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Abstract: Various nanoscale fabrication techniques are elaborated to form artificial nanoporous/
nanochannel membranes to be applied for biosensing: one of the most prevalent is the micro-
electromechanical systems (MEMS) compatible focused ion beam (FIB) milling. This technique can
be easily adopted in micro- and nanomachining process sequences to develop composite multi-pore
structures, although its precision and reproducibility are key points in the case of these thick
multi-layered membranes. This work is to demonstrate a comprehensive characterisation of FIB
milling to improve the reliability of the fabrication of solid state nanopore arrays with precisely
predetermined pore geometries for a targeted molecule type to be recognised. The statistical geometric
features of the fabricated nanopores were recorded as the function of the process parameters, and
the resulting geometries were analysed in detail by high resolution scanning electron microscope
(SEM), transmission electron microscope (TEM) and ion scanning microscopy. Continuous function
of the pore diameter evolution rate was derived from the experimental results in the case of different
material structures, and compared to former dissentient estimations. The additional metal layer was
deposited onto the backside of the membrane and grounded during the ion milling to prevent the
electrical charging of dielectric layers. The study proved that the conformity of the pore geometry and
the reliability of their fabrication could be improved significantly. The applicability of the developed
nanopore arrays for molecule detection was also considered by characterising the pore diameter
dependent sensitivity of the membrane impedance modulation based measurement method.

Keywords: nanofluidics; nanofabrication; focused ion beam milling; composite/multi-layer solid
state nanopore array; molecule detection

1. Introduction

Compared to the macroscopic case, self-confined nanoscale structures exhibit significantly
different chemical and transport behaviours. The understanding of the involved chemical and physical
phenomena opens the way to explore the “world of nanofluidics” [1], and to develop brand new
sensing principles on the molecular or sub-molecular level.

1.1. Transport in Nanoscale

Regarding biosensor development, the application of microfluidic systems for liquid sample
management, including particle separation, reagent mixing, transport, etc., is essential [2]. By decreasing
the characteristic dimensions of the fluidic transport systems, significantly different governing physical
phenomena can be experienced, which become dominant in the nanofluidic systems by stepping over
the critical size of <100 nm. Approaching the characteristic lengths of electrostatic, intermolecular or
hydrodynamic interactions, interfacial phenomena increasingly dominate the physical behaviour of
the system [3].

The special effects revealed in the nanoconfinements are [1]:
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• Permselectivity induces asymmetric pressure or electric field driven molecule transport through
the nanochannels or nanopores.

• Size dependent transpore permeation of molecules is caused by the “Born repulsion” evolved due
to the electrical interaction between the overlapping electron clouds of translocating molecules
and atoms of the pore surface.

• Reconfiguration of macromolecules can also be experienced (in the case of deoxyribonucleic acid
(DNA) chains) due to the entropic barrier conditions.

Considering dimension-dependent transport in the nanochannels, the pressure driven flow rates
scale inversely to the channel cross section, contrary to the electroosmotic and electrophoretic flows.

1.2. Applications of Nanofluidic Systems

The most relevant envisioned applications of nanofluidic systems range from molecule separation
(both concentration and accumulation), molecule detection, to drug release and delivery, but 3rd
generation DNA sequencing may also be one of the important fields utilising these structures.
Concerning the widespread applications of nanofluidic structures, there are also several challenges to
master. The main obstacles are [1,4]:

• Development of robust and engineered fabrication techniques for reproducible
nanostructure formation.

• Clarification the comprehensive theory and construction predictive modelling of nanoscale
transport phenomena.

• Precise control and in-situ monitoring of physical or chemical parameters (e.g., transport properties
or local surface modification) inside the nanopores.

On the other hand, focusing on molecule recognition or concentration detection, the following
strengths of nanofluidic structures should be underlined: the possibility of label-free, specific molecule
(or single molecule) detection with extreme sensitivity and the transport modulation-based built-in
amplification by nanoconfinement in nanopores, as discussed by Gyurcsányi [4].

