Proton Irradiation Effects on Hardness and the Volta Potential of Welding 308L Duplex Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Proton Irradiation Effects on Hardening of Different Regions
3.1.1. Irradiation Regions from the SRIM Simulation Curves
3.1.2. Ferrite and Austenite Microhardness
3.1.3. SKPFM Volta Potential of the Irradiated Sample Cross-Section
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scott, P. A review of irradiation assisted stress corrosion cracking. J. Nucl. Mater. 1994, 211, 101–122. [Google Scholar] [CrossRef]
- Gamer, F.A.; Makenas, B.J.; Chastain, S.A. Swelling and creep observed in AISI 304 fuel pin cladding from three MOX fuel assemblies irradiated in EBR-II. J. Nucl. Mater. 2011, 413, 53–61. [Google Scholar]
- Zinkle, S.J.; Was, G.S. Materials challenges in nuclear energy. Acta Mater. 2013, 61, 735–758. [Google Scholar] [CrossRef]
- Azevedo, C.R.F. A review on neutron-irradiation-induced hardening of metallic components. Eng. Failure Anal. 2011, 18, 1921–1942. [Google Scholar] [CrossRef]
- Gaumé, M.; Baldo, P.; Mompiou, F.; Onimus, F. In-situ observation of an irradiation creep deformation mechanism in zirconium alloys. Scr. Mater. 2018, 154, 87–91. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, X.; Chen, Y.-R.; Li, M.-M.; Park, J.S.; Kenesei, P.; Almer, J.; Yang, Y. In-situ high-energy X-ray characterization of neutron irradiated HT-UPS stainless steel under tensile deformation. Acta Mater. 2018, 156, 330–341. [Google Scholar] [CrossRef]
- Stephenson, K.J.; Was, G.S. The role of dislocation channeling in IASCC initiation of neutron irradiated stainless steel. J. Nucl. Mater. 2016, 481, 214–225. [Google Scholar] [CrossRef]
- Jiao, Z.; Was, G.S. Localized deformation and IASCC initiation in austenitic stainless steels. J. Nucl. Mater. 2008, 382, 203–209. [Google Scholar] [CrossRef]
- Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation. J. Nucl. Mater. 2016, 476, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Wang, B.-Y.; Yuan, D.-Q.; Jin, S.-X.; Zhang, P.; Lu, E.-Y.; Song, L.-G.; Liu, Y.-L.; Ma, H.-L.; Zhang, Q.-L.; et al. Effect of temperature and dose on vacancy-defect evolution in 304L stainless steel irradiated by triple ion beam. J. Nucl. Mater. 2018, 512, 94–99. [Google Scholar] [CrossRef]
- Renault-Laborne, A.; Hure, J.; Malaplate, J.; Gavoille, P.; Sefta, F.; Tanguy, B. Tensile properties and deformation microstructure of highly neutronirradiated 316 stainless steels at low and fast strain rate. J. Nucl. Mater. 2018, 508, 488–504. [Google Scholar] [CrossRef]
- Meric de Bellefon, G.; Van Duysen, J.C. Tailoring plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 400 °C. J. Nucl. Mater. 2016, 475, 168–191. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.-H.; Heintze, C.; Bergner, F.; Ulbricht, A.; Akhmadaliev, S.; Onorbe, E.; Carlan, Y.D.; Wang, T. The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by Nano indentation. J. Nucl. Mater. 2017, 495, 118–127. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, T.; Wang, X.-P.; Fang, Q.-F.; Liu, C.-S. Effect of zirconium addition on the microstructure and mechanical properties of ODS ferritic steels containing aluminum. J. Nucl. Mater. 2014, 444, 462–468. [Google Scholar] [CrossRef]
- Jiang, S.-N.; Xu, L.-Q.; Zheng, P.-F. Evaluation of hardening behavior under synergistic interaction of He and subsequent H ions irradiation in vanadium alloys. Nucl. Mater. Energy. 2018, 16, 19–23. [Google Scholar] [CrossRef]
- Kiran Kumar, N.A.P.; Li, C.; Leonard, K.J.; Bei, H.; Zinkle, S.J. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation. Acta Mater. 2016, 113, 230–244. [Google Scholar] [CrossRef] [Green Version]
- Jin, K.; Guo, W.; Lu, C.-Y.; Ullah, M.W.; Zhang, Y.-W.; Weber, W.J.; Wang, L.-M.; Poplawsky, J.D.; Bei, H.-B. Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys. Acta Mater. 2016, 121, 365–373. [Google Scholar] [CrossRef]
