Study on the Association among Mycotoxins and other Variables in Children with Autism
Abstract
:1. Introduction
2. Results
2.1. Sample Selection
2.2. Mycotoxins Analysis
2.2.1. Method Validation
2.2.2. Occurrence
2.2.3. Statistical Analysis
2.3. Clinical Parameters and Cytokines Analyses
3. Discussion
3.1. Occurrence
3.2. Statistical Associations
3.3. Interventions
4. Experimental Section
4.1. Materials and Methods
4.1.1. Subject Enrolment: Inclusion Criteria
4.1.2. Specimen Collection
4.1.3. Mycotoxin Analysis
4.1.4. Method Validation
4.1.5. Clinical Parameters and Cytokine Analyses
4.1.6. Statistical Analysis and data Handling
- Mycotoxins: quantitative, non-negative variable expressed as ng/mL. Values were assigned as follows:
- Value = 0 ng/mL; when no analytical result derived from the analysis, thus no concentration could be derived;
- Value = LoQ/2 ng/mL; the half of the limit of quantification (LoQ/2) was assigned to those analytical results that gave a value included between zero and the limit of quantification. These samples could not be quantified with the established precision of the method (below 23%).
- Values = numerical value to all analytical results ≥LoQ μg/mL; the value is expressed in ng/mL rounded to the second figure after the comma for (DON, DOM1, FB1 and ZEA), and to the third figure after the comma for OTA, AFB1 and AFM1.
- IgG quantitative, non-negative variable expresses ad mg/L. In addition to the quantity, a stratification was performed generating a binary on the basis of a threshold of 20 mg/L:
- Value “0” when the IgG value is ≤20 mg/L;
- Value “1” when the IgG value is >20 mg/L
- Cytokines: quantitative, non-negative variable: expressed as pg/mL.
- The variables age, intelligence quotient, GI problems and verbal were stratified as follows:
- Age. This variable has been set defining the age at the moment of the sampling. The age was split in three classes: 2–4.5 years old; >4.5–7 years old; >7 years old.
- Gastrointestinal Issues (GI). This is a dummy variable: presence of GI takes the value “1”, when one (or more) of the answers related to GI problems was positive, absence takes the value “0”, when all the answers related to GI problems were negative. It was derived on the basis of the answer given on the questionnaires on the presence or absence of the following: Vomit, Diarrhoea, Constipated, Stomach-aches, Painful bowel, Gastroenteritis, Aerophagia, Abdominal bloating, Lack of appetite, Intestinal infections, Intestinal anomalies.
- Verbal. This is a dummy variable: presence of verbal language skills takes the value “1”, absence takes the value “0”. The verbal language skill was derived from the tests submitted to the autistic patients.
- Regressive. This is a dummy variable: presence of regressive pattern takes value “1”, absence takes value “0”. The regressive pattern was derived from the tests submitted to the autistic patients.
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Boutrif, E.; Canet, C. Mycotoxin prevention and control: FAO programmes. Rev. Méd. Vét. 1998, 149, 681–694. [Google Scholar]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I.; Wild, C.P.; Baan, R.A.; Gelderblom, W.A.; Miller, D.J.; Riley, R.T.; Felicia, W.U. Improving Public Health through Mycotoxin Control; IARC Scientific Publications No. 157; World Health Organization: Lion, France, 2012. [Google Scholar]
- Khlangwiset, P.; Shephard, G.S.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotoxins. IARC; World Health Organization and International Agency for Research on Cancer: Lyon, France, 1993; Volume 56.