Two main molecule sensing principles based on the ionic current modulation are visualized
in Figure 1: the translocation or the capturing of molecules in nanochannels or nanopores [5].
The stochastic sensing by a single channel (Figure 1a) makes use of the monitoring of the ionic current
through the nanopore or nanochannel. The current spikes are recorded and counted as single molecule
translocation events. This principle regarding biomolecule recognition [6] was studied by Bayley and
Cremer [7] and is applied in the devices of the Oxford Nanopore Technologies [8,9]. The applicability
of the method was also demonstrated for counting and sizing viruses by monitoring the translocation
effect in glass nanopipets [10]. The other approach is the analysis of the impedance of a membrane
(Figure 1b) containing a nanopore array (multiple nanopores), which is mostly applied in the case
of functionalised nanoconfinements systems, like the ones examined in the present paper, In these
structures, Electrochemical impedance spectroscopy (EIS) is performed during the translocation and
binding events [11–13]. The reliable biofunctionalisation of the specific areas of these nanostructures
is quite challenging, therefore, the optimal material selection and structure are in the focus of the
development of molecule sensing devices [14].



Micromachines 2019, 10, 774 3 of 17
Micromachines 2019, 10, x 3 of 17 
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Figure 1. Schematic representation of the principle of stochastic molecule detection and counting (a)
and the membrane impedance analysis approach (b).

1.3. Nanopore Structures and Their Fabrication Techniques

Extremely sensitive label free detection method can be achieved by monitoring pore-through
transport modulated by translocation or binding of the target molecules in nanopores. The sensitivity
of these mainly electrochemical (bio)sensors are determined not only by the biofuncionalisation but
affected by the pore geometry also: it must be aligned to the size and conformation of the target molecule.
Moreover, the comparability and repeatability of the measurements assumes similar pore parameters
in case of different devices. Accordingly, the practical applicability and potential commercialisation of
these nanopore membrane based devices depend on the successful elaboration of controllable and
reproducible pore fabrication techniques. Generally, three typical nanopore membrane structures can
be defined regarding their membrane materials and nanopore formation methods [15–17]:

• Biological nanoporous layers are mainly based on pore-forming transmembrane proteins
embedded in lipid bilayer membranes.

• Hybrid type nanopore membranes consist of similar biological pore-forming molecules integrated
in synthetic layers.

• Artificial nanopore structures are fabricated by dedicated nanoprocessing methods in synthetic
materials, polymer, glass, quartz or dielectric layers compatible with silicon technology
(silicon-nitride, silicon-oxide, silicon-carbide, possibly Atomic Layer Deposited metal-oxides), or
2D materials (graphene, molybdenum-oxide, etc.).

The applicability of the biological nanopores or nanochannels for transport modulation based
molecule recognition and counting was demonstrated extensively. Their main advantages are the
self-controlled size and shape, and the favorable costs. It can be noticed that the limited geometrical
and material variability, the uncertain integrability and the moderate resistivity of the biological
structures against pH, ion concentration, temperature, mechanical stress, etc. however, restrict their
reliable applicability in diagnostic systems [17]. A well-published sample for the biological and hybrid
structures is the embedded alpha-haemolysin, which was demonstrated in different applications
for molecule detection [18,19] or ultrafast DNA sequencing [15,16,20–22]. MspA (Mycobacterium
smegmatis porin A) and phi29 connector proteins were also demonstrated in DNA sequencing [23].
Solid-state nanopores and their nanofabrication techniques in dielectric layers were demonstrated and
assigned as the novel generation of artificial nanopore membranes by Golovchenko, Dekker and Edel’s
group [17,24,25]. The flexible variability in shape, size and surface properties, and the robustness
and integrability were emphasized as the main advantages of the solid state nanostructures [26–29].
The exploitation of these artificial nanopores for molecule sensing and DNA analysis was demonstrated
in diverse biomedical applications [30–33].
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Several high-tech solutions were described for more or less precise nanopore fabrication in
the range from 2 nm to several tens of nanometres utilizing the capabilities of nanofabrication
equipment as summarized in Table 1 [34,35]. The frequently applied membrane materials are
silicon-nitride, silicon-oxide, silicon-carbide or atomic layer deposited (ALD) aluminium-oxide,
titanium-oxide, hafnium-oxide, i.e., mainly MEMS compatible dielectrics, or 2D materials, as graphene
and molybdenum-oxide [15,16,36]. Accordingly, the solid state structures provide the significant
advantage of controllable shape and size, the excellent mechanical, thermal and chemical stability
and integrability in microfluidic systems [17]. Note, however, that the fabrication can be costly and
time-consuming in the case of chip-scale processing. The most extensively applied techniques are:

