Application of Microwave Irradiation and Heat to Improve Gliadin Detection and Ricin ELISA Throughput with Food Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gliadin ELISA
2.2. Ricin ELISA
Incubation a | Wattage b | Solvent c | LOD d | Response e 25 ng/mL | Bkgd |
---|---|---|---|---|---|
2 minon − 2 minoff − 2 minon | 0 | UD | 4.6 ± 1.4 f | 0.046 ± 0.01 | 0.07 |
2 minon − 2 minoff − 2 minon | 250 | UD | 2.9 ± 1.2 | 0.08 ± 0.05 | 0.07 |
(1 minon − 33 soff) 9 − 1 minon | 250 | UD | 0.6 ± 0.4 | 0.25 ± 0.05 | 0.08 |
(1 minon − 33 soff) 9 − 1 minon | 300 | UD | 0.38 ± 0.16 | 0.29 ± 0.03 | 0.08 |
10 min 37 °C | UD | 0.45 ± 0.05 | 0.21 ± 0.01 | 0.07 | |
10 min 37 °C − 5 min Rm T | UD | 0.33 ± 0.04 | 0.34 ± 0.04 | 0.08 | |
1 h 37 °C | UD | 0.4 ± 0.1 | 1.36 ± 0.15 | 0.13 |
Microwave a | 15 min 37 °C | 1 h 37 °C | |||||||
---|---|---|---|---|---|---|---|---|---|
LOD c ng/mL | Recovery e % | Bkgd d OD410nm | LOD ng/mL | Recovery % | Bkgd OD410nm | LOD ng/mL | Recovery % | Bkgd OD410nm | |
Chocolate-Hazelnut Spread b | 0.4 | 93 ± 8 | 0.055 ± 0.001 | 0.3 | 81 ± 7 | 0.058 ± 0.001 | 0.1 | 79 ± 10 | 0.072 ± 0.002 |
Whole Wheat Pita Bread | 2.8 | 87 ± 19 | 0.070 ± 0.008 | 0.3 | 78 ± 12 | 0.073 ± 0.001 | 0.09 | 80 ± 15 | 0.117 ± 0.002 |
Orange Juice with Pulp | 4.6 | 91 ± 6 | 0.071 ± 0.013 | 0.5 | 90 ± 7 | 0.070 ± 0.002 | 0.3 | 89 ± 13 | 0.106 ± 0.008 |
Soda (cola) | 6.5 | 83 ± 8 | 0.093 ± 0.015 | 1.6 | 93 ± 4 | 0.091 ± 0.006 | 0.4 | 98 ± 5 | 0.137 ± 0.009 |
3. Experimental Section
3.1. Instrumentation
3.2. Gliadin ELISA
3.3. Ricin ELISA
3.4. ELISA data analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- He, J. Practical guide to ELISA development. In The Immunoassay Handbook: Theory and Applications of Ligand Binding, ELISA and Related Techniques, 4th ed.; Wild, D., Ed.; Elsevier Ltd.: Oxford, UK, 2013; pp. 381–394. [Google Scholar]
- Van Dorp, R.; Daha, M.R.; Muizert, Y.; Marani, E.; Boon, M.E. A rapid ELISA measurement of anti-glomerular basement membrane antibodies using microwaves. J. Clin. Lab. Immunol. 1993, 40, 135–147. [Google Scholar] [PubMed]
- Gu, Q.; Zhang, H.; Zhu, W.; Jin, G. Preliminary studies on microwave irradiation ELISA for diagnosis of Schistosomiasis japonica. Chin. J. Parasitol. Parasit. Dis. 1999, 17, 115–116. [Google Scholar]
- Kok, L.P.; Visser, P.E.; Boon, M.E. Programming the microwave oven. J. Neurosci. Methods 1994, 55, 119–124. [Google Scholar] [CrossRef]
- Medina, F.J.; Cerdido, A.; Maroto, M.; Manzanares, M.; Marco, R. Enhancement of the immunocytochemical detection of antigens by microwave irradiation. Benefits and limitations analysed in isolated plant nuclei and Drosophila embryos in toto. Histochemistry 1994, 102, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.; Asian, K. Rapid and sensitive detection of p53 based on DNA-protein binding interactions using silver nanoparticle films and microwave heating. Nano Biomed. Eng. 2015, 6, 76–84. [Google Scholar]
- Bohr, H.; Brunak, S.; Bohr, J. Molecular wring resonance in chain molecules. Bioelectromagnetics 1997, 18, 187–189. [Google Scholar] [CrossRef]
- Bohr, H.; Bohr, J. Microwave enhanced kinetics observed in ORD studies of a protein. Bioelectromagnetics 2000, 21, 68–72. [Google Scholar] [CrossRef]
- Bohr, H.; Bohr, J. Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E 2000, 61, 4310–4314. [Google Scholar] [CrossRef]
- Damm, M.; Nusshold, C.; Cantillo, D.; Rechberger, G.N.; Gruber, K.; Sattler, W.; Kappe, C.O. Can electromagnetic fields influence the structure and enzymatic digest of proteins? A critical evaluation of microwave—Assisted proteomics protocols. J. Proteomics 2012, 75, 5533–5543. [Google Scholar] [CrossRef] [PubMed]