- Marini, B.; Averty, X.; Wident, P.; Forget, P.; Barcelo, F. Effect of the bainitic and martensitic microstructures on the hardening and embrittlement under neutron irradiation of a reactor pressure vessel steel. J. Nucl. Mater. 2015, 465, 20–27. [Google Scholar] [CrossRef]
- Kotrechko, S.; Dubinko, V.; Stetsenko, N.; Terentyev, D.; He, X.; Sorokin, M. Temperature dependence of irradiation hardening due to dislocation loops and precipitates in RPV steels and model alloys. J. Nucl. Mater. 2015, 464, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Masaki, S.; Masubuchi, S.; Yoshida, N.; Kamada, Y. Radiation induced hardening of ion irradiated RPV steels. J. Nucl. Mater. 2011, 417, 932–935. [Google Scholar] [CrossRef]
- Chopra, O.K.; Rao, A.S. A review of irradiation effects on LWR core internal materials-IASCC susceptibility and crack growth rates of austenitic stainless steels. J. Nucl. Mater. 2011, 409, 235–256. [Google Scholar] [CrossRef]
- Guzonas, D.; Novotny, R.; Penttilä, S.; Toivonen, A.; Zheng, W.-Y. Radiation effects and mechanical properties. In Materials and Water Chemistry for Supercritical Water-Cooled Reactors; Woodhead Publishing: Cambridge, UK, 2018; pp. 45–78. [Google Scholar]
- Zhao, M.-Z.; Liu, F.; Yang, Z.-S.; Xu, Q.; Ding, F.; Li, X.-C.; Zhou, H.-S.; Luo, G.-N. Fluence dependence of helium ion irradiation effects on the microstructure and mechanical properties of tungsten. Nucl. Instrum. Methods Phys. Res. Sect. B 2018, 414, 121–125. [Google Scholar] [CrossRef]
- Takeuchi, T.; Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y.; Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K.; et al. Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels. J. Nucl. Mater. 2014, 452, 235–240. [Google Scholar] [CrossRef]
- Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Nishiyama, Y.; Onizawa, K. Study on microstructural changes in thermally-aged stainless steel weld-overlay cladding of nuclear reactor pressure vessels by atom probe tomography. J. Nucl. Mater. 2011, 415, 198–204. [Google Scholar] [CrossRef]
- Takeuchi, T.; Kakubo, Y.; Matsukawa, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y.; Nishiyama, Y.; Katsuyama, J.; Yamaguchi, Y.; Onizawa, K. Effects of neutron irradiation on microstructures and hardness of stainless steel weld-overlay cladding of nuclear reactor pressure vessels. J. Nucl. Mater. 2014, 449, 273–276. [Google Scholar] [CrossRef]
- Pareige, C.; Novy, S.; Saillet, S.; Pareige, P. Study of phase transformation and mechanical properties evolution of duplex stainless steel after long term thermal ageing (>20 years). J. Nucl. Mater. 2011, 411, 90–96. [Google Scholar] [CrossRef]
- Li, Z.-B.; Lo, W.-Y.; Chen, W.-Y.; Pakarinen, J.; Wu, Y.-Q.; Allen, T. Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel. J. Nucl. Mater. 2015, 466, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhang, J.; Huang, J.-C.; Bei, H.; Nieh, T.G. Grain-boundary strengthening in nanocrystalline chromium and the Hall-Petch coefficient of body-centered cubic metals. Scr. Mater. 2013, 68, 118–121. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Li, M.-M.; Zhang, X.; Kirk, M.A.; Baldo, P.M.; Lian, T. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel. J. Nucl. Mater. 2015, 464, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-Y.; Li, M.-M.; Kirk, M.A.; Baldo, P.M.; Lian, T.-G. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel. J. Nucl. Mater. 2016, 471, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Busby, J.T.; Hash, M.C.; Was, G.S. The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 2005, 336, 267–278. [Google Scholar] [CrossRef]
- Fukuya, K.J. Current understanding of radiation-induced degradation in light water reactor structural materials. J. Nucl. Sci. Tech. 2013, 50, 213–254. [Google Scholar] [CrossRef] [Green Version]