• etching after e-beam lithography based patterning [17,34,35,37],
• ion sculpturing or Focused Ion Beam (Ga+, Ar+, He2+, Xe+, etc.) milling [17,24,25,31,34–36],
• high intensity electron beam drilling or ablation in TEM [25,34–36],
• Nanoimprint Lithography (NIL) [34],
• micromachining (MEMS based) techniques as nanochannel formation and subsequent sealing by

bonding [34].

Table 1. Typical techniques of fabrication solid state nanopore/nanochannel arrays (representative
parameters, materials, instrumentation and process compatibility) [17,24,25,31,34–37].

Fabrication Technique e-BEAM
[17,34,35,37]

FIB or TEM
[17,24,25,31,34–36]

NIL
[34]

MEMS Based:
Sacrificial Layer or
Channel Sealing
by Bonding [34]

G
eo

m
et

ry Feature size sub 10nm >10nm or sub
10nm >20nm >5nm

Reproducibility excellent excellent excellent good

Shape channel array pore/channel array pore/channel
array

lateral/buried
channels

Material silicon or compatible

M
an

uf
ac

tu
ri

ng

Equipment/Infrastructure
E-BEAM system

+ MEMS
(RIE/DRIE *)

FIB/SEM or TEM
system + MEMS

(RIE/DRIE *)

NIL system +
MEMS

(RIE/DRIE *)
MEMS

Cost High High High/Medium Medium
Process Wafer scale Chip/wafer scale Wafer scale Wafer scale

Process compatibility MEMS

Main advantages
Advanced

production rate,
reproducibility

Geometrical and
material flexibility

Advanced
production rate

Advancedproduction
rate

Main drawbacks
High infrastructural demand

Complex pre-
and

post-processing

Moderate
production rate

and reproducibility

Complex pre-
and

post-processing

Moderate
reproducibility

* RIE/DRIE: Reactive Ion Etching/Deep Reactive Iona Etching.

Attaining nanometer scale pore sizes is doubtless challenging, and to shrink the previously
formed pores additional deposition techniques are required, like electrochemical or chemical vapour
and atomic layer deposition [38,39] or local Ion and Electron Beam Assisted Deposition (EBAD or
IBAD) [40,41]. The final pore size and geometry can also be modified by a high intensity wide-field
electron illumination reflowing and reshaping the pore forming dielectric material due to the surface
tension [17]. Controlled dielectric breakdown of the membrane material was also reported to form
single nanopores of extremely small diameter. [42,43] Single and multiple nanopores were formed in
precisely controlled positions by initiation the dielectric breakdown locally using a conductive AFM
(Atomic Force Microscopy) tip as electrode. [44] To fabricate multiple nanopores with larger diameter
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the controlled breakdown was combined by local optical heating of the dielectric membrane by visible
laser light. [45,46] Focused laser beam induced optical etching was also applied to fabricate nanopores
in SiNx membrane. [47] The evolving 10-20nm pore size is comparable to the achievable parameters of
FIB milling.