- Smith, L.E.; Stoltzfus, R.J.; Prendergast, A. Food Chain Mycotoxin Exposure, Gut Health, and Impaired Growth: A Conceptual Framework. Adv. Nutr. 2012, 3, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Shephard, G.S.; Burger, H.M.; Gambacorta, L.; Gong, Y.Y.; Krska, R.; Rheeder, J.P.; Solfrizzo, M.; Srey, C.; Sulyok, M.; Visconti, A.; et al. Multiple mycotoxin exposure determined by urinary biomarkers in rural subsistence farmers in the former Transkei, South Africa. Food Chem. Toxicol. 2013, 62, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.C.; Flannery, B.; Isitt, C.; Ali, M.; Pestka, J. The role of biomarkers in evaluating human health concerns from fungal contaminants in food. Nutr. Res. Rev. 2012, 25, 162–179. [Google Scholar] [CrossRef] [PubMed]
- Wild, C.P.; Turner, P.C. The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 2002, 17, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Roebuck, B.D.; Wogan, G.N.; Groopman, J.D. Aflatoxin: A 50 year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 2011, 120, S28–S48. [Google Scholar] [CrossRef] [PubMed]
- Groopman, J.D.; Jackson, P.E.; Turner, P.; Wild, C.P.; Kensler, T.W. Validation of Exposure and Risk Biomarkers: Aflatoxin As a Case Study. In Biomarkers of Environmentally Associated Disease Technologies, Concepts, and Perspectives; Wilson, S.H., William, A.S., Eds.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Levy, S.E.; Mandell, D.S.; Schultz, R.T. Autism. Lancet 2009, 374, 1627–1638. [Google Scholar] [CrossRef]
- Goldberg, W.A.; Osann, K.; Filipek, P.A.; Laulhere, T.; Jarvis, K.; Modahl, C.; Flodman, P.; Spence, M.A. Language and other regression: Assessment and timing. J. Autism Dev. Disord. 2003, 33, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.C.; Lombardo, M.V.; Auyeung, B.; Chakrabarti, B.; Baron-Cohen, S. Sex/gender differences and autism: setting the scene for future research. J. Am. Acad. Child Adolesc. Psychiatry 2015, 54, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Elsabbagh, M.; Divan, G.; Koh, Y.J.; Kim, Y.S.; Kauchali, S.; Marcín, C.; Montiel-Nava, C.; Patel, V.; Paula, C.S.; Wang, C.; et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012, 5, 160–179. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, D.; Rodzinka-Pasko, J.K.; Li, Y.M. Environmental risk factors for autism spectrum disorders. Nervenartz 2016, 87, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.K.; Polanco, I. Gastrointestinal microbiota and some children diseases: A review. Gastroenterol. Res. Pract. 2012, 676585. [Google Scholar] [CrossRef] [PubMed]
- Sampson, T.R.; Mazmanian, S.K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 2015, 17, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Strati, F.; Cavalieri, D.; Albanese, D.; De Felice, C.; Donati, C.; Hayek, J.; Jousson, O.; Leoncini, S.; Renzi, D.; Calabrò, A.; et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 2017, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Johansen, L.J.; Powell, L.D.; Quig, D.; Rubin, R.A. Gastrointestinal flora and gastrointestinal status in children with autism-comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Pennesi, C.M.; Klein, L.C. Effectiveness of the gluten-free, casein-free diet for children diagnosed with autism spectrum disorder: Based on parental report. Nutr. Neurosci. 2012, 15, 85–91. [Google Scholar] [CrossRef] [PubMed]
- EURACHEM, The Fitness for Purpose of Analytical Methods EURACHEM Guide; LGC: Teddington, UK, 1998.
- Sulyok, M.; Berthiller, F.; Krska, R.; Schuhmacher, R. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun. Mass Spectrom. 2006, 20, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, B.; Dick, R. Determination of ochratoxin-a at the ppt level in human blood, serum, milk and some foodstuffs by high-performance liquid-chromatography with enhanced fluorescence detection and immunoaffinity column cleanup—Methodology and swiss data. J. Chromat. B 1995, 666, 85–99. [Google Scholar] [CrossRef]
- Heyndrickx, E.; Sioen, I.; Huybrechts, B.; Callebaut, A.; De Henauw, S.; De Saeger, S. Human biomonitoring of multiple mycotoxins in the Belgian population: Results of the BIOMYCO study. Environ. Int. 2015, 84, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzo, M.; Gambacorta, L.; Visconti, A. Assessment of Multi-Mycotoxin Exposure in Southern Italy by Urinary Multi-Biomarker Determination. Toxins 2014, 6, 523–538. [Google Scholar] [CrossRef] [PubMed]
- De Santis, B.; Brera, C.; Mezzelani, A.; Soricelli, S.; Ciceri, F.; Moretti, G.; Debegnach, F.; Bonaglia, M.C.; Villa, L.; Molteni, M.; et al. Role of Mycotoxins in the Pathobiology of Autism: A First Evidence. Nutr. Neurosci. 2017. under review. [Google Scholar]
- Brera, C.; De Santis, B.; Debegnach, F.; Miano, B.; Moretti, G.; Lanzone, A.; Del Sordo, G.; Buonsenso, D.; Chiaretti, A.; Hardie, L.; et al. External Scientific Report. In Experimental Study of Deoxynivalenol Biomarkers in Urine; EFSA (European Food Safety Authority): Parma, Italy, 2015; Volume 12, Available online: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2015.EN-818/pdf (accessed on 9 June 2015).
