Biophys. 1978, 190, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Fulton, R.J.; Blakey, D.C.; Knowles, P.P.; Uhr, J.W.; Thorpe, P.E.; Vitetta, E.S. Purification of ricin a1, a2, and b chains and characterization of their toxicity. J. Biol. Chem. 1986, 261, 5314–5319. [Google Scholar] [PubMed]
- Endo, Y.; Tsurugi, K. RNA N-glycosidase activity of ricin a-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987, 262, 8128–8130. [Google Scholar] [PubMed]
- Citores, L.; Ferreras, J.M.; Iglesias, R.; Carbajales, M.L.; Arias, F.J.; Jimenez, P.; Rojo, M.A.; Girbes, T. Molecular mechanism of inhibition of mammalian protein synthesis by some four-chain agglutinins. Proposal of an extended classification of plant ribosome-inactivating proteins (rRNA N-glycosidases). FEBS Lett. 1993, 329, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Olsnes, S. The history of ricin, abrin and related toxins. Toxicon 2004, 44, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, P.; Rao, M.K.; Kumar, O.; Vijayaraghavan, R. Characterization of native and denatured ricin using maldi-tof/ms. Cell. Mol. Biol. 2010, 56, Ol1385–Ol1399. [Google Scholar] [PubMed]
- Sehgal, P.; Khan, M.; Kumar, O.; Vijayaraghavan, R. Purification, characterization and toxicity profile of ricin isoforms from castor beans. Food Chem. Toxicol. 2010, 48, 3171–3176. [Google Scholar] [CrossRef] [PubMed]
- Mise, T.; Funatsu, G.; Ishiguro, M.; Funatsu, M. Isolation and characterization of ricin e from castor beans. Agric. Biol. Chem. 1977, 41, 2041–2046. [Google Scholar] [CrossRef]
- Araki, T.; Funatsu, G. The complete amino acid sequence of the b-chain of ricin e isolated from small-grain castor bean seeds. Ricin e is a gene recombination product of ricin d and ricinus Communis agglutinin. Biochim. Biophys. Acta 1987, 911, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Ladin, B.F.; Murray, E.E.; Halling, A.C.; Halling, K.C.; Tilakaratne, N.; Long, G.L.; Houston, L.L.; Weaver, R.F. Characterization of a cdna encoding ricin e, a hybrid ricin-ricinus Communis agglutinin gene from the castor plant Ricinus communis. Plant Mol. Biol. 1987, 9, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, G.L.; Blaustein, J. The interaction of ricinus Communis agglutinin with normal and tumor cell surfaces. Biochim. Biophys. Acta 1972, 266, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Lugnier, A.; Dirheimer, G. Differences between ricin and phytohemagglutinins from Ricinus communis seeds. FEBS Lett. 1973, 35, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Olsnes, S.; Saltvedt, E.; Pihl, A. Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis. J. Biol. Chem. 1974, 249, 803–810. [Google Scholar] [PubMed]
- Nicolson, G.L.; Blaustein, J.; Etzler, M.E. Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry 1974, 13, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, G.L.; Lacorbiere, M.; Hunter, T.R. Mechanism of cell entry and toxicity of an affinity- purified lectin from ricinus communis and its differential effects on normal and virus-transformed fibroblasts. Cancer Res. 1975, 35, 144–155. [Google Scholar] [PubMed]
- Harley, S.M.; Beevers, H. Ricin inhibition of in vitro protein synthesis by plant ribosomes. Proc. Natl. Acad. Sci. USA 1982, 79, 5935–5938. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.M.; Lamb, F.I.; Pappin, D.J.; Lord, J.M. The primary sequence of Ricinus communis agglutinin. Comparison with ricin. J. Biol. Chem. 1985, 260, 15682–15686. [Google Scholar] [PubMed]
- Sweeney, E.C.; Tonevitsky, A.G.; Temiakov, D.E.; Agapov, I.I.; Saward, S.; Palmer, R.A. Preliminary crystallographic characterization of ricin agglutinin. Proteins 1997, 28, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Hegde, R.; Podder, S.K. Evolution of tetrameric lectin ricinus communis agglutinin from two variant groups of ricin toxin dimers. Eur. J. Biochem. 1998, 254, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Helmy, M.; Piéroni, G. Rca60: Purification and characterization of ricin d isoforms from Ricinus sanguineus. J. Plant Physiol. 2000, 156, 477–482. [Google Scholar]
- Hegde, R.; Podder, S.K. Studies on the variants of the protein toxins ricin and abrin. Eur. J. Biochem. 1992, 204, 155–164. [Google Scholar] [CrossRef] [PubMed]
- El-Nikhely, N.; Helmy, M.; Saeed, H.M.; Abou Shama, L.A.; Abd El-Rahman, Z. Ricin a chain from Ricinus sanguineus: DNA sequence, structure and toxicity. Protein J. 2007, 26, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Lei, L.L.; Tung, T.C. Purification of abrin from Abrus precatorius L. Leguminosae. J. Formos. Med. Assoc. 1969, 68, 518–521. [Google Scholar]