The key to the commercialization of nanopore based biosensors or Lab-on-a-Chip devices is the
development of adequate nanoprocessing techniques ensuring fast, high-throughput, controllable and
reproducible formation of the application specific nanopore geometries in differently structured solid
state membranes [31]. Adequate material composition of the membrane can moderate the residual
mechanical stress of the suspended structures [48]. Moreover, to fulfil the crucial requirement of easy
and area or material selective biofunctionalisation of the inner pore surfaces, the application and planned
shaping of multi-layered (composite) membranes have elevated importance [35]. These multi-layered
solid state nanopore arrays integrable electrically and fluidically could be core elements of extremely
sensitive label-free, multi-parametric molecule recognition.

The direct milling of complex composite membrane structures by focused electron or ion beams
could be an obvious solution to fabricate nanopore arrays with the proposed geometries. Note, that in
the case of thicker or composite membranes the precise fine-tuning of the pore size can be a critical
point of the reliable and reproducible fabrication due to the beam-shape (defocusing), redeposition
and charging of the dielectric membranes [49]. Accordingly, the comprehensive study of the pore
formation process is crucial to achieve adequate precision and reproducibility in the case of these
complex layer structures.

2. Materials and Methods

2.1. Fabrication of Nanopore Arrays by Focused Ion Beam (FIB)

Solid state nanopores were prepared by computer controlled Focused Ion Beam (FIB) milling
using accelerated Ga+ ions with different milling currents and doses, in order to achieve various pore
geometries in multi-layered membranes made of different dielectrics. The adopted structural and
material combination has to be compatible to the proposed biofunctionalisation strategies (see Table 2).

Table 2. Structural materials required for different biofunctionalisation strategies.

Proposed Surface Functionalisation Structural Materials

thiol chemistry
Au/SiNx/Au

SiNx/Au
Au/SiNx

silane chemistry bare SiNx
PFA/SiNx/PFA *

* perfluoroalkyl passivation.

The structures were fabricated by the combination of micro- and nanomachining technologies.
The dielectric membrane was a 300 nm thick non-stoichiometric silicon-nitride film prepared by Low
Pressure Chemical Vapour Deposition (Tempress LPCVD, Tempress, Vaassen, The Netherlands) using
ammonia (NH3)/dichlorosilane (H2Cl2Si) mixture (with 1:8 flow rate ratio) at 180 mTorr backpressure
and temperature of 830 ◦C. Non-stoichiometric silicon-nitride films have moderate mechanical stress
ensuring a adequate mechanical stability of the suspended membrane. The covering gold layer (150 nm)
was deposited in the same cycle by vacuum evaporation atop of 5 nm of titanium adhesion layer in an
AJA Orion high vacuum system. The dielectric membrane was released by wet alkaline (KOH at 72 ◦C)
or Deep Reactive Ion Etching (DRIE) etching using the „Bosch-process” (Oxford Plasmalab 100, Oxford
Instruments Plasma Technology, Bristol, UK) from the backside, and then the nanopores were drilled
by employing a program controlled Ga+ FIB drilling using the feature milling option of the Zeiss
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LEO 1540XB (Carl Zeiss Microscopy GmbH, Jena, Germany) nanofabrication system. The schematic
representation of the pore fabrication process and the sample placement in cross-beam position under
the FIB/SEM guns is shown in Figure 2. The ion beam was aligned, focused and set in cross-beam
position outside of the membrane, close to the frame, to prevent its perforation. The milling current
and time were varied to achieve the proposed pore geometry with 30 keV Ga+ ion energy.
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(a) and the real cross-beam setup in Zeiss LEO 1540 XB FESEM/FIB nanoprocessing system adjusted for
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2.2. Characterisation of Nanopore Geometries

The pore geometries were characterised by SEM, TEM and ion scanning microscopy
after cross sectioning by FIB (Figure 3). The nanopores were filled with Platinum applying
local Electron Beam Assisted Deposition (EBAD) to achieve the sufficient mechanical stability
of the membrane during preparation of the TEM lamella and during TEM examination.
Trimethyl(methylcyclopentadienyl)platinum(IV) (C5H4CH3Pt(CH3)3) was injected as precursor from
the Gas Injection System (GIS). Resulting pore diameters and the development of the pore shape during
ion milling (aspect ratio, wall angles) had to be deduced.

