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Abstract: In this paper, a novel tunnel field-effect transistor (TFET) has been demonstrated.
The proposed TFET features a SiGe channel, a fin structure and an elevated drain to improve
its electrical performance. As a result, it shows high-level ON-state current (ION) and low-level
OFF-state current (IOFF); ambipolar current (IAMB). In detail, its ION is enhanced by 24 times more
than that of Si control group and by 6 times more than of SiGe control group. The IAMB can be reduced
by up to 900 times compared with the SiGe control group. In addition, technology computer-aided
design (TCAD) simulation is performed to optimize electrical performance. Then, the benchmarking
of ON/OFF current is also discussed with other research group’s results.

Keywords: band-to-band tunneling; tunnel field-effect transistor; low operating power device;
tunneling resistance; sub- threshold swing; ambipolar current; elevated drain

1. Introduction

Numerous studies about tunnel field-effect transistor (TFET) have been performed by several
research groups as a promising device for an ultra-low power operation [1–4]. In case of
metal-oxide-semiconductor FETs (MOSFETs), there exist a theoretical limit of 60 mV/dec subthreshold
swing (SS) at 300 K-temperature because their carrier injection is based on the thermionic emission [5,6].
On the other hand, TFETs are relatively independent to the Boltzmann distribution since the function
tail is removed by forbidden gap and the band-to-band tunneling (BTBT) dominates the carrier
injection from source to channel [7,8]. Thus, the SS can be reduced to less than 60 mV/dec at RT,
which allows the supply voltage (VDD) to be decreased drastically, maintaining high ON-state current
(ION). In addition, its fabrication process is highly compatible with that of MOSFETs. In spite of these
advantages, however, the TFETs have some technical issues to be employed for a real application.
First, it suffers from low-level ON-state current which is mainly attributed to the high tunnel resistance
at source-to-channel junction [9–11]. In order to solve this, the Ge material has been adopted for its low
bandgap and direct BTBT tunneling [12]. However, It is difficult to make a heterojunction using Ge
material [12]. Second, a BTBT at channel-to-drain junction increases OFF-state leakage current (IOFF);
ambipolar current (IAMB). Since these issues degrade TFET circuit’s electrical performance such as
operation speed and power consumption, they should be addressed [13–16].

The purpose of this paper is to demonstrate a novel TFET which achieves larger ION and smaller
IAMB than that of conventional Si TFETs. As shown in Figure 1, the proposed TFET features a fin
channel structure for improved gate controllability and a SiGe channel for higher ION as reducing
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tunnel resistance. In addition, in the proposed TFET, IAMB can be suppressed with the help of relatively
large Si band gap at drain. In addition, its feasibility for better performance is examined by technology
computer-aided design (TCAD) simulation. Last of all, based on the measurement and optimized
results, the benchmarking of ON/OFF current ratio (ION/IOFF) and SS with the state-of-the-art TFETs
is also discussed.
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Figure 1. Structure of the proposed TFET. It is featured that SiGe fin structure with elevated drain region.

2. Device Fabrication

The key process steps for the proposed TFETs are described in Figure 2a First, silicon-on-insulator
(SOI) thickness is decreased by using wet oxidation followed by SiO2 wet etching. Then, SiGe and
Si layers are grown on the SOI substrate by metal organic chemical vapor deposition (MOCVD).
The process condition is as follow: a gas mixture of H2 at 20 sccm, SiH4 at 20 sccm, and GeH4 at
90 sccm is used at 670 ◦C during 61 s for 300 Å-thick SiGe. Auger electron spectroscope (AES) and
transmission electron microscope (TEM) image confirm a single crystalline Si0.7Ge0.3 is well grown
on Si substrate (Figure 3) As ion implantation is performed at 10 keV-acceleration energy, 7◦-tilted
angle and 8 × 1014 ions/cm2-dose. Then, SiNx is deposited by plasma-enhanced CVD (PECVD) as an
etching mask during an active patterning (c). PECVD nitride is adopted since it is low temperature
process with 400 ◦C and 20 s, in which the implanted dopants in the drain region can rarely diffuse.
(d) Some part of Si on active regions are removed by photolithography and reactive ion etching (RIE)
processes forming SiGe source and channel while the remaining Si on mesa becomes raised drain
region. In case of channel, an additional patterning is conducted by mix-and-match process of e-beam
lithography and photolithography to form 50 nm-width active fin (Figures 2d and 4).