- Olsnes, S.; Pihl, A. Isolation and properties of abrin: A toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent-peptide chains. Eur. J. Biochem. 1973, 35, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Olsnes, S.; Heiberg, R.; Pihl, A. Inactivation of eucaryotic ribosomes by the toxic plant proteins abrin and ricin. Mol. Biol. Rep. 1973, 1, 15–20. [Google Scholar] [CrossRef] [PubMed]
- McPherson, A., Jr.; Rich, A. Studies on crystalline abrin: X-ray diffraction data, molecular weight, carbohydrate content and subunit structure. FEBS Lett. 1973, 35, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Olsnes, S.; Pihl, A. Abrin, ricin, and their associated agglutinins. In The Specificity and Action of Animal, Bacterial and Plant Toxins; Cuatrecasas, P., Ed.; Springer US: New York, NY, USA, 1977; pp. 129–173. [Google Scholar]
- Kumar, O.; Kannoji, A.; Jayaraj, R.; Vijayaraghavan, R. Purification and characterization of abrin toxin from white Abrus precatorius seeds. J. Cell Tissue Res. 2008, 8, 1243–1248. [Google Scholar]
- Wei, C.H.; Hartman, F.C.; Pfuderer, P.; Yang, W.K. Purification and characterization of two major toxic proteins from seeds of abrus precatorius. J. Biol. Chem. 1974, 249, 3061–3067. [Google Scholar] [PubMed]
- Wei, C.H.; Einstein, J.R. Preliminary crystallographic data for a new crystalline form of abrin. J. Biol. Chem. 1974, 249, 2985–2986. [Google Scholar] [PubMed]
- Lin, J.Y.; Lee, T.C.; Tung, T.C. Isolation of antitumor proteins abrin-a and abrin-b from Abrus precatorius. Int. J. Pept. Protein Res. 1978, 12, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Lee, T.C.; Hu, S.T.; Tung, T.C. Isolation of four isotoxic proteins and one agglutinin from jequiriti bean (Abrus precatorius). Toxicon 1981, 19, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Lee, T.C.; Tung, T.C. Inhibitory effects of four isoabrins on the growth of sarcoma 180 cells. Cancer Res. 1982, 42, 276–279. [Google Scholar] [PubMed]
- Herrmann, M.S.; Behnke, W.D. A characterization of abrin a from the seeds of the Abrus precatorius plant. Biochim. Biophys. Acta 1981, 667, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Hegde, R.; Maiti, T.K.; Podder, S.K. Purification and characterization of three toxins and two agglutinins from Abrus precatorius seed by using lactamyl-sepharose affinity chromatography. Anal. Biochem. 1991, 194, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.H.; Lee, M.C.; Lee, T.C.; Lin, J.Y. Primary structure of three distinct isoabrins determined by cDNA sequencing. Conservation and significance. J. Mol. Biol. 1993, 229, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Tahirov, T.H.; Lu, T.H.; Liaw, Y.C.; Chen, Y.L.; Lin, J.Y. Crystal structure of abrin-a at 2.14 a. J. Mol. Biol. 1995, 250, 354–367. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-B.; Xie, G.-H.; Zhou, C.-F.; Zhang, Z.-G.; Song, W.-X.; Zhou, X.-C.; Zhang, N.-S.; Wang, X.-L.; Gao, H.-W.; Wang, Z.; et al. Purification and characterization of abrin-a. Chin. J. Vet. Sci. 2008, 28, 310–313. [Google Scholar]
- Wei, C.H.; Koh, C.; Pfuderer, P.; Einstein, J.R. Purification, properties, and crystallographic data for a principal nontoxic lectin from seeds of abrus precatorius. J. Biol. Chem. 1975, 250, 4790–4795. [Google Scholar] [PubMed]
- Roy, J.; Som, S.; Sen, A. Isolation, purification, and some properties of a lectin and abrin from Abrus precatorius linn. Arch. Biochem. Biophys. 1976, 174, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Murray, D.R.; Vairinhos, F. The seed proteins of Abrus precatorius L. Z. Pflanzenphysiol. 1982, 108, 471–476. [Google Scholar] [CrossRef]
- Liu, C.L.; Tsai, C.C.; Lin, S.C.; Wang, L.I.; Hsu, C.I.; Hwang, M.J.; Lin, J.Y. Primary structure and function analysis of the Abrus precatorius agglutinin a chain by site-directed mutagenesis. Pro(199) of amphiphilic alpha-helix h impairs protein synthesis inhibitory activity. J. Biol. Chem. 2000, 275, 1897–1901. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, K.; Lin, S.C.; Liu, C.L.; Liaw, Y.C.; Lin, J.Y.; Lu, T.H. Crystallization of agglutinin from the seeds of Abrus precatorius. Acta Crystallogr. D Biol. Crystallogr. 2000, 56, 898–899. [Google Scholar] [CrossRef] [PubMed]
- Bagaria, A.; Surendranath, K.; Ramagopal, U.A.; Ramakumar, S.; Karande, A.A. Structure-function analysis and insights into the reduced toxicity of Abrus precatorius agglutinin i in relation to abrin. J. Biol. Chem. 2006, 281, 34465–34474. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.V.; Mota, D.M.; Teixeira, C.R.; Cavada, B.S.; Moreira, R.A. Isolation and partial characterisation of highly toxic lectins from Abrus pulchellus seeds. Toxicon 1998, 36, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.; Horta, A.C.; Moreira, R.A.; Beltramini, L.M.; Araujo, A.P. Production of Abrus pulchellus ribosome-inactivating protein from seeds callus culture. Toxicon 2003, 41, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.L.; Goto, L.S.; Dinarte, A.R.; Hansen, D.; Moreira, R.A.; Beltramini, L.M.; Araujo, A.P. Pulchellin, a highly toxic type 2 ribosome-inactivating protein from Abrus pulchellus. Cloning heterologous expression of a-chain and structural studies. FEBS J. 2005, 272, 1201–1210. [Google Scholar] [CrossRef] [PubMed]
