Tooth-Inspired Tactile Sensor for Detection of Multidirectional Force
Abstract
:1. Introduction
2. Design
3. Fabrication Process
4. Experimental Methods and Procedures
5. Experimental Results and Discussions
5.1. Sensitivity Test
5.2. Direction of Load
5.3. Loading Repeatibility Test
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jayawant, B.V. Tactile sensing in robotics. J. Phys. E 1989, 22, 684–692. [Google Scholar] [CrossRef]
- Dahiya, R.S.; Metta, G.; Valle, M.; Sandini, G. Tactile Sensing—From Humans to Humanoids. IEEE Trans. Robot. 2010, 26, 1–20. [Google Scholar] [CrossRef]
- Silvera-Tawil, D.; Rye, D.; Velonaki, M. Artificial skin and tactile sensing for socially interactive robots: A review. Rob. Auton. Syst. 2015, 63, 230–243. [Google Scholar] [CrossRef]
- Yang, T.; Xie, D.; Li, Z.; Zhu, H. Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Mater. Sci. Eng. R Rep. 2017, 115, 1–37. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, Y.; Guo, C.F. Recent progresses on flexible tactile sensors. Mater. Today Phys. 2017, 1, 61–73. [Google Scholar] [CrossRef]
- Zhang, Y.; Miki, N. An optimal design of epidermal ridges to the tactile sensor for sensitivity enhancement during shear force detection. IEEJ Trans. Sensors Micromach. 2011, 131, 141–147. [Google Scholar] [CrossRef]
- Zhang, Y.; Miki, N. Sensitivity enhancement of a micro-scale biomimetic tactile sensor with epidermal ridges. J. Micromech. Microeng. 2010, 20, 085012. [Google Scholar] [CrossRef]
- Salehi, S.; Cabibihan, J.-J.; Ge, S.S. Artificial skin ridges enhance local tactile shape discrimination. Sensors 2011, 11, 8626–8642. [Google Scholar] [CrossRef]
- Ding, S.; Pan, Y.; Tong, M.; Zhao, X. Tactile perception of roughness and hardness to discriminate materials by friction-induced vibration. Sensors 2017, 17, 2748. [Google Scholar] [CrossRef]
- Seale, M.; Mastropaolo, E.; Nakayama, N.; Cummins, C.; Viola, I.M. Design principles of hair-like structures as biological machines. J. R. Soc. Interface 2018, 15, 1–16. [Google Scholar] [CrossRef]
- Zhang, J.; Hao, L.; Yang, F.; Jiao, W.; Liu, W.; Li, Y.; Wang, R.; He, X. Biomimic hairy skin tactile sensor based on ferromagnetic microwires. ACS Appl. Mater. Interfaces 2016, 8, 33848–33855. [Google Scholar] [CrossRef]
- Takei, K.; Yu, Z.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc. Natl. Acad. Sci. USA 2014, 111, 1703–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, F.; Ling, S.-F. Bioinspired active whisker sensor for robotic vibrissal tactile sensing. Smart Mater. Struct. 2014, 23, 125003. [Google Scholar] [CrossRef]
- Harada, S.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Fully printed, highly sensitive multifunctional artificial electronic whisker arrays integrated with strain and temperature sensors. ACS Nano 2014, 8, 3921–3927. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.C.; Mitchinson, B.; Pearson, M.J.; Evans, M.; Lepora, N.F.; Fox, C.W.; Melhuish, C.; Prescott, T.J. Tactile discrimination using active whisker sensors. IEEE Sens. J. 2012, 12, 350–362. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z.L. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Assaf, T.; Roke, C.; Rossiter, J.; Pipe, T.; Melhuish, C. Seeing by touch: Evaluation of a soft biologically-inspired artificial fingertip in real-time active touch. Sensors 2014, 14, 2561–2577. [Google Scholar] [CrossRef]
- Roke, C.; Melhuish, C.; Pipe, T.; Drury, D.; Chorley, C. Lump localisation through a deformation-based tactile feedback system using a biologically inspired finger sensor. Rob. Auton. Syst. 2012, 60, 1442–1448. [Google Scholar] [CrossRef]