- Kanno, M.; Nakamura, K.; Kanai, E.; Hoki, K.; Kono, H.; Tanaka, M. Theoretical verification of nonthermal microwave effects on intramolecular reactions. J. Physs. Chem. 2012, 116, 2177–2183. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.G.; Johnson, C.B.; Ellis, E.A.; Vitha, S.; Holzenburg, A. Protein screening using cold microwave technology. Anal. Biochem. 2008, 375, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.G.; Jayaram, J.; Johnson, C.B.; Ellis, E.A.; Vitha, S.; Collisson, E.W.; Holzenburg, A. Improved protein detection using cold microwave technology. Methods Mol. Biol. 2009, 536, 533–543. [Google Scholar] [PubMed]
- Hjerpe, A.; Boon, M.E.; Kok, L.P. Microwave stimulation of an immunological reaction (CEA/anti-CEA) and its use in immunohistochemistry. Histochem. J. 1988, 20, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Nahar, P.; Bora, U.; Sharma, G.L.; Kannoujia, D.K. Microwave-mediated enzyme-linked immunosorbent assay procedure. Anal. Biochem. 2012, 421, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Diala, I.; Sato, S.; Usui, M.; Nakashima, K.; Nishihara, T.; Takenaka, S. Development of a membrane-based microwave-mediated electrochemical ELISA method for TNF-α detection in patients with periodontitis. Anal. Sci. 2013, 29, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Van Dorp, R.; Kok, P.G.; Marani, E.; Boon, M.E.; Kok, L.P. ELISA Incubation times can be reduced by 2.45-GHz microwaves. J. Clin. Lab. Immunol. 1991, 34, 87–96. [Google Scholar] [PubMed]
- Tong, C.H.; Lentz, R.R.; Lund, D.B. A microwave oven with variable continuous power and a feedback temperature controller. Biotechnol. Prog. 1993, 9, 488–496. [Google Scholar] [CrossRef]
- Garber, E.A.E.; Eppley, R.M.; Stack, M.E.; McLaughlin, M.A.; Park, D.L. Feasibility of immunodiagnostic devices for the detection of ricin, amanitin, and T-2 toxin in food. J. Food Prot. 2005, 68, 1294–1301. [Google Scholar] [PubMed]
- Codex Alimentarius Commission; Joint FAO/WHO Food Standards Programme. CODEX Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten; Alinorm 08/31/26. Codex Alimentarius Commission: Geneva, Switzerland, 2008; CODEX STAN 118–1979. [Google Scholar]
- Dayan-Kenigsberg, J.; Bertocchi, A.; Garber, E.A.E. Rapid detection of ricin in cosmetics and elimination of artifacts associated with wheat lectin. J. Immunol. Methods 2008, 336, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Hodge, D.R.; Prentice, K.W.; Ramage, J.G.; Prezioso, S.; Gauthier, C.; Swanson, T.; Hastings, R.; Basavanna, U.; Datta, S.; Sharma, S.K.; et al. Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of ricin in suspicious white powders and environmental samples. Biosecur. Bioterror. 2013, 11, 237–250. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garber, E.A.E.; Thole, J. Application of Microwave Irradiation and Heat to Improve Gliadin Detection and Ricin ELISA Throughput with Food Samples. Toxins 2015, 7, 2135-2144. https://doi.org/10.3390/toxins7062135
Garber EAE, Thole J. Application of Microwave Irradiation and Heat to Improve Gliadin Detection and Ricin ELISA Throughput with Food Samples. Toxins. 2015; 7(6):2135-2144. https://doi.org/10.3390/toxins7062135
Chicago/Turabian StyleGarber, Eric A. E., and Joseph Thole. 2015. "Application of Microwave Irradiation and Heat to Improve Gliadin Detection and Ricin ELISA Throughput with Food Samples" Toxins 7, no. 6: 2135-2144. https://doi.org/10.3390/toxins7062135
APA StyleGarber, E. A. E., & Thole, J. (2015). Application of Microwave Irradiation and Heat to Improve Gliadin Detection and Ricin ELISA Throughput with Food Samples. Toxins, 7(6), 2135-2144. https://doi.org/10.3390/toxins7062135