- Castilho, P.V.; Goto, L.S.; Roberts, L.M.; Araujo, A.P. Isolation and characterization of four type 2 ribosome inactivating pulchellin isoforms from Abrus pulchellus seeds. FEBS J. 2008, 275, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.S.; Wang, H.; Ng, T.B. Purification and characterization of novel ribosome inactivating proteins, alpha- and beta-pisavins, from seeds of the garden pea pisum sativum. Biochem. Biophys. Res. Commun. 1998, 253, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.Y.; Wang, H.X.; Ng, T.B. Sativin: A novel antifungal miraculin-like protein isolated from legumes of the sugar snap Pisum sativum var. Macrocarpon. Life Sci. 2000, 67, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, E.J.; Barre, A.; Barbieri, L.; Valbonesi, P.; Rouge, P.; van Leuven, F.; Stirpe, F.; Peumans, W.J. Type 1 ribosome-inactivating proteins are the most abundant proteins in Iris (iris hollandica var. Professor blaauw) bulbs: Characterization and molecular cloning. Biochem. J. 1997, 324 Pt 3, 963–970. [Google Scholar] [PubMed]
- Desmyter, S.; Vandenbussche, F.; Hao, Q.; Proost, P.; Peumans, W.J.; van Damme, E.J. Type-1 ribosome-inactivating protein from Iris bulbs: A useful agronomic tool to engineer virus resistance? Plant Mol. Biol. 2003, 51, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Mo, H.; van Damme, E.J.; Peumans, W.J.; Goldstein, I.J. Isolation and characterization of an N-acetyl-d-galactosamine-binding lectin from dutch Iris bulbs which recognizes the blood group a disaccharide (galnac alpha 1-3gal). J. Biol. Chem. 1994, 269, 7666–7673. [Google Scholar] [PubMed]
- Hao, Q.; van Damme, E.J.; Hause, B.; Barre, A.; Chen, Y.; Rouge, P.; Peumans, W.J. Iris bulbs express type 1 and type 2 ribosome-inactivating proteins with unusual properties. Plant Physiol. 2001, 125, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Vandenbussche, F.; Peumans, W.J.; Desmyter, S.; Proost, P.; Ciani, M.; van Damme, E.J. The type-1 and type-2 ribosome-inactivating proteins from Iris confer transgenic tobacco plants local but not systemic protection against viruses. Planta 2004, 220, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Verma, H.N.; Srivastava, S.; Varsha; Kumar, D. Induction of systemic resistance in plants against viruses by a basic protein from Clerodendrum aculeatum leaves. Phytopathology 1996, 86, 485–492. [Google Scholar] [CrossRef]
- Kumar, D.; Verma, H.N.; Tuteja, N.; Tewari, K.K. Cloning and characterisation of a gene encoding an antiviral protein from Clerodendrum aculeatum L. Plant Mol. Biol. 1997, 33, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Srivastava, S.; Varsha; Verma, H.N. Two basic proteins isolated from Clerodendrum inerme gaertn. Are inducers of systemic antiviral resistance in susceptible plants. Plant Sci. 1995, 110, 73–82. [Google Scholar] [CrossRef]
- Olivieri, F.; Prasad, V.; Valbonesi, P.; Srivastava, S.; Ghosal-Chowdhury, P.; Barbieri, L.; Bolognesi, A.; Stirpe, F. A systemic antiviral resistance-inducing protein isolated from Clerodendrum inerme gaertn. Is a polynucleotide: Adenosine glycosidase (ribosome-inactivating protein). FEBS Lett. 1996, 396, 132–134. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-Y.; Xiao, Y.-H.; Pei, Y. Sequence of a Novel Leonurus japonicus Ribosome-Inactivating Protein (Rip) Gene. Patent No. Cn 1563381 a, 12 January 2005. [Google Scholar]
- Hou, F.-J.; Wang, B.-Z.; Liu, W.-Y. Comparative studies of three type ii ribosome-inactivating proteins from the seeds of three species of the genus Cinnamomum. Protein Pept. Lett. 2001, 8, 193–200. [Google Scholar] [CrossRef]
- Ling, J.; Liu, W.Y.; Wang, T.P. Simultaneous existence of two types of ribosome-inactivating proteins in the seeds of Cinnamonum camphora—Characterization of the enzymatic activities of these cytotoxic proteins. Biochim. Biophys. Acta 1995, 1252, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Liu, W.Y. Cytotoxicity of two new ribosome-inactivating proteins, cinnamomin and camphorin, to carcinoma cells. Cell Biochem. Funct. 1996, 14, 157–161. [Google Scholar] [CrossRef] [PubMed]
- He, W.J.; Liu, W.Y. Cinnamomin: A multifunctional type ii ribosome-inactivating protein. Int. J. Biochem. Cell Biol. 2003, 35, 1021–1027. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, W.Y. Cinnamomin—A versatile type ii ribosome-inactivating protein. Acta Biochim. Biophys. Sin. 2004, 36, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Hou, F.-J.; Liu, R.-S.; Liu, W.-Y. Cinphorin: A novel type ii ribosome-inactivating protein with miniature active a-chain. Prog. Biochem. Biophys. 2002, 29, 531–532. [Google Scholar]