- Was, G.S.; Busby, J.T.; Allen, T.; Kenik, E.A.; Jensson, A.; Bruemmer, S.M.; Gan, J.; Edwards, A.D.; Scott, P.M.; Andreson, P.L. Emulation of neutron irradiation effects with protons: Validation of principle. J. Nucl. Mater. 2002, 300, 198–216. [Google Scholar] [CrossRef]
- Murphy, S.M. The influence of hydrogen on void swelling in fusion reactor materials. J. Nucl. Mater. 1988, 155–157, 866–869. [Google Scholar] [CrossRef]
- Bullen, D.B.; Kulcinski, G.L.; Dodd, R.A. Effect of hydrogen on void production in nickel. J. Nucl. Mater. 1985, 133–134, 455–458. [Google Scholar] [CrossRef]
- Evers, S.; Senöz, C.; Rohwerder, M. Hydrogen detection in metals: A review and introduction of a Kelvin prove approach. Sci. Technol. Adv. Mater. 2013, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.-Q.; Bai, Y.; Xu, B.-Z.; Pan, W.; Li, J.-X.; Qiao, L.-J. Effect of hydrogen on pitting susceptibility of 2507 duplex stainless steel. Corros. Sci. 2013, 70, 140–144. [Google Scholar] [CrossRef]
- Stratmann, M.; Streckel, H. On the atmospheric corrosion of metal which are covered with thin electrolyte layers-I. Verification of the experimental technique. Corros. Sci. 1990, 30, 681–696. [Google Scholar] [CrossRef]
- Stratmann, M.; Streckel, H. In situ Möβbauer spectroscopic study of reactions within rust layers. Corros. Sci. 1989, 29, 1329–1352. [Google Scholar] [CrossRef]
- Dong, L.-J.; Han, E.-H.; Peng, Q.-J.; Ke, W.; Wang, L. Environmentally assisted crack growth in 308L stainless steel weld metal in simulated primary water. Corros. Sci. 2017, 117, 1–10. [Google Scholar] [CrossRef]
- Ma, C.; Han, E.-H.; Peng, Q.-J.; Ke, W. Effect of polishing process on corrosion behavior of 308L stainless steel in high temperature water. Appl. Surf. Sci. 2018, 442, 423–436. [Google Scholar] [CrossRef]
- Stoller, R.E.; Toloczko, M.B.; Was, G.S.; Certain, A.G.; Dwaraknath, S.; Garner, F.A. On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res. Sect. B 2013, 310, 75–80. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hamidi, S.; Asadabad, M.A. The use of the SRIM code for calculation of radiation damage induced by neutrons. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 412, 19–27. [Google Scholar] [CrossRef]
- ASTM E521. Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation; Annual Book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- Örnek, C.; Engelberg, D.L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel. Corros. Sci. 2015, 99, 164–171. [Google Scholar] [CrossRef]
- Mechehoud, F.; Benaioun, N.E.; Hakiki, N.E.; Khelil, A.; Simon, L.; Bubendorff, J.L. Thermally oxidized Inconel 600 and 690 nickel-based alloys characterizations by combination of global photoelectrochemistry and local near-field microscopy techniques (STM, STS, AFM, SKPFM). Appl. Surf. Sci. 2018, 433, 66–75. [Google Scholar] [CrossRef]
- Guo, L.-Q.; Li, M.; Shi, X.L.; Yan, Y.; Li, X.-Y.; Qiao, L.-J. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques. Corros. Sci. 2011, 53, 3733–3741. [Google Scholar] [CrossRef]
- Li, W.; Li, D.-Y. Variations of work functions and corrosion behaviros of deformed copper surfaces. Appl. Surf. Sci. 2005, 240, 388–395. [Google Scholar] [CrossRef]
- Guo, L.-Q.; Zhao, X.-M.; Wang, B.-C.; Bai, Y.; Xu, B.-Z.; Qiao, L.-J. The initial stage of atmospheric corrosion on interstitial free steel investigated by in situ SPM. Corros. Sci. 2013, 70, 188–193. [Google Scholar] [CrossRef]
- Sathirachinda, N.; Pettersson, R.; Wessman, S.; Kivisäkk, U.; Pan, J. Scanning Kelvin probe force microscopy study of chromium nitrides in 2507 super duplex stainless steel-Implications and limitations. Electrochim. Acta. 2011, 56, 1792–1798. [Google Scholar] [CrossRef]
- Li, M.; Guo, L.-Q.; Qiao, L.-J.; Bai, Y. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM. Corros. Sci. 2012, 60, 76–81. [Google Scholar] [CrossRef]
