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Abstract: L-shaped tunnel field-effect transistor (TFET) provides higher on-current than a conventional
TFET through band-to-band tunneling in the vertical direction of the channel. However, L-shaped
TFET is disadvantageous for low-power applications because of increased off-current due to the
large ambipolar current. In this paper, a stacked gate L-shaped TFET is proposed for suppression of
ambipolar current. Stacked gates can be easily implemented using the structural features of L-shaped
TFET, and on- and off-current can be controlled separately by using different gates located near the
source and the drain, respectively. As a result, the suppression of ambipolarity is observed with
respect to work function difference between two gates by simulation of the band-to-band tunneling
generation. Furthermore, the proposed device suppresses ambipolar current better than existing
ambipolar current suppression methods. In particular, low drain resistance is achieved as there is
no need to reduce drain doping, which leads to a 7% enhanced on-current. Finally, we present the
fabrication method for a stacked gate L-shaped TFET.

Keywords: L-shaped tunnel field-effect transistor; stacked gate; dual work function; ambipolar current

1. Introduction

A tunnel field-effect transistor (TFET) has attracted attention as a candidate for low-power
applications because of its low subthreshold swing and low off-current compared with the
metal-oxide-semiconductor field-effect transistor (MOSFET) [1–5]. Since a working principle of
TFET relies on band-to-band tunneling (BTBT), TFET can achieve under 60 mV/decade subthreshold
swing which acts as a limit on MOSFET [5–7]. However, TFET has a limitation in its on-current, which is
lower than that of the conventional MOSFET because of low BTBT rates [8]. To solve this problem,
an L-shaped TFET using vertical BTBT has been proposed [9]. Nevertheless, it has a disadvantage of
ensuing large ambipolar current due to the tunneling layer deposited on the gate-drain overlap region
during the selective epitaxial-layer growth (SEG) process [10]. Since ambipolar current contributes to
the increase of the off-current, finding a method to reduce it is an important issue. Reduced drain doping
and gate-drain underlap have been suggested as strategies for eliminating ambipolar current [11–14].
However, the method reducing drain doping concentration has drawbacks in terms of decreased
on-current because of the increased drain resistance and in terms of increased Miller capacitance due
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to increased gate-drain coupling, which leads to the degradation of resistor–capacitor (RC) switching
characteristics [12]. The gate-drain underlap also has a drawback which limits the scalability.

Therefore, in this paper, we propose a method of suppressing ambipolar current by simply stacking
the gates utilizing the structural features of L-shaped TFET. First, the structure of the proposed device
and simulation method are described. Next, the electrical characteristics of the device are analyzed,
which is followed by comparisons to other methods of suppressing ambipolar current. Finally, the
fabrication method is presented for the stacked gate L-shaped TFET.

2. Device Structures and Simulation Methods

Figure 1a–d show the schematic designs of the single gate, stacked gate L-shaped TFET and the
other devices with gate-drain underlap applied to each of the two devices. All devices are based on
silicon and share the same doping concentration except low drain doping device (1 × 1019 cm−3 on
drain). Abrupt doping profile can be formed because of in-situ doping during epitaxy, especially at
the source [15]. Work function of the top gate (φG2) is fixed at 4.5 eV and its height (HG2) is 88 nm.
The bottom gate work function (φG1) varies from 4.0 to 4.5 eV and its height (HG1) is 10 nm. The source
height is adjusted to 65 nm, which allows the SEG tunneling layer between the source and the gate to
be controlled by the top gate while the bottom channel is controlled by the bottom gate. The vertical
tunneling thickness (Lt) is 4 nm and the underlap length (Lun) is 9 nm. All design parameters are
summarized in Table 1. In order to verify the suppression of ambipolar current due to the stacked
gates structure, electrical characteristics of each device are investigated through Synopsys Sentaurus™
Technology Computer-Aided Design (TCAD) two-dimensional (2D) device simulation. The nonlocal
BTBT model is applied for investigation of ambipolar current in L-shaped TFET since this model takes
tunneling effect into consideration based on energy band profile. Two tunneling model coefficients
ASi = 4.0 × 1014 cm−1s−1, BSi = 9.9 × 106 V/cm, ASiGe = 3.1 × 1016 cm−1s−1 and BSiGe = 7.1 × 105 V/cm
from [16] are used in this work.
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Figure 1. Schematic designs of (a) (conventional) single gate L-shaped tunnel field-effect transistor
(TFET), (b) single gate L-shaped TFET with underlap, (c) stacked gate L-shaped TFET and (d) stacked
gate L-shaped TFET with underlap. In order to compare the suppression of the ambipolar current for
each method, the simulations were conducted according to the schematics above.

Table 1. Simulation parameters used for this work.

Parameters Definitions Value

NS Source doping concentration Boron, 1 × 1020 cm−3

NB
Channel doping

concentration Boron, 1 × 1016 cm−3

ND Drain doping concentration Arsenic, 1 × 1019 cm−3, 1 × 1020 cm−3

HS Source height 65 nm
HG1 Gate1 height 88 nm
HG2 Gate2 height 10 nm
Lt Vertical tunneling thickness 4 nm

Lch Lateral channel length 50 nm
Lun Gate-drain underlap length 9 nm
TB Body thickness 20 nm

TOX Gate oxide thickness 2 nm
VDS Drain voltage 0.7 V
φG1 Gate1 work function 4.0–4.5 eV
φG2 Gate2 work function 4.5 eV