- International Agency for Research on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC Press: Lyon, France, 2002; Volume 82. Available online: http://monographs.iarc.fr/ENG/Monographs/vol82/mono82.pdf (accessed on 9 June 2015).
- Duringer, J.; Fombonne, E.; Craig, M. No Association between Mycotoxin Exposure and Autism: A Pilot Case-Control Study in School-Aged Children. Toxins 2016, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.A.; Padua, D.; Tillisch, K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? Bioessays 2014, 36, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Buie, T.; Campbell, D.B.; Fuchs, G.J.; Furuta, G.T.; Levy, J.; Van de Water, J.; Whitaker, A.H.; Atkins, D.; Bauman, M.L.; Beaudet, A.L.; et al. Evaluation, Diagnosis, and Treatment of Gastrointestinal Disorders in Individuals With ASDs: A Consensus Report. Pediatrics 2010, 125, S1. [Google Scholar] [CrossRef] [PubMed]
- Fulceri, F.; Morelli, M.; Santucci, E.; Cena, H.; Del Bianco, T.; Narzisi, A.; Calderoni, S.; Muratori, F. Gastrointestinal symptoms and behavioral problems in preschoolers with Autism Spectrum Disorder. Digest. Liver Dis. 2016, 48, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Matelski, L.; Van de Water, J. Risk factors in autism: Thinking outside the brain. J. Autoimmun. 2015, 67, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Napolioni, V.; Ober-Reynolds, B.; Szelinger, S.; Corneveaux, J.J.; Pawlowski, T.; Ober-Reynolds, S.; Kirwan, J.; Persico, A.M.; Melmed, R.D.; Craig, D.W.; et al. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J. Neuroinflamm. 2013, 14, 38. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, A.; Cervellati, F.; Belmonte, G.; Montagner, G.; Waldon, P.; Hayek, J.; Gambari, R.; Valacchi, G. Cytokines profile and peripheral blood mononuclear cells morphology in Rett and autistic patients. Cytokine 2016, 77, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Nighot, M.; Al-Sadi, R.; Alhmoud, T.; Nighot, P.; Ma, T.Y. Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. J. Immunol. 2015, 195, 4999–5010. [Google Scholar] [CrossRef] [PubMed]
- Dal Peraro, M.; van der Goot, F.G. Pore-forming toxins: ancient, but never really out of fashion. Nat. Rev. Microbiol. 2016, 14, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, N.; Sugita, R.; Miki, A.; Takemura, N.; Kawabata, J.; Watanabe, J.; Sonoyama, K. Gastrointestinal Candida colonisation promotes sensitisation against food antigens by affecting the mucosal barrier in mice. Gut 2006, 55, 954–960. [Google Scholar] [CrossRef] [PubMed]