- Li, X.D.; Liu, W.Y.; Niu, C.L. Purification of a new ribosome-inactivating protein from the seeds of Cinnamomum porrectum and characterization of the RNA N-glycosidase activity of the toxic protein. Biol. Chem. 1996, 377, 825–831. [Google Scholar] [PubMed]
- Kondo, T.; Yoshikawa, T. Purification and characterization of abelesculin, a novel ribosome-inactivating protein from the mature seeds of Abelmoschus esculentus. J. Nat. Med. 2007, 61, 170–174. [Google Scholar] [CrossRef]
- Verma, H.N.; Awasthi, L.P. Antiviral activity of boerhaavia diffusa root extract and the physical properties of the virus inhibitor. Can. J. Bot. 1979, 57, 926–932. [Google Scholar] [CrossRef]
- Verma, H.N.; Awasthi, L.P.; Saxena, K.C. Isolation of the virus inhibitor from the root extract of Boerhaavia diffusa inducing systemic resistance in plants. Can. J. Bot. 1979, 57, 1214–1217. [Google Scholar] [CrossRef]
- Kubo, S.; Ikeda, T.; Imaizumi, S.; Takanami, Y.; Mikami, Y. A potent plant virus inhibitor found in Mirabilis jalapa L. Jpn. J. Phytopathol. 1990, 56, 481–487. [Google Scholar] [CrossRef]
- Balasaraswathi, R.; Sadasivam, S.; Ward, M.; Walker, J.M. An antiviral protein from Bougainvillea spectabilis roots; purification and characterisation. Phytochemistry 1998, 47, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- den Hartog, M.T.; Lubelli, C.; Boon, L.; Heerkens, S.; Ortiz Buijsse, A.P.; de Boer, M.; Stirpe, F. Cloning and expression of cDNA coding for bouganin. Eur. J. Biochem. 2002, 269, 1772–1779. [Google Scholar] [CrossRef] [PubMed]
- Narwal, S.; Balasubrahmanyam, A.; Lodha, M.L.; Kapoor, H.C. Purification and properties of antiviral proteins from the leaves of Bougainvillea xbuttiana. Indian J. Biochem. Biophys. 2001, 38, 342–347. [Google Scholar] [PubMed]
- Narwal, S.; Balasubrahmanyam, A.; Sadhna, P.; Kapoor, H.; Lodha, M.L. A systemic resistance inducing antiviral protein with N-glycosidase activity from Bougainvillea xbuttiana leaves. Indian J. Exp. Biol. 2001, 39, 600–603. [Google Scholar] [PubMed]
- Choudhary, N.L.; Yadav, O.P.; Lodha, M.L. Ribonuclease, deoxyribonuclease, and antiviral activity of escherichia coli-expressed Bougainvillea xbuttiana antiviral protein 1. Biochemistry 2008, 73, 273–277. [Google Scholar] [PubMed]
- Choudhary, N.; Kapoor, H.C.; Lodha, M.L. Cloning and expression of antiviral/ribosome-inactivating protein from Bougainvillea xbuttiana. J. Biosci. 2008, 33, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Vivanco, J.M.; Savary, B.J.; Flores, H.E. Characterization of two novel type i ribosome-inactivating proteins from the storage roots of the andean crop Mirabilis expansa. Plant Physiol. 1999, 119, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Vepachedu, R.; Bais, H.P.; Vivanco, J.M. Molecular characterization and post-transcriptional regulation of me1, a type-i ribosome-inactivating protein from Mirabilis expansa. Planta 2003, 217, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Habuka, N.; Murakami, Y.; Noma, M.; Kudo, T.; Horikoshi, K. Amino acid sequence of mirabilis antiviral protein, total synthesis of its gene and expression in Escherichia coli. J. Biol. Chem. 1989, 264, 6629–6637. [Google Scholar] [PubMed]
- Bolognesi, A.; Polito, L.; Lubelli, C.; Barbieri, L.; Parente, A.; Stirpe, F. Ribosome-inactivating and adenine polynucleotide glycosylase activities in Mirabilis jalapa L. Tissues. J. Biol. Chem. 2002, 277, 13709–13716. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Dai, X.; Wang, D.; Zeng, X. Purification, characterization and cytotoxicity of malanin, a novel plant toxin from the seeds of Malania oleifera. Toxicon 2009, 54, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Voss, C.; Eyol, E.; Frank, M.; von der Lieth, C.W.; Berger, M.R. Identification and characterization of riproximin, a new type ii ribosome-inactivating protein with antineoplastic activity from Ximenia americana. FASEB J. 2006, 20, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
- Bayer, H.; Ey, N.; Wattenberg, A.; Voss, C.; Berger, M.R. Purification and characterization of riproximin from Ximenia americana fruit kernels. Protein Expr. Purif. 2012, 82, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Refsnes, K.; Haylett, T.; Sandvig, K.; Olsnes, S. Modeccin—A plant toxin inhibiting protein synthesis. Biochem. Biophys. Res. Commun. 1977, 79, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Olsnes, S.; Haylett, T.; Refsnes, K. Purification and characterization of the highly toxic lectin modeccin. J. Biol. Chem. 1978, 253, 5069–5073. [Google Scholar] [PubMed]