The SiGe/Si fin width is further reduced by standard cleaning-1 (SC-1) solution which consists
of ammonium hydroxide (NH4OH), hydrogen peroxide (H2O2), and de-ionized wafer (H2O) [17,18].
The NH4OH:H2O2:H2O ratio is 1:8:64 in which the etching rate of the SiGe is ~0.85 nm/min.
After 13 min process in the SC-1 solution, the SiGe fin width is reduced to 39.5 nm as shown in the inset
of Figure 4. As shown in Figure 2e, an 1 nm-thick Si capping layer is deposited by selective epitaxy
growth (SEG) followed by dry oxidation for a gate dielectric. It has been demonstrated that this process
can efficiently prevent defects which could be induced between SiO2 and SiGe [19]. The capacitance
equivalent thickness (CET) of gate dielectric is confirmed as 3.4 nm from the capacitance-voltage (C-V)
curve shown in Figure 5. (f) For a short-channel gate, sidewall spacer technique is applied: n-type
doped polycrystalline-Si (poly-Si) is deposited by low pressure CVD (LPCVD) and etched by Si RIE
process after photolithography for a gate pad. As a result, ~76 nm-length gate is defined self-aligning
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to the drain (Figure 6). After that, BF2 implantation with 10 keV-acceleration energy, 7◦-tilted angle
and 8 × 1014 ions/cm2-dose is performed for a source region. The dopant activation is performed by
rapid thermal process (RTP) with 900 ◦C and 5 s. Note that all processes for gate, source and drain
formation are self-aligned to each other and can be compatible with state-of-the-art ultra-short channel
technology. Finally, as a back-end-of line (BEOL), high plasma density (HDP) oxide is deposited as an
interlayer dielectric (ILD) and metal layers (Ti/TiN/Al/TiN stacks) are deposited by physical vapor
deposition (PVD) after contact formation. (g) Then, all of processes are summarized in the flow graph.Micromachines 2019, 10, x FOR PEER REVIEW 3 of 11 
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For the control samples, the planar Si and SiGe TFETs were fabricated. In the case of SiGe
TFET, Si0.7Ge0.3 layers with a thickness of 30 nm are grown on SOI (100) substrates. The SOI layer is
lightly p-doped (1 × 1015 cm−3) with a thickness of 70 nm. For additional comparison, the Si TFET
is fabricated on a 100 nm-thick SOI wafer. The gate stack consists of 200 nm poly-Si layer and 3 nm
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SiO2. After gate patterning, source and drain region are defined through photolithography and ion
implantation processes. The ion implantation and BEOL processes are same with the processes in
proposed TFET.
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3. Measurement and Results

Figure 7a shows the transfer characteristics of the proposed device with the various drain voltages
(VDSs). The SS is extracted at VDS of 0.1 V and a turn-ON voltage (Vturn-ON) is defined as gate voltages
(VGS) where BTBT first occurs. The IOFF and ION are extracted when VGS is Vturn-ON and gate overdrive
(VOV = VGS − Vturn-ON) is equal to 2 V, respectively. The minimum SS is 81 mV/dec and ION/IOFF

is 2.8 × 104. Figure 7b shows the output characteristics of the proposed TFET with the various
VGSs. Note that, the conventional planar devices suffer from short channel effect (SCE) due to their
weak gate controllability over the channel [20,21]. Generally, the SCE can be confirmed with drain
induced current enhancement (DICE) in transfe curves and increase of saturation current in output
characteristics. According to the measured results, however, there is no obvious SCE in the proposed
TFET as shown in Figure 7a,b.
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The proposed TFET’s electrical characteristics are compared with that for planar Si and SiGe
TFETs as control groups. Figure 8 shows the transfer characteristics of both groups at 1.0 V-VDS. The SS
and ION, IAMB and ION/IOFF are extracted from the curves and summarized in Table 1. The proposed
TFET shows superior performance than the control ones in the several aspects. First, the SS of proposed
device, which is measured at Vturn-ON is 81 mV/dec whereas 151 mV/dec and 87 mV/dec are measured
in planar Si and SiGe TFETs, respectively. Second, the proposed TFET shows 139 nA/µm-ION which is
34 times and 5 times bigger than that for Si and SiGe TFETs, respectively. Last of all, the IAMB can be
reduced by up to 103 times compared with the SiGe TFET. These results are attributed in part to the
SiGe’s narrow bandgap at the source area and in part to the strong gate-to-channel coupling with the
help of fin-structured channel [22]. In addition, the elevated drain area reduces the BTBT between the
channel and the drain by Si bandgap [23].

Table 1. Summary of extracted parameters.

Si TFET SiGe TFET Propose TFET

SS (VDS = 0.1 V) 151 mV/dec 87 mV/dec 81 mV/dec
ION 4 nA/µm 21 nA/µm 139 nA/µm

IAMB 13 pA/µm 16 nA/µm 18 pA/µm
ION/IOFF 4 × 103 2.7 × 103 2.8 × 104
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SiGe channels.