- Onore, C.E.; Nordahl, C.W.; Young, G.S.; Van de Water, J.A.; Rogers, S.J.; Ashwood, P. Levels of soluble platelet endothelial cell adhesion molecule-1 and P-selectin are decreased in children with autism spectrum disorder. Biol. Psychiatry 2012, 72, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, W.; Sheldon, T.A.; Shaath, N.; Whorwell, P.J. Food elimination based on IgG antibodies in irritable bowel syndrome: A randomised controlled trial. Gut 2004, 53, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Rutter, M.; DiLavore, P.C.; Risi, S.; Luyster, R.J.; Gotham, K.; Bishop, S.L.; Guthrie, W. ADOS-2—Autism Diagnostic Observation Schedule, 2nd ed.; Lord, C., Rutter, M., Eds.; Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Lord, C.; Rutter, M.; Le Couteur, A. Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 1994, 24, 659–685. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, S.S.; Balla, D.A.; Cichetti, D.V.; Reynolds, C.R. Vineland Adaptive-Behavior Scales. J. Couns. Dev. 1986, 65, 112–113. [Google Scholar]
- Lam, K.S.; Aman, M.G. The Repetitive Behavior Scale-Revised: Independent validation in individuals with autism spectrum disorders. J. Autism Dev. Disord. 2007, 37, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, R. Mental Development Scales from Birth to 2 Years; Manual; Association for Research in Infant and Child Development: Henley, UK, 1996. [Google Scholar]
- Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence-Revised 517 (WPPSI-R); Psychological Corporation: San Antonio, TX, USA, 1989. [Google Scholar]
- Wechsler, D. WISC-III: Wechsler Intelligence Scale for Children, 3rd ed.; The Psychological Corporation: New York, NY, USA, 1991. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA Preschool Forms and Profiles; University of Vermont Department of Psychiatry: Burlington, VT, USA, 2000. [Google Scholar]
- Achenbach, T.M.; Rescorla, L.A. Manual for the ASEBA School-Age Forms and Profiles; University of Vermont, Research Center for Children, Youth and Families: Burlington, VT, USA, 2001. [Google Scholar]
- D’Arcangelo, D.; Facchiano, F.; Nassa, G.; Stancato, A.; Antonini, A.; Rossi, S.; Senatore, C.; Cordella, M.; Tabolacci, C.; Salvati, A.; et al. PDGFR-alpha inhibits melanoma growth via CXCL10/IP-10: A multi-omics approach. Oncotarget 2016, 22, 77257–77275. [Google Scholar] [CrossRef] [PubMed]
- Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Mann, H.B.; Whitney, D.R. On a test whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Maranghi, F.; Baldi, F.; Mantovani, A. Sicurezza Alimentare e Salute Dell’Infanzia; Rapporti ISTISAN 05/35; Istituto Superiore di Sanità: Rome, Italy, 2005; Volume 3, p. 139. [Google Scholar]
- Ubagai, T.; Tansho, S.; Ito, T.; Ono, Y. Influences of aflatoxin B1 on reactive oxygen species generation and chemotaxis of human polymorphonuclear leukocytes. Toxicol. In Vitro 2008, 22, 1115–1120. [Google Scholar] [CrossRef] [PubMed]