- Stirpe, F.; Gasperi-Campani, A.; Barbieri, L.; Lorenzoni, E.; Montanaro, L.; Sperti, S.; Bonetti, E. Inhibition of protein synthesis by modeccin, the toxin of Modecca digitata. FEBS Lett. 1977, 85, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Zamboni, M.; Montanaro, L.; Sperti, S.; Stirpe, F. Purification and properties of different forms of modeccin, the toxin of Adenia digitata. Separation of subunits with inhibitory and lectin activity. Biochem. J. 1980, 185, 203–210. [Google Scholar] [PubMed]
- Stirpe, F.; Bolognesi, A.; Bortolotti, M.; Farini, V.; Lubelli, C.; Pelosi, E.; Polito, L.; Dozza, B.; Strocchi, P.; Chambery, A.; et al. Characterization of highly toxic type 2 ribosome-inactivating proteins from Adenia lanceolata and Adenia stenodactyla (passifloraceae). Toxicon 2007, 50, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Monti, B.; D’Alessandro, C.; Farini, V.; Bolognesi, A.; Polazzi, E.; Contestabile, A.; Stirpe, F.; Battelli, M.G. In vitro and in vivo toxicity of type 2 ribosome-inactivating proteins lanceolin and stenodactylin on glial and neuronal cells. Neurotoxicology 2007, 28, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Falasca, A.I.; Stirpe, F. Volkensin, the toxin of Adenia volkensii (Kilyambiti plant). FEBS Lett. 1984, 171, 277–279. [Google Scholar] [CrossRef]
- Stirpe, F.; Barbieri, L.; Abbondanza, A.; Falasca, A.I.; Brown, A.N.; Sandvig, K.; Olsnes, S.; Pihl, A. Properties of volkensin, a toxic lectin from Adenia volkensii. J. Biol. Chem. 1985, 260, 14589–14595. [Google Scholar] [PubMed]
- Chambery, A.; di Maro, A.; Monti, M.M.; Stirpe, F.; Parente, A. Volkensin from Adenia volkensii harms (kilyambiti plant), a type 2 ribosome-inactivating protein. Eur. J. Biochem. 2004, 271, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, J.; Habuka, N.; Masuta, C.; Miyano, M.; Koiwai, A. Isolation and analysis of a genomic clone encoding a pokeweed antiviral protein. Plant Mol. Biol. 1992, 20, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Honjo, E.; Dong, D.; Motoshima, H.; Watanabe, K. Genomic clones encoding two isoforms of pokeweed antiviral protein in seeds (pap-s1 and s2) and the N-glycosidase activities of their recombinant proteins on ribosomes and DNA in comparison with other isoforms. J. Biochem. 2002, 131, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Irvin, J.D.; Robertus, J.D.; Monzingo, A.F. Preliminary X-ray diffraction studies on an anti-viral protein. Biochem. Biophys. Res. Commun. 1977, 74, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Irvin, J.D. Pokeweed antiviral protein. Pharmacol. Ther. 1983, 21, 371–387. [Google Scholar] [CrossRef] [PubMed]
- Bjorn, M.J.; Larrick, J.; Piatak, M.; Wilson, K.J. Characterization of translational inhibitors from Phytolacca americana. Amino-terminal sequence determination and antibody-inhibitor conjugates. Biochim. Biophys. Acta 1984, 790, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Chen, Z.C.; Antoniw, J.F.; White, R.F. Isolation and characterization of a cDNA clone encoding the anti-viral protein from Phytolacca americana. Plant Mol. Biol. 1991, 17, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Poyet, J.L.; Hoeveler, A. Cdna cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro. FEBS Lett. 1997, 406, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Irvin, J.D.; Uckun, F.M. Pokeweed antiviral protein: Ribosome inactivation and therapeutic applications. Pharmacol. Ther. 1992, 55, 279–302. [Google Scholar] [CrossRef] [PubMed]
- Rajamohan, F.; Venkatachalam, T.K.; Irvin, J.D.; Uckun, F.M. Pokeweed antiviral protein isoforms pap-i, pap-ii, and pap-iii depurinate RNA of human immunodeficiency virus (HIV)-1. Biochem. Biophys. Res. Commun. 1999, 260, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Irvin, J.D.; Kelly, T.; Robertus, J.D. Purification and properties of a second antiviral protein from Phytolacca americana which inactivates eukaryotic ribosomes. Arch. Biochem. Biophys. 1980, 200, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Bolognesi, A.; Cenini, P.; Falasca, A.I.; Minghetti, A.; Garofano, L.; Guicciardi, A.; Lappi, D.; Miller, S.P.; Stirpe, F.; et al. Ribosome-inactivating proteins from plant cells in culture. Biochem. J. 1989, 257, 801–807. [Google Scholar] [PubMed]
- Park, S.W.; Lawrence, C.B.; Linden, J.C.; Vivanco, J.M. Isolation and characterization of a novel ribosome-inactivating protein from root cultures of pokeweed and its mechanism of secretion from roots. Plant Physiol. 2002, 130, 164–178. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Aron, G.M.; Irvin, J.D.; Stirpe, F. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed). Biochem. J. 1982, 203, 55–59. [Google Scholar] [PubMed]
