Editorial for the Special Issue on Glassy Materials Based Microdevices
Conflicts of Interest
References
- Righini, G.C. Glassy Microspheres for Energy Applications. Micromachines 2018, 9, 379. [Google Scholar] [CrossRef] [PubMed]
- Piccolo, V.; Chiappini, A.; Armellini, C.; Barozzi, M.; Lukowiak, A.; Sazio, P.-J.A.; Vaccari, A.; Ferrari, M.; Zonta, D. 2D Optical Gratings Based on Hexagonal Voids on Transparent Elastomeric Substrate. Micromachines 2018, 9, 345. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lewis, E.; Farrell, G.; Wang, P. Compound Glass Microsphere Resonator Devices. Micromachines 2018, 9, 356. [Google Scholar] [CrossRef] [PubMed]
- Chiavaioli, F.; Laneve, D.; Farnesi, D.; Falconi, M.C.; Nunzi Conti, G.; Baldini, F.; Prudenzano, F. Long Period Grating-Based Fiber Coupling to WGM Microresonators. Micromachines 2018, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Konstantinou, G.; Milenko, K.; Kosma, K.; Pissadakis, S. Multiple Light Coupling and Routing via a Microspherical Resonator Integrated in a T-Shaped Optical Fiber Configuration System. Micromachines 2018, 9, 521. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhu, C.; Guo, Z.; Wang, B.; Wu, X.; Fei, Y. Highly Sensitive Label-Free Detection of Small Molecules with an Optofluidic Microbubble Resonator. Micromachines 2018, 9, 274. [Google Scholar] [CrossRef] [PubMed]
- Wlodarczyk, K.L.; Carter, R.M.; Jahanbakhsh, A.; Lopes, A.A.; Mackenzie, M.D.; Maier, R.R.J.; Hand, D.P.; Maroto-Valer, M.M. Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates. Micromachines 2018, 9, 409. [Google Scholar] [CrossRef] [PubMed]
- Italia, V.; Giakoumaki, A.N.; Bonfadini, S.; Bharadwaj, V.; Le Phu, T.; Eaton, S.M.; Ramponi, R.; Bergamini, G.; Lanzani, G.; Criante, L. Laser-Inscribed Glass Microfluidic Device for Non-Mixing Flow of Miscible Solvents. Micromachines 2019, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, J.; Zhou, T.; Song, L. Fabricating Microstructures on Glass for Microfluidic Chips by Glass Molding Process. Micromachines 2018, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Li, X.; Liu, L.; Chen, D.; Cao, S.; Men, D.; Wang, J.; Chen, J. Absolute Copy Numbers of β-Actin Proteins Collected from 10,000 Single Cells. Micromachines 2018, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Zhu, Z.; Liu, X.; Liang, Z.; Wang, X. A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics. Micromachines 2018, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Hong, D.; Badshah, M.A.; Lu, X.; Kim, Y.K.; Kim, S.-M. Direct Metal Forming of a Microdome Structure with a Glassy Carbon Mold for Enhanced Boiling Heat Transfer. Micromachines 2018, 9, 376. [Google Scholar] [CrossRef] [PubMed]
- Knapkiewicz, P. Alkali Vapor MEMS Cells Technology toward High-Vacuum Self-Pumping MEMS Cell for Atomic Spectroscopy. Micromachines 2018, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xie, J.; Guo, A. Study on Micro-Crack Induced Precision Severing of Quartz Glass Chips. Micromachines 2018, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Amiri, I.S.; Azzuhri, S.R.B.; Jalil, M.A.; Hairi, H.M.; Ali, J.; Bunruangses, M.; Yupapin, P. Introduction to Photonics: Principles and the Most Recent Applications of Microstructures. Micromachines 2018, 9, 452. [Google Scholar] [CrossRef] [PubMed]
- Falcony, C.; Aguilar-Frutis, M.A.; García-Hipólito, M. Spray Pyrolysis Technique; High-K Dielectric Films and Luminescent Materials: A Review. Micromachines 2018, 9, 414. [Google Scholar] [CrossRef] [PubMed]
- Trejo-García, P.M.; Palomino-Merino, R.; De la Cruz, J.; Espinosa, J.E.; Aceves, R.; Moreno-Barbosa, E.; Moreno, O.P. Luminescent Properties of Eu3+-Doped Hybrid SiO2-PMMA Material for Photonic Applications. Micromachines 2018, 9, 441. [Google Scholar] [CrossRef] [PubMed]
- Enrichi, F.; Cattaruzza, E.; Ferrari, M.; Gonella, F.; Ottini, R.; Riello, P.; Righini, G.C.; Enrico, T.; Vomiero, A.; Zur, L. Ag-Sensitized Yb3+ Emission in Glass-Ceramics. Micromachines 2018, 9, 380. [Google Scholar] [CrossRef] [PubMed]
- Quandt, A.; Aslan, T.; Mokgosi, I.; Warmbier, R.; Ferrari, M.; Righini, G. About the Implementation of Frequency Conversion Processes in Solar Cell Device Simulations. Micromachines 2018, 9, 435. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Righini, G.C.; Righini, N. Editorial for the Special Issue on Glassy Materials Based Microdevices. Micromachines 2019, 10, 39. https://doi.org/10.3390/mi10010039
Righini GC, Righini N. Editorial for the Special Issue on Glassy Materials Based Microdevices. Micromachines. 2019; 10(1):39. https://doi.org/10.3390/mi10010039
Chicago/Turabian StyleRighini, Giancarlo C., and Nicoletta Righini. 2019. "Editorial for the Special Issue on Glassy Materials Based Microdevices" Micromachines 10, no. 1: 39. https://doi.org/10.3390/mi10010039
APA StyleRighini, G. C., & Righini, N. (2019). Editorial for the Special Issue on Glassy Materials Based Microdevices. Micromachines, 10(1), 39. https://doi.org/10.3390/mi10010039