- Richetti, A.; Cavallaro, A.; Ainis, T.; Fimiani, V. Effect of mycotoxins on some activities of isolated human neutrophils. Immunopharmacol. Immunotoxicol. 2005, 27, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, T.; Waché, Y.; Laffitte, J.; Taranu, I.; Saeedikouzehkonani, N.; Mori, Y.; Oswald, I.P. Deoxynivalenol impairs the immune functions of neutrophils. Mol. Nutr. Food Res. 2013, 57, 1026–1036. [Google Scholar] [CrossRef] [PubMed]
- Melchionna, R.; Romani, M.; Ambrosino, V.; D’Arcangelo, D.; Cencioni, C.; Porcelli, D.; Toietta, G.; Truffa, S.; Gaetano, C.; Mangoni, A.; et al. Role of HIF-1alpha in proton-mediated CXCR4 down-regulation in endothelial cells. Cardiovasc. Res. 2010, 86, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.C.; Winckler, B. Acid indigestion in the endosome: Linking signaling dysregulation to neurodevelopmental disorders. Neuron 2013, 80, 4–6. [Google Scholar] [CrossRef] [PubMed]
- Cash-Padgett, T.; Sawa, A.; Jaaro-Peled, H. Increased stereotypy in conditional Cxcr4 knockout mice. Neurosci. Res. 2016, 105, 75–79. [Google Scholar] [CrossRef] [PubMed]
Autistics | Siblings | Non-Parental | ||
---|---|---|---|---|
N of subjects (233 in total) | 172 | 36 | 25 | |
Sex (Male) | 81.9% | 41.6% | 56% | |
Male/Female ratio | 141/31 | 15/21 | 14/11 | |
Age (mean ± SD *) | 5.68 ± 2.58 | 7.95 ± 3.84 | 8.53 ± 2.03 | |
New-born length (cm) | 49.16 ± 5.44 | 50.20 ± 2,44 | 50.02 ± 1,87 | |
New-born weight (gr) | 3181.72 ± 705.81 | 3293.09 ± 450.04 | 3297.73 ± 473.75 | |
Head circumference (cm) | 34.55 ± 2.83 | 34.34 ± 1.87 | 34.34 ± 1.87 | 34.08 ± 1.40 |
Regressive pattern | 30.1% | - | - | |
Location (referred to Nord) | 72.9% | 66.7% | 87.05% | |
Non-verbal | 58 (33.7%) | - | - | |
Gastrointestinal problems (referred to N = 233) | 26.6% | 2.6% | 2.1% |
Gastrointestinal Problems | Autistics | Control (All) | Odds Ratio | p-Value |
---|---|---|---|---|
Vomit | 65 | 18 | 4.28 | 0.024 |
Diarrhoea | 83 | 26 | 2.41 | 0.050 |
Constipated | 85 | 24 | 1.92 | 0.169 |
Stomach-aches | 48 | 16 | 1.74 | 0.620 |
Painful bowel | 60 | 23 | 0.65 | 0.389 |
Gastroenteritis | 58 | 25 | 0.96 | 0.940 |
Aerophagia | 60 | 16 | 8.07 | 0.024 |
Abdominal bloating | 56 | 21 | 1.74 | 0.313 |
Lack of appetite | 56 | 19 | 3.02 | 0.068 |
Intestinal infections | 171 | 60 | 1.82 | 0.079 |
Intestinal anomalies | 169 | 60 | 2.81 | 0.007 |
LoQ a, ng/mL | RA b, % | SSE c, % | RE d, % | RSDr e, % | LoQ, ng/mL | RA, % | SSE, % | RE, % | RSDr, % | |
---|---|---|---|---|---|---|---|---|---|---|
Compound | Urine | Serum | ||||||||
GLIO f | 1.1 | 97 | 86 | 112 | 22 | 11 | 63 | 104 | 61 | 15 |
OTA g | 0.16 | 69 | 76 | 90 | 17 | 0.16 | 56 | 79 | 71 | 21 |
AFB1 h | 0.03 | 103 | 111 | 93 | 23 | 0.01 | 82 | 92 | 89 | 22 |
AFM1 i | 0.32 | 70 | 71 | 99 | 18 | 0.22 | 52 | 72 | 73 | 19 |
ZEA j | 1.6 | 78 | 82 | 95 | 19 | 1.0 | 50 | 87 | 57 | 19 |
DON k | 1.4 | 66 | 73 | 90 | 10 | 5.0 | 59 | 62 | 97 | 13 |
DOM1 l | 5.0 | 67 | 58 | 115 | 23 | 5.0 | 60 | 54 | 111 | 14 |