- Suen, M.S.; Lin, Y.C.; Chen, R. A flexible multifunctional tactile sensor using interlocked zinc oxide nanorod arrays for artificial electronic skin. Sensors Act. A Phys. 2018, 269, 574–584. [Google Scholar] [CrossRef]
- Li, T.; Zhang, S.; Lu, G.W.; Sunami, Y. Vibro-perception of optical bio-inspired fiber-skin. Sensors 2018, 18, 1531. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, D.G.; Park, J.; Ko, H.; Lim, H. Piezoresistive tactile sensor discriminating multidirectional forces. Sensors 2015, 15, 25463–25473. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, F. A forefinger-like tactile sensor for elasticity sensing based on piezoelectric cantilevers. Sensors Act. A Phys. 2015, 234, 351–358. [Google Scholar] [CrossRef]
- McKinley, S.; Garg, A.; Sen, S.; Kapadia, R.; Murali, A.; Nichols, K.; Lim, S.; Patil, S.; Abbeel, P.; Okamura, A.M.; Goldberg, K. A single-use haptic palpation probe for locating subcutaneous blood vessels in robot-assisted minimally invasive surgery. In IEEE International Conference on Automation Science and Engineering; IEEE: Gothenburg, Sweden, 2015; pp. 1151–1158. [Google Scholar]
- Nakadegawa, T.; Ishizuka, H.; Miki, N. Three-axis scanning force sensor with liquid metal electrodes. Sens. Act. A Phys. 2017, 264, 260–267. [Google Scholar] [CrossRef]
- Nagatomo, T.; Miki, N. Three-axis capacitive force sensor with liquid metal electrodes for endoscopic palpation. Micro Nano Lett. 2017, 12, 564–568. [Google Scholar] [CrossRef]
- Neubert, J.K.; Caudle, R.M.; Dolce, C.; Toro, E.J.; Bokrand-Donatelli , Y.; Holliday, L.S. Neural Modulation of Orthodontic Tooth Movement. In Principles in Contemporary Orthodontics; Naretto, S., Ed.; InTech: Rijeka, Croatia, 2011; pp. 527–544. ISBN 978-953-307-687-4. [Google Scholar]
- Gul, J.Z.; Su, K.Y.; Choi, K.H. Fully 3D Printed Multi-Material Soft Bio-Inspired Whisker Sensor for Underwater-Induced Vortex Detection. Soft Robot. 2017, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Katragadda, R.B.; Tu, H.; Zheng, Q.; Li, Y.; Xu, Y. Bioinspired 3-D tactile sensor for minimally invasive surgery. J. Microelectromech. Syst. 2010, 19, 1400–1408. [Google Scholar] [CrossRef]
- Benfield, D.; Lou, E.; Moussa, W.A. Parametric evaluation of shear sensitivity in piezoresistive interfacial force sensors. J. Micromech. Microeng. 2011, 21. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Lin, Q. An integrated MEMS tactile tri-axial micro-force probe sensor for Minimally Invasive Surgery. In Proceedings of the 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, Tainan, Taiwan, 18–21 October 2009; pp. 71–76. [Google Scholar]
- Nakamura, Y.; Suzuki, Y.; Watanabe, Y. Effect of oxygen plasma etching on adhesion between polyimide films and metal. Thin Solid Films 1996, 290–291, 367–369. [Google Scholar] [CrossRef]
- Bhusari, D.; Hayden, H.; Tanikella, R.; Allen, S.A.B.; Kohl, P.A. Plasma Treatment and Surface Analysis of Polyimide Films for Electroless Copper Buildup Process. J. Electrochem. Soc. 2005, 152, F162–F170. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad Ridzuan, N.A.; Miki, N. Tooth-Inspired Tactile Sensor for Detection of Multidirectional Force. Micromachines 2019, 10, 18. https://doi.org/10.3390/mi10010018
Ahmad Ridzuan NA, Miki N. Tooth-Inspired Tactile Sensor for Detection of Multidirectional Force. Micromachines. 2019; 10(1):18. https://doi.org/10.3390/mi10010018
Chicago/Turabian StyleAhmad Ridzuan, Nurul Adni, and Norihisa Miki. 2019. "Tooth-Inspired Tactile Sensor for Detection of Multidirectional Force" Micromachines 10, no. 1: 18. https://doi.org/10.3390/mi10010018
APA StyleAhmad Ridzuan, N. A., & Miki, N. (2019). Tooth-Inspired Tactile Sensor for Detection of Multidirectional Force. Micromachines, 10(1), 18. https://doi.org/10.3390/mi10010018