- Parente, A.; Conforto, B.; di Maro, A.; Chambery, A.; de Luca, P.; Bolognesi, A.; Iriti, M.; Faoro, F. Type 1 ribosome-inactivating proteins from Phytolacca dioica L. Leaves: Differential seasonal and age expression, and cellular localization. Planta 2008, 228, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Di Maro, A.; Valbonesi, P.; Bolognesi, A.; Stirpe, F.; de Luca, P.; Siniscalco Gigliano, G.; Gaudio, L.; Delli Bovi, P.; Ferranti, P.; Malorni, A.; et al. Isolation and characterization of four type-1 ribosome-inactivating proteins, with polynucleotide: Adenosine glycosidase activity, from leaves of Phytolacca dioica L. Planta 1999, 208, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Severino, V.; Chambery, A.; di Maro, A.; Marasco, D.; Ruggiero, A.; Berisio, R.; Giansanti, F.; Ippoliti, R.; Parente, A. The role of the glycan moiety on the structure-function relationships of pd-l1, type 1 ribosome-inactivating protein from p. Dioica leaves. Mol. Biosyst. 2010, 6, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Di Maro, A.; Chambery, A.; Carafa, V.; Costantini, S.; Colonna, G.; Parente, A. Structural characterization and comparative modeling of pd-ls 1-3, type 1 ribosome-inactivating proteins from summer leaves of Phytolacca dioica L. Biochimie 2009, 91, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, A.; Chambery, A.; di Maro, A.; Parente, A.; Berisio, R. Atomic resolution (1.1 a) structure of the ribosome-inactivating protein pd-l4 from Phytolacca dioica L. Leaves. Proteins 2008, 71, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Parente, A.; de Luca, P.; Bolognesi, A.; Barbieri, L.; Battelli, M.G.; Abbondanza, A.; Sande, M.J.; Gigliano, G.S.; Tazzari, P.L.; Stirpe, F.; et al. Purification and partial characterization of single-chain ribosome-inactivating proteins from the seeds of Phytolacca dioica L. Biochim. Biophys. Acta 1993, 1216, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio Blanco, F.; Bolognesi, A.; Malorni, A.; Sande, M.J.; Savino, G.; Parente, A. Complete amino-acid sequence of pd-s2, a new ribosome-inactivating protein from seeds of Phytolacca dioica L. Biochim. Biophys. Acta 1997, 1338, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Ready, M.P.; Adams, R.P.; Robertus, J.D. Dodecandrin, a new ribosome-inhibiting protein from Phytolacca dodecandra. Biochim. Biophys. Acta 1984, 791, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, S.; Hansen, H.S.; Nyman, U. Ribosome-inhibiting proteins from in vitro cultures of Phytolacca dodecandra. Planta Med. 1991, 57, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Di Maro, A.; Chambery, A.; Daniele, A.; Casoria, P.; Parente, A. Isolation and characterization of heterotepalins, type 1 ribosome-inactivating proteins from Phytolacca heterotepala leaves. Phytochemistry 2007, 68, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.H.; Song, S.K.; Choi, K.W.; Lee, J.S. Expression of a cdna encoding Phytolacca insularis antiviral protein confers virus resistance on transgenic potato plants. Mol. Cells 1997, 7, 807–815. [Google Scholar] [PubMed]
- Song, S.K.; Choi, Y.; Moon, Y.H.; Kim, S.G.; Choi, Y.D.; Lee, J.S. Systemic induction of a Phytolacca insularis antiviral protein gene by mechanical wounding, jasmonic acid, and abscisic acid. Plant Mol. Biol. 2000, 43, 439–450. [Google Scholar] [CrossRef] [PubMed]
- Coleman, W.H.; Roberts, W.K. Inhibitors of animal cell-free protein synthesis from grains. Biochim. Biophys. Acta 1982, 696, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Asano, K.; Svensson, B.; Poulsen, F.M. Isolation and characterization of inhibitors of animal cell-free protein synthesis from barley seeds. Carlsberg Res. Commun. 1984, 49, 619–626. [Google Scholar] [CrossRef]
- Endo, Y.; Tsurugi, K.; Ebert, R.F. The mechanism of action of barley toxin: A type 1 ribosome-inactivating protein with RNA N-glycosidase activity. Biochim. Biophys. Acta 1988, 954, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Leah, R.; Tommerup, H.; Svendsen, I.; Mundy, J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 1991, 266, 1564–1573. [Google Scholar] [PubMed]
- Asano, K.; Svensson, B.; Poulsen, F.M.; Nygård, O.; Nilsson, L. Influence of a protein synthesis inhibitor from barley seeds upon different steps of animal cell-free protein synthesis. Carlsberg Res. Commun. 1986, 51, 75–81. [Google Scholar] [CrossRef]
- Chaudhry, B.; Muller-Uri, F.; Cameron-Mills, V.; Gough, S.; Simpson, D.; Skriver, K.; Mundy, J. The barley 60 kDa jasmonate-induced protein (jip60) is a novel ribosome-inactivating protein. Plant J. 1994, 6, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Salehzadeh, A.; Arasteh, A.; Shafighi, T.; Ranjee, N. Isolation and sequencing of ribosome inactivating protein gene from iranian rice (Oryza sativa). Afr. J. Agric. Res. 2011, 6, 4941–4946. [Google Scholar]