FB1 m | 1.1 | 72 | 64 | 112 | 10 | 3.0 | 56 | 85 | 66 | 23 |
Group | Observations | % Positive | Mean (ng/mL) | SD (ng/mL) | Min–Max (ng/mL) | Median (ng/mL) |
---|---|---|---|---|---|---|
Whole Group | 163/233 * | |||||
GLIO | 71.6% | 8.2 | 1.5 | 0–114.7 | 3.9 | |
OTA | 74.8% | 0.09 | 0.09 | 0–0.54 | 0.08 | |
AFB1 | 66.2% | 0.01 | 0.01 | 0–0.06 | 0.02 | |
AFM1 | 62.6% | 0.12 | 0.12 | 0–0.70 | 0.15 | |
ZEA | 51.0% | 0.7 | 1.1 | 0–6.5 | 0.8 | |
DON | 38.6% | 0.7 | 1.1 | 0–4.6 | 0.0 | |
DOM1 | 27.0% | 2.1 | 4.2 | 0–19.5 | 0.0 | |
FB1 | 44.5% | 0.4 | 1.1 | 0–12.4 | 0.0 | |
Autistic Group | 114 | |||||
GLIO | 69.2% | 7.6 | 13.6 | 0–82.7 | 3.5 | |
OTA | 70.2% | 0.09 | 0.10 | 0–0.54 | 0.08 | |
AFB1 | 63.2% | 0.01 | 0.01 | 0–0.06 | 0.02 | |
AFM1 | 60.7% | 0.12 | 0.13 | 0–0.70 | 0.15 | |
ZEA | 50.5% | 0.8 | 1.2 | 0–6.5 | 0.8 | |
DON | 46.5% | 0.9 | 1.2 | 0–4.6 | 0.0 | |
DOM1 | 32.4% | 2.5 | 4.5 | 0–19.5 | 0.0 | |
FB1 | 43.9% | 0.5 | 1.3 | 0–12.4 | 0.0 | |
Siblings | 25 | |||||
GLIO | 80.0% | 11.6 | 24.7 | 0–114.7 | 5.3 | |
OTA | 84.0% | 0.09 | 0.07 | 0–0.27 | 0.08 | |
AFB1 | 80.0% | 0.01 | 0.01 | 0–0.03 | 0.02 | |
AFM1 | 84.0% | 0.16 | 0.11 | 0–0.43 | 0.15 | |
ZEA | 48.0% | 0.5 | 0.7 | 0–2.8 | 0.0 | |
DON | 16.0% | 0.4 | 1.0 | 0–3.7 | 0.0 | |
DOM1 | 8.0% | 0.8 | 2.8 | 0–12.0 | 0.0 | |
FB1 | 56.0% | 0.4 | 0.5 | 0–2.0 | 0.5 | |
Non-Parental | 24 | |||||
GLIO | 77.3% | 7.7 | 9.8 | 0–39.7 | 4.2 | |
OTA | 87.5% | 0.09 | 0.05 | 0–0.19 | 0.08 | |
AFB1 | 66.7% | 0.01 | 0.01 | 0–0.02 | 0.02 | |
AFM1 | 54.2% | 0.08 | 0.09 | 0–0.25 | 0.15 | |
ZEA | 59.1% | 0.6 | 0.8 | 0–3.17 | 0.78 | |
DON | 25.0% | 0.4 | 0.8 | 0–2.3 | 0.0 | |
DOM1 | 22.7% | 1.8 | 3.6 | 0–11.4 | 0.0 | |
FB1 | 36.4% | 0.2 | 0.4 | 0–1.5 | 0.0 |
Group | Observations | % Positive | Mean (ng/mL) | Std Dev (ng/mL) | Min–Max (ng/mL) | Median (ng/mL) |
---|---|---|---|---|---|---|
Whole Group | 213/233 * | |||||
GLIO | 21.2% | 2.3 | 4.3 | 0–28.4 | 0.0 | |
OTA | 82.9% | 0.36 | 0.29 | 0–1.76 | 0.35 | |
AFB1 | 22.9% | 0.01 | 0.05 | 0–0.73 | 0.00 | |
AFM1 | 50.2% | 0.11 | 0.18 | 0–1.91 | 0.11 | |
ZEA | 5.4% | 0.1 | 0.4 | 0–3.9 | 0.0 | |
DON | 19.5% | 1.0 | 3.6 | 0–27.9 | 0.0 | |
DOM1 | 13.1% | 0.3 | 1.1 | 0–12.7 | 0.0 | |
FB1 | 13.7% | 0.2 | 0.7 | 0–5.6 | 0.0 | |
Autistic Group | 160 | |||||
GLIO | 23.0% | 1.8 | 4.5 | 0–28.4 | 0.0 | |
OTA | 85.1% | 0.39 | 0.31 | 0–1.76 | 0.35 | |
AFB1 | 24.0% | 0.01 | 0.06 | 0–0.73 | 0.00 | |
AFM1 | 53.2% | 0.12 | 0.20 | 0–1.91 | 0.11 | |
ZEA | 5.2% | 0.1 | 0.4 | 0–3.9 | 0.00 | |
DON | 19.5% | 1.2 | 3.9 | 0–27.9 | 0.0 | |
DOM1 | 12.9% | 0.3 | 1.2 | 0–12.7 | 0.0 | |
FB1 | 17.5% | 0.3 | 0.7 | 0–5.6 | 0.0 | |
Siblings | 35 | |||||
GLIO | 14.3% | 0.6 | 1.8 | 0–5.6 | 0.0 | |
OTA | 77.1% | 0.27 | 0.21 | 0–0.79 | 0.29 | |
AFB1 | 25.7% | 0.002 | 0.00 | 0–0.01 | 0.00 | |
AFM1 | 45.7% | 0.07 | 0.10 | 0–0.36 | 0.00 | |