- Egeland, G.W.; Valdez, J.A.; Maloy, S.A.; McClellan, K.J.; Sickafus, K.E.; Bond, G.M. Heavy-ion irradiation defect accumulation in ZrN characterized by TEM, GIXRD, nanoindentation, and helium desorption. J. Nucl. Mater. 2013, 435, 77–87. [Google Scholar] [CrossRef]
- Guo, L.-Q.; Lin, M.-C.; Qiao, L.-J.; Volinsky, A.A. Ferrite and austenite phase identification in duplex stainless steel using SPM techniques. Appl. Surf. Sci. 2013, 287, 499–501. [Google Scholar] [CrossRef]
- Noonan, J.R.; Davis, H.L. Atomic arrangements at metal surfaces. Science. 1986, 234, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Cheng, B.; Zeng, L.-F.; Miao, S.; Hou, J.; Zhang, T.; Wang, X.-P.; Fang, Q.-F.; Liu, C.-S. Microstructure, hardness and defect structure of the He irradiated ODS ferritic steel. J. Alloys Compd. 2017, 691, 653–658. [Google Scholar] [CrossRef]
- Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.C.; Andrien, E. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel: Heavy ions vs protons. J. Nucl. Mater. 2018, 501, 45–58. [Google Scholar] [CrossRef]
- Was, G.S. Fundamentals of Radiation Materials Science: Metals and Alloys; Springer: New York, NY, USA, 2017. [Google Scholar]
- Zinkle, S.J.; Matsukawa, Y. Observation and analysis of defect cluster production and interactions with dislocations. J. Nucl. Mater. 2004, 329–333, 88–96. [Google Scholar] [CrossRef]
- Victoria, M.; Baluc, N.; Bailat, C.; Dai, Y.; Luppo, M.I.; Schäublin, R.; Singh, B.N. The microstructure and associated tensile properties of irradiated fcc and bcc metals. J. Nucl. Mater. 2000, 276, 114–122. [Google Scholar] [CrossRef]
- Lin, X.-D.; Peng, Q.-J.; Han, E.-H.; Ke, W.; Sun, C.; Jiao, Z.-J. Irradiation-induced segregation at phase boundaries in austenitic stainless steel weld metal. Scr. Mater. 2018, 149, 11–15. [Google Scholar] [CrossRef]
- Nakata, K.; Ikeda, S.; Hamada, S.; Hishinuma, A. Microstructural development due to long-term aging and ion irradiation behavior in weld metals of austenitic stainless steel. J. Nucl. Mater. 1996, 233–237, 192–196. [Google Scholar] [CrossRef]
- Judge, C.D.; Bhakhri, V.; Jiao, Z.; Klassen, R.J.; Was, G.S.; Botton, G.A.; Griffiths, M.J. The effects of proton irradiation on the microstructural and mechanical property evolution of inconel X-750 with high concentrations of helium. J. Nucl. Mater. 2017, 492, 213–226. [Google Scholar] [CrossRef]
- Mente, T.; Boellinghaus, T. Modeling of hydrogen distribution in a duplex stainless steel. Weld. World. 2012, 56, 66–78. [Google Scholar] [CrossRef]
Region Position in the Sample | Regions Affected by Vacancies and Protons | Depth, μm | Region Number |
---|---|---|---|
Surface | Surface damage region | 0 | I |
Interior | Uniform damage region | 0–17 | II |
Maximum damage region | 17–20 | III | |
Transition region (hardness and potential) | 20–55 | IV | |
Region unaffected by irradiation | >55 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Peng, Q.; Jiao, Z.; Volinsky, A.A.; Qiao, L. Proton Irradiation Effects on Hardness and the Volta Potential of Welding 308L Duplex Stainless Steel. Micromachines 2019, 10, 11. https://doi.org/10.3390/mi10010011
Jiang B, Peng Q, Jiao Z, Volinsky AA, Qiao L. Proton Irradiation Effects on Hardness and the Volta Potential of Welding 308L Duplex Stainless Steel. Micromachines. 2019; 10(1):11. https://doi.org/10.3390/mi10010011
Chicago/Turabian StyleJiang, Baolong, Qunjia Peng, Zhijie Jiao, Alex A. Volinsky, and Lijie Qiao. 2019. "Proton Irradiation Effects on Hardness and the Volta Potential of Welding 308L Duplex Stainless Steel" Micromachines 10, no. 1: 11. https://doi.org/10.3390/mi10010011
APA StyleJiang, B., Peng, Q., Jiao, Z., Volinsky, A. A., & Qiao, L. (2019). Proton Irradiation Effects on Hardness and the Volta Potential of Welding 308L Duplex Stainless Steel. Micromachines, 10(1), 11. https://doi.org/10.3390/mi10010011