- Minami, Y.; Yamaguchi, K.; Yagi, F.; Tadera, K.; Funatsu, G. Isolation and amino acid sequence of a protein-synthesis inhibitor from the seeds of rye (Secale cereale). Biosci. Biotechnol. Biochem. 1998, 62, 1152–1156. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.S.; Hruby, D.E.; Sharma, O.K.; Roberts, W.K. An atp-dependent inhibition of protein synthesis in ascites cell extracts by wheat germ protein. Biochim. Biophys. Acta 1977, 479, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.K.; Stewart, T.S. Purification and properties of a translation inhibitor from wheat germ. Biochemistry 1979, 18, 2615–2621. [Google Scholar] [CrossRef] [PubMed]
- Coleman, W.H.; Roberts, W.K. Factor requirements for the tritin inactivation of animal cell ribosomes. Biochim. Biophys. Acta 1981, 654, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Reisbig, R.R.; Bruland, O. The protein synthesis inhibitors from wheat, barley, and rye have identical antigenic determinants. Biochem. Biophys. Res. Commun. 1983, 114, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Massiah, A.J.; Hartley, M.R. Wheat ribosome-inactivating proteins: Seed and leaf forms with different specificities and cofactor requirements. Planta 1995, 197, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Di Fonzo, N.; Manzocchi, L.; Salamini, F.; Soave, C. Purification and properties of an endospermic protein of maize associated with the opaque-2 and opaque-6 genes. Planta 1986, 167, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Di Fonzo, N.; Hartings, H.; Brembilla, M.; Motto, M.; Soave, C.; Navarro, E.; Palau, J.; Rhode, W.; Salamini, F. The b-32 protein from maize endosperm, an albumin regulated by the o2 locus: Nucleic acid (cDNA) and amino acid sequences. Mol. Gen. Genet. 1988, 212, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Bass, H.W.; OBrian, G.R.; Boston, R.S. Cloning and sequencing of a second ribosome-inactivating protein gene from maize (Zea mays L.). Plant Physiol. 1995, 107, 661–662. [Google Scholar] [CrossRef] [PubMed]
- Bass, H.W.; Krawetz, J.E.; OBrian, G.R.; Zinselmeier, C.; Habben, J.E.; Boston, R.S. Maize ribosome-inactivating proteins (rips) with distinct expression patterns have similar requirements for proenzyme activation. J. Exp. Bot. 2004, 55, 2219–2233. [Google Scholar] [CrossRef] [PubMed]
- Hey, T.D.; Hartley, M.; Walsh, T.A. Maize ribosome-inactivating protein (b-32). Homologs in related species, effects on maize ribosomes, and modulation of activity by pro-peptide deletions. Plant Physiol. 1995, 107, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Cammue, B.P.; Peeters, B.; Peumans, W.J. Isolation and partial characterization of an N-acetylgalactosamine-specific lectin from winter-aconite (Eranthis hyemalis) root tubers. Biochem. J. 1985, 227, 949–955. [Google Scholar] [PubMed]
- Kumar, M.A.; Timm, D.E.; Neet, K.E.; Owen, W.G.; Peumans, W.J.; Rao, A.G. Characterization of the lectin from the bulbs of Eranthis hyemalis (winter aconite) as an inhibitor of protein synthesis. J. Biol. Chem. 1993, 268, 25176–25183. [Google Scholar] [PubMed]
- Endo, Y.; Oka, T.; Tsurugi, K.; Franz, H. The mechanism of action of the cytotoxic lectin from Phoradendron californicum: The RNA N-glycosidase activity of the protein. FEBS Lett. 1989, 248, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Sharma, R.S.; Yadav, S.; Babu, C.R.; Singh, T.P. Purification and characterization of four isoforms of himalayan mistletoe ribosome-inactivating protein from viscum album having unique sugar affinity. Arch. Biochem. Biophys. 2004, 423, 288–301. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Ethayathulla, A.S.; Sharma, R.S.; Yadav, S.; Krauspenhaar, R.; Betzel, C.; Babu, C.R.; Singh, T.P. Structure of a novel ribosome-inactivating protein from a hemi-parasitic plant inhabiting the northwestern himalayas. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2295–2304. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Bilgrami, S.; Sharma, R.S.; Kaur, P.; Yadav, S.; Krauspenhaar, R.; Betzel, C.; Voelter, W.; Babu, C.R.; Singh, T.P.; et al. Crystal structure of himalayan mistletoe ribosome-inactivating protein reveals the presence of a natural inhibitor and a new functionally active sugar-binding site. J. Biol. Chem. 2005, 280, 20712–20721. [Google Scholar] [CrossRef] [PubMed]
- Ziska, P.; Franz, H.; Kindt, A. The lectin from viscum album l. Purification by biospecific affinity chromatography. Experientia 1978, 34, 123–124. [Google Scholar] [CrossRef] [PubMed]
- Stirpe, F.; Legg, R.F.; Onyon, L.J.; Ziska, P.; Franz, H. Inhibition of protein synthesis by a toxic lectin from Viscum album L. (mistletoe). Biochem. J. 1980, 190, 843–845. [Google Scholar] [PubMed]
- Luther, P.; Theise, H.; Chatterjee, B.; Karduck, D.; Uhlenbruck, G. The lectin from Viscum album L.—Isolation, characterization, properties and structure. Int. J. Biochem. 1980, 11, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Franz, H.; Ziska, P.; Kindt, A. Isolation and properties of three lectins from mistletoe (Viscum album L.). Biochem. J. 1981, 195, 481–484. [Google Scholar] [PubMed]