ZEA | 8.6% | 0.1 | 0.2 | 0–1.2 | 0.0 | |
DON | 22.9% | 0.5 | 0.9 | 0–2.3 | 0.0 | |
DOM1 | 17.1% | 0.3 | 0.6 | 0–1.6 | 0.0 | |
FB1 | 2.9% | 0.04 | 0.3 | 0–1.5 | 0.0 | |
Non-Parental | 18 | |||||
GLIO | 18.8% | 10.3 | 33.3 | 0–1 | 0.0 | |
OTA | 75.0% | 0.28 | 0.2 | 0–0.61 | 0.35 | |
AFB1 | 6.3% | 0.00 | 0.002 | 0–0.01 | 0.00 | |
AFM1 | 31.3% | 0.06 | 0.11 | 0–0.33 | 0.00 | |
ZEA | 0.0% | 0.00 | 0.0 | 0–0.0 | 0.0 | |
DON | 12.5% | 0.8 | 2.8 | 0–11.0 | 0.0 | |
DOM1 | 6.3% | 0.1 | 0.3 | 0–1.4 | 0.0 | |
FB1 | 0.0% | 0.0 | 0.0 | 0–0.0 | 0.0 |
Sub-Groups with a Specific Co-Morbidity | Sub-Groups without Co-Morbidity |
---|---|
SG1+ Patients with IgG allergenic values >20 mg/L | SG1− Patients without IgG allergenic values ≤20 mg/L |
SG2+ Patients with gastrointestinal problems | SG2− Patients without gastrointestinal problems |
SG3+ Patients with verbal issue | SG3− Patients without verbal issue |
SG4+ Patients with regressive autism | SG3− Patients without regressive autism |
URINE | GLIO_s | OTA_u | OTA_s | AFB1_u | AFM1_s | FB1_u | DON_u | DOM1_u |
---|---|---|---|---|---|---|---|---|
Autistic vs. control (all) | - | - | p = 0.0141 | - | p = 0.0072 | - | p = 0.0141 | p = 0.0259 |
Autistic vs. siblings | - | - | p = 0.0261 | - | p = 0.0262 | - | p = 0.0185 | p = 0.0259 |
Autistic vs. siblings paired | - | p = 0.0272 | p = 0.0409 | - | - | - | p = 0.0305 | - |
SG1+ (Wheat) | - | - | p = 0.0212 | - | - | - | - | - |
SG1+ (A. nidulans) | - | - | - | - | p = 0.0457 | - | - | - |
SG1+ (A. flavus) | p = 0.0169 | - | - | - | - | - | - | - |
SG1+ (C. Albicans) | - | p = 0.0169 | - | p = 0.0462 | - | p = 0.0126 | - | p = 0.0487 |
SG1+ (F. Moniliforme) | - | p = 0.0075 | - | - | - | - | - | - |
SG4+ (regressive pattern) | - | - | - | - | p = 0.0385 | - | - |
Urine | GLIO | OTA | AFB1 | FB1 | DON | DOM1 |
Gluten | - | - | ρs = 0.2485 p = 0.0146 | - | - | - |
Wheat | - | - | ρs = 0.2188 p = 0.0322 | - | - | - |
A. clavatus | - | - | - | ρs = −0.2046 p = 0.0455 | - | - |
A. flavus | ρs = −0.2631 p = 0.0096 | - | - | - | - | - |
A. fumigatus | - | - | - | - | ρs = −0.2777 | - |
Serum | GLIO | OTA | AFB1 | FB1 | DON | DOM1 |
β-lactoglobulin | - | - | - | - | - | - |
A. clavatus | - | - | ρs = −0.2230 p = 0.0290 | - | - | - |
A. flavus | ρs = 0.2258 p = 0.0270 | - | - | - | - | - |
A. fumigatus | - | ρs = −0.2466 p = 0.0154 | - | - | - | - |
A. niger | - | - | - | - | - | - |
A. orizae | - | - | ρs = −0.2232 p = 0.0288 | - | - | - |
Cytokines/Chemokines | Serum | Urine | |||
---|---|---|---|---|---|
OTA | AFM1 | DON | AFB1 | ZEA | |
PDGF-BB | - | 0.3209 | 0.2141 | - | - |
Il-1ra | 0.2296 | - | - | - | - |
Il-4 | 0.2219 | - | - | - | - |
Il-5 | - | 0.2859 | 0.2519 | - | - |
Il-7 | - | 0.3546 | 0.2484 | 0.2107 | 0.2343 |
Il-12 | - | 0.2498 | - | - | - |
Il-13 | - | 0.2220 | - | - | - |
IFN-g | 0.2195 | 0.3235 | 0.2357 | - | - |