The proposed TFET has remarkable electrical characteristics as shown above. However, the IOFF

of proposed TFET near zero VGS is higher than that of planar Si TFET (Figure 8). In order to confirm the
mechanism precisely, transfer characteristics with various temperature are investigated. As shown in
Figure 9, drain current (ID) is relatively independent to the VGS at around 0 V while it increases rapidly
as a function of temperature. The result confirms that this current is dominated by Shockley–Read–Hall
(SRH) generation–recombination [24].
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4. Discussion

The objective of this study is to demonstrate the TFET with high ION and low IAMB. Compared
with planar TFETs which is fabricated with the same processes, there is no doubt that the proposed
structure is effective to improve electrical performance. However, the measured results imply
that it requires further optimization for the better performance than the other strategies [25–37].
Therefore, the proposed TFET’s feasibility for the better performance is examined by TCAD simulations
using Synopsys Sentaurus™. Above all, BTBT parameters in Kane’s tunneling model are calibrated by
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measured results [17]. In the simulations, to calculate BTBT generation rate (G) per unit volume in the
uniform electric field, Kane’s model is used and fitted parameters are as follows (Equation (1)).

G = A
(

F
F0

)P
exp

(
−B

F

)
(1)

where F0 = 1 V/m, P = 2.5 for indirect BTBT. Prefactor A and exponential factor B are the Kane
parameters and F is the electric field. Both linear and log scale simulated transfer characteristics are
well matched to experimental data when A: 1 × 1014 cm−1·s−1/B: 3 × 106 V/cm are applied to TFETs.
Then, the thickness of the gate dielectric is analyzed. Unlike advanced technologies, the proposed TFET
uses 3.4 nm thick SiO2 as the gate dielectric. Thus, if the gate dielectric is adjusted to 1 nm, the proposed
TFET can obtain higher ION at the low VGS (Figure 10). Figure 11 compares the ION/IOFF as a function
of SS for the device shown in this paper and that in the previous articles [25–37]. Compared with the
other Si based TFETs, the optimized TFET shows a remarkable performance in terms of minimum SS
and ION/IOFF.

Micromachines 2019, 10, x FOR PEER REVIEW 8 of 11 

 

well matched to experimental data when A: 1 × 1014 cm−1·s−1/B: 3 × 106 V/cm are applied to TFETs. 
Then, the thickness of the gate dielectric is analyzed. Unlike advanced technologies, the proposed 
TFET uses 3.4 nm thick SiO2 as the gate dielectric. Thus, if the gate dielectric is adjusted to 1 nm, the 
proposed TFET can obtain higher ION at the low VGS (Figure 10). Figure 11 compares the ION/IOFF as a 
function of SS for the device shown in this paper and that in the previous articles [25–37]. Compared 
with the other Si based TFETs, the optimized TFET shows a remarkable performance in terms of 
minimum SS and ION/IOFF. 

 
Figure 10. Transfer characteristics of the proposed TFETs with various CET. 

 
Figure 11. Performance comparison of TFETs. ION/IOFF of TFETs as a function. 

  

Figure 10. Transfer characteristics of the proposed TFETs with various CET.

Micromachines 2019, 10, x FOR PEER REVIEW 8 of 11 

 

well matched to experimental data when A: 1 × 1014 cm−1·s−1/B: 3 × 106 V/cm are applied to TFETs. 
Then, the thickness of the gate dielectric is analyzed. Unlike advanced technologies, the proposed 
TFET uses 3.4 nm thick SiO2 as the gate dielectric. Thus, if the gate dielectric is adjusted to 1 nm, the 
proposed TFET can obtain higher ION at the low VGS (Figure 10). Figure 11 compares the ION/IOFF as a 
function of SS for the device shown in this paper and that in the previous articles [25–37]. Compared 
with the other Si based TFETs, the optimized TFET shows a remarkable performance in terms of 
minimum SS and ION/IOFF. 

 
Figure 10. Transfer characteristics of the proposed TFETs with various CET. 

 
Figure 11. Performance comparison of TFETs. ION/IOFF of TFETs as a function. 

  

Figure 11. Performance comparison of TFETs. ION/IOFF of TFETs as a function.



Micromachines 2019, 10, 30 8 of 10

5. Conclusions

In this paper, a novel TFET with SiGe fin channel and elevated drain has been introduced.
The SiGe fin channel included small-bandgap and better electrostatic controllability which are leading
high ION and low SS, compared to conventional planar TFETs. Furthermore, the elevated drain could
yield lower IAMB due to the increased physical distance between channel and drain. Considering
these features, we have examined and demonstrated the fabrication processes of the proposed device.
In addition, based on the measured results, the proposed TFET is calibrated by TCAD simulation.
In order to optimize the device into state-of-the-art technique, the proposed device with thin gate
dielectric is also simulated. The results proved that the device showed the improved ION current and
smaller SS. Consequently, these features of the proposed device will be available for compensating
the weaknesses of conventional TFETs. Therefore, it will be one of the promising candidates for
next-generation devices.
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