3. Results

3.1. Ambipolar Suppression of Stacked Gate L-Shaped TFET

As shown in Figure 2a, the ambipolar current is significantly decreased in stacked gate L-shaped
TFET because φG1 is lower than φG2, which leads to larger channel potential at the drain side.
Meanwhile, on-current remains constant because φG2 is the same as that of the single gate L-shaped
TFET so that the same amount of electrostatic potential is applied to the SEG tunneling layer.
Consequently, the on-state region remains unchanged while the off-state region expands [(ii) to (iv)]
and the ambipolar state region contracts [(i) to (iii)]. The on-state region, off-state region and ambipolar
state region are defined with the constant current method. Figure 2b shows that the tunneling barrier
width between the channel and the drain becomes thicker in the stacked gate L-shaped TFET due to
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the stronger potential applied to the channel. As a result, the BTBT rate of stacked gate L-shaped TFET
significantly decreases in the ambipolar state (Figure 3). In addition, considering the relationship of
the potential applied to the channel according to the work function of the gate, the ambipolar state
region in the transfer curve will be shifted to the left by decreasing φG1, which will be covered in a
later subsection.
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Figure 2. (a) Transfer curves of single gate L-shaped TFET and stacked gate L-shaped TFET with
0.7 V-drain voltage (VDS). Off-state and ambipolar state region of each device is distinguished by
(i)–(iv). Ambipolar state region of the single gate (i), the off-state region of the single gate (ii), ambipolar
state region of the stacked gate (iii) and the off-state region of the stacked gate (iv). It is shown that
the ambipolar current is suppressed and the ambipolar state region contracts in the stacked gate
L-shaped TFET; (b) Energy band diagram at gate voltage (VGS) = −0.5 V for single gate L-shaped TFET
and stacked gate L-shaped TFET. They are obtained from source-to-drain along the cutline which
is indicated in the inset (A-A’). It is presented that the tunneling barrier between channel-to-drain
becomes thicker in the stacked gate L-shaped TFET.
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Figure 3. 2-D contour plot of band-to-band tunneling (BTBT) generation for (a) single gate and
(b) stacked gate L-shaped TFET. Ambipolar current suppression is observed from the decreased BTBT
rates in the stacked gate L-shaped TFET.

As illustrated in Figure 4, the ambipolar current of stacked gate L-shaped TFET with underlap is
the most suppressed. Non-stacked devices have similar off-state region sizes, while stacked devices
have an expanded off-state region and reduced ambipolar state region. Comparing with the single
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gate L-shaped TFET (without underlap), the stacked gate L-shaped TFET (without underlap) shows
ambipolar current (drain current at VGS = −1 V) and ambipolar region to be reduced and contracted
by 12 times and by 0.5 V, respectively. This advantage further reduces off-current and makes it less
sensitive to process variations.
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Figure 4. Transfer characteristics for stacked gate L-shaped TFET, stacked gate L-shaped TFET with
underlap, low drain doping L-shaped TFET, (conventional) single gate L-shaped TFET, and single
gate L-shaped TFET with underlap at VDS = 0.7 V. It is illustrated that the ambipolar state region
significantly contracts in the stacked gate L-shaped TFET.

3.2. Gate1 Work Function (φG1) Split

Figure 5 shows the transfer curves of stacked gate L-shaped TFET with various φG1. As the φG1

decreases, the ambipolar state region contracts and the off-state region expands because the energy
band of the channel drops downward (Figure 6). It leads to thickening of the tunneling barrier width
between channel and drain, reducing BTBT rates, as shown in Figure 7.
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Figure 5. Transfer curves of stacked gate L-shaped TFET with various φG1 (at VDS = 0.7 V). As φG1

decreases, ambipolar current is suppressed more and also ambipolar state region contracts. It can be
interpreted as if only the left part of the transfer curve (VGS < 0) is shifted to the left.
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3.3. Resistance/on-Current

Increase in on-current is beneficial in terms of RC characteristic due to a reduction in the resistance.
Figure 8a displays the resistance network in stacked gate L-shaped TFET when the device is in the
on-state. Considering that the BTBT generation that contributes to the on-current occurs in two places
near the source, the resistance network can be described as above. Since there is no need to lower the
drain doping to suppress the ambipolar current, the drain resistance does not increase and it leads to
higher on-current than the conventional method. Moreover, increasing the BTBT rate, for example
by changing the source from Si to SiGe, reduces the tunneling resistance (RTUN1, RTUN2) and makes
the effect of drain resistance more critical. Figure 8b exhibits the on-current with the drain doping
concentration in stacked gate L-shaped TFET using SiGe on the source. As a result, up to 7% of an
on-current gain can be achieved with an L-shaped TFET.
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3.4. Process Flow

The stacked gate L-shaped TFET can be easily fabricated by the repetition of deposition and
etch-back processes, unlike the planar structure in which the lithography process is necessary to form
the stacked gate. Figure 9 illustrates the key process steps for stacked gate L-shaped TFET. The other
processes before the stacked gate are described in [15]. After the gate dielectric deposition, Gate 2
atomic layer deposition (ALD) process (Figure 9a) is followed by chemical mechanical polishing
(CMP) (Figure 9b). Then the etch-back process is done to recess Gate2 under the source (Figure 9c).
Finally, Gate1 is repeatedly deposited and CMP is done (Figure 9d). The process flow for the gate stack
is explained in [17].
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4. Summary

In this study, we have successfully suppressed the ambipolar current of L-shaped TFET. The results
prove that the ambipolar current can be efficiently suppressed by stacking the gates and using a
low φG2. Compared with the other strategies for suppressing ambipolar behavior, the stacked gate
method shows the best performance in terms of ambipolar current, on-current and self-aligned process
feasibility. Consequently, the proposed device will be a better candidate for the future generation of
ultra-low-power circuits.
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