EOT | 0.1810 | 0.3141 | - | - | - |
TNF-alfa | 0.1730 | 0.2389 | - | - | - |
RANTES | - | - | 0.2348 | - | - |
Mycotoxin | Parent [M–H]+ (m/z) | Cone Voltage (V) | Quantifier/Qualifier Ion (m/z) | Collision Energy (eV) | Retention Time (min) |
---|---|---|---|---|---|
GLIO | 327.3 | 12 | 263.3/245.3 | 8/18 | 6.1 |
OTA | 404.1 | 20 | 238.9/341.0 | 20/20 | 7.5 |
AFB1 | 313.3 | 30 | 285.3/128.1 | 22/22 | 8.4 |
AFM1 | 329.3 | 30 | 273.3/259.3 | 22/22 | 7.1 |
ZEA | 319.2 | 10 | 283.1/301.1 | 10/10 | 6.9 |
DON | 297.3 | 22 | 249.5/203.5 | 10/15 | 4.0 |
DOM1 | 281.2 | 15 | 108.7/215.1 | 15/10 | 4.4 |
FB1 | 723.4 | 50 | 335.5/353.5 | 40/30 | 5.7 |
Variables | Description |
---|---|
Location | Bosisio Parini (Lecco, Lombardia, Italy) Ostuni (Brindisi, Puglia, Italy) |
Symptom pattern | Verbal/Non-verbal |
Questionnaire Information | Age Sex Gastrointestinal problems (Vomit, Diarrhoea, Constipated, Stomach-aches, Painful bowel, Gastroenteritis, Aerophagia, Abdominal bloating, Lack of appetite, Intestinal infections, Intestinal anomalies) |
Clinical trial parameters | Food-specific allergological IgG (wheat, gluten, casein, egg yolk, egg white, alfa-lactoalbumin, beta-lactoglobulin) Mould-specific allergological IgG (Aspergillus fumigatus, A. niger, A. oryzae, A. terreus, A. nidulans, A. flavus, A. clavatus, Candida albicans, Fusarium moniliforme) |
Cytokines | PDGF-BB, Il-1ra, Il-4, Il-5, Il-7, Il-12, Il-13, IFN-g, EOT, TNF-alfa, RANTES |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Santis, B.; Raggi, M.E.; Moretti, G.; Facchiano, F.; Mezzelani, A.; Villa, L.; Bonfanti, A.; Campioni, A.; Rossi, S.; Camposeo, S.; et al. Study on the Association among Mycotoxins and other Variables in Children with Autism. Toxins 2017, 9, 203. https://doi.org/10.3390/toxins9070203
De Santis B, Raggi ME, Moretti G, Facchiano F, Mezzelani A, Villa L, Bonfanti A, Campioni A, Rossi S, Camposeo S, et al. Study on the Association among Mycotoxins and other Variables in Children with Autism. Toxins. 2017; 9(7):203. https://doi.org/10.3390/toxins9070203
Chicago/Turabian StyleDe Santis, Barbara, Maria Elisabetta Raggi, Giorgio Moretti, Francesco Facchiano, Alessandra Mezzelani, Laura Villa, Arianna Bonfanti, Alessandra Campioni, Stefania Rossi, Serena Camposeo, and et al. 2017. "Study on the Association among Mycotoxins and other Variables in Children with Autism" Toxins 9, no. 7: 203. https://doi.org/10.3390/toxins9070203
APA StyleDe Santis, B., Raggi, M. E., Moretti, G., Facchiano, F., Mezzelani, A., Villa, L., Bonfanti, A., Campioni, A., Rossi, S., Camposeo, S., Soricelli, S., Moracci, G., Debegnach, F., Gregori, E., Ciceri, F., Milanesi, L., Marabotti, A., & Brera, C. (2017). Study on the Association among Mycotoxins and other Variables in Children with Autism. Toxins, 9(7), 203. https://doi.org/10.3390/toxins9070203