- Olsnes, S.; Stirpe, F.; Sandvig, K.; Pihl, A. Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J. Biol. Chem. 1982, 257, 13263–13270. [Google Scholar] [PubMed]
- Franz, H. Mistletoe lectins and their a and b chains. Oncology 1986, 43, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.L.; Baudino, S.; Ribereau-Gayon, G.; Beck, J.P. Characterization of cytotoxic proteins from mistletoe (Viscum album L.). Cancer Lett. 1990, 51, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, E.C.; Tonevitsky, A.G.; Palmer, R.A.; Niwa, H.; Pfueller, U.; Eck, J.; Lentzen, H.; Agapov, I.I.; Kirpichnikov, M.P. Mistletoe lectin i forms a double trefoil structure. FEBS Lett. 1998, 431, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Eck, J.; Langer, M.; Mockel, B.; Baur, A.; Rothe, M.; Zinke, H.; Lentzen, H. Cloning of the mistletoe lectin gene and characterization of the recombinant a-chain. Eur. J. Biochem. 1999, 264, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.J.; Yoo, Y.C.; Kang, T.B.; Shimazaki, K.; Song, S.K.; Lee, K.H.; Kim, S.H.; Park, C.H.; Azuma, I.; Kim, J.B.; et al. Lectins isolated from korean mistletoe (Viscum album coloratum) induce apoptosis in tumor cells. Cancer Lett. 1999, 136, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Das, M.K.; Sharma, R.S.; Mishra, V. A cytotoxic type-2 ribosome inactivating protein (from leafless mistletoe) lacking sugar binding activity. Int. J. Biol. Macromol. 2011, 49, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Lee, D.W.; Kang, T.B.; Lee, K.H.; Yoon, T.J.; Kim, J.B.; Do, M.S.; Song, S.K. Cdna cloning and sequence analysis of the lectin genes of the korean mistletoe (Viscum album coloratum). Mol. Cells 2001, 12, 215–220. [Google Scholar] [PubMed]
- Kang, T.B.; Song, S.K.; Yoon, T.J.; Yoo, Y.C.; Lee, K.H.; Her, E.; Kim, J.B. Isolation and characterization of two korean mistletoe lectins. J. Biochem. Mol. Biol. 2007, 40, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Park, W.B.; Han, S.K.; Lee, M.H.; Han, K.H. Isolation and characterization of lectins from stem and leaves of korean mistletoe (Viscum album var.Coloratum) by affinity chromatography. Arch. Pharm. Res. 1997, 20, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.Y.; Park, S.M.; Choung, B.Y.; Park, W.B. Comparative study of korean (Viscum album var. Coloratum) and european mistletoes (viscum album). Arch. Pharm. Res. 2000, 23, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jia, Y.; Zhang, Z.; Chen, X.; He, H.; Fang, R.; Hao, X. Purification and characterization of a new ribosome inactivating protein from cinchonaglycoside c-treated tobacco leaves. J. Integr. Plant Biol. 2007, 49, 1327–1333. [Google Scholar] [CrossRef]
- Sharma, N.; Park, S.W.; Vepachedu, R.; Barbieri, L.; Ciani, M.; Stirpe, F.; Savary, B.J.; Vivanco, J.M. Isolation and characterization of an rip (ribosome-inactivating protein)-like protein from tobacco with dual enzymatic activity. Plant Physiol. 2004, 134, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Sismindari. Identification of ribosome-inactivating proteins (rips) from Phaleria macrocarpa (scheff) boerl., a possible active compound. Maj. Farm. Indones. 2004, 15, 44–49. [Google Scholar]
- Funatsu, G.; Islam, M.R.; Minami, Y.; Sung-Sil, K.; Kimura, M. Conserved amino acid residues in ribosome-inactivating proteins from plants. Biochimie 1991, 73, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Valbonesi, P.; Bonora, E.; Gorini, P.; Bolognesi, A.; Stirpe, F. Polynucleotide: Adenosine glycosidase activity of ribosome-inactivating proteins: Effect on DNA, RNA and poly(a). Nucleic Acids Res. 1997, 25, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Ferreras, J.M.; Merino, M.J.; Iglesias, R.; Munoz, R.; Girbés, T. Isolation of a ribosome-inactivating type 1 protein from seeds of cucumis melo. Biochem. Int. 1989, 19, 201–207. [Google Scholar]
- Rojo, M.A.; Arias, F.J.; Iglesias, R.; Ferreras, J.M.; Soriano, F.; Méndez, E.; Escarmis, C.; Girbés, T. Enzymic activity of melonin, a translational inhibitor present in dry seeds of Cucumis melo L. Plant Sci. 1994, 103, 127–134. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrot, J.; Weng, A.; Melzig, M.F. Ribosome-Inactivating and Related Proteins. Toxins 2015, 7, 1556-1615. https://doi.org/10.3390/toxins7051556
Schrot J, Weng A, Melzig MF. Ribosome-Inactivating and Related Proteins. Toxins. 2015; 7(5):1556-1615. https://doi.org/10.3390/toxins7051556
Chicago/Turabian StyleSchrot, Joachim, Alexander Weng, and Matthias F. Melzig. 2015. "Ribosome-Inactivating and Related Proteins" Toxins 7, no. 5: 1556-1615. https://doi.org/10.3390/toxins7051556
APA StyleSchrot, J., Weng, A., & Melzig, M. F. (2015). Ribosome-Inactivating and Related Proteins. Toxins, 7(5), 1556-1615. https://doi.org/10.3390/toxins7051556