The obtained main structural parameters of the nanopores (e.g., pore diameter, wall angle) were
recorded and analysed as a function of different manufacturing conditions (e.g., Ga+ ion current,
milling time or ion dose). The pore diameters were in-situ analysed using scanning ion- and electron
microscopy as the Ga+ ions and electrons passing through the pores precisely map the fabricated pores,
as plotted in Figure 4. The translocation of the ions or electrons were determined by the detection of
secondary electrons generated in an Al-foil placed at the backside of the nanopore membranes (see
the schematic milling geometry in Figure 2). This way the smaller outlet diameter of the “conically”
narrowing nanopores, which is the crucial parameter in the applications, could be assessed.
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Figure 4. Pore diameter analysis by scanning ion microscopy (a) based on the detection secondary
electrons generated by the ions translocated through the nanopore (see schematic in Figure 2).
High number of fabricated nanopore were characterized for statistical results (b,c).

3. Results and Discussion—Study and Improvement of FIB Process

3.1. Analysis and Control of Pore Diameter Evolution

The evolution of the pore diameter depends on the material composition and thickness of the
dielectric membrane, as well as on the applied milling time, as plotted in Figure 5 [49]. As expected,
the pore diameter evolution is faster in the thinner bare silicon-nitride membrane than in the gold
covered membrane structures. In the case of shorter milling times, the zero pore diameters indicate the
dose limit under which the membranes are not perforated. This beam perforation time increases with
the layer thickness and decreases with the ion current.

The time or dose dependent pore diameter (dp) evolution can be described by power-laws
with the distinction of two time or dose regimes. The equation was originated in the frequently
applied logarithmic relationship defined between the pore diameter and the ion dose (D) in [50,51]:
log(dp) = a + log(D)

dp ∝

[
0 0 < t < tp

tγ(t) tp < t

]
(1)

where tp was defined as perforation time indicating the transfixion event during the ion milling (when
the ion beam is punching through the membrane). Parameter γ determines the pore evolution rate,
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which was found to change during the process. These parameters (tp and γ) are complexly influenced
by the ion beam properties (ion energy, ion mass, ion current) and the properties of the layer structure
(sputtering rate and thickness of the different materials).

Considering the inhomogeneous cross-sectional ion intensity of the beam, Hall and Sawafta
described two clearly separated regimes during He2+ ion beam sculpturing of silicon-nitride membranes
in [31,51]. In the beginning (lower time regime), the high ion intensity in the beam centre induces
an accelerated evolution of the pore diameter. Later, in the higher time regimes, the beam periphery
performs the milling process with a decreased sputtering rate. For the detailed comprehension of the
pore evolution rate, the defined γ parameter was calculated as the logarithm of the time dependent
pore diameter functions of Figure 5:

γ(t) ∝ logtdp (2)

As shown in Figure 6, in case of my assumption the γ parameter continuously decreases with
milling time, contrary to Hall’s and Sawafta’s assumption. The material composition and thickness
of the membrane influence the experimental γ parameter: in the case of the thinner silicon-nitride
membrane the initial value is higher.

Micromachines 2019, 10, x 8 of 17 

 

the dose limit under which the membranes are not perforated. This beam perforation time increases 
with the layer thickness and decreases with the ion current. 

 
Figure 5. Pore diameters of different layer structures as a function of milling time by ion milling with 
10pA ion current at 30keV ion energy. 

The time or dose dependent pore diameter (dp) evolution can be described by power-laws with 
the distinction of two time or dose regimes. The equation was originated in the frequently applied 
logarithmic relationship defined between the pore diameter and the ion dose (D) in [50] and [51]: log ሺ𝑑୮ሻ = 𝑎  log ሺ𝐷ሻ 

𝑑୮ ∝ ቈ 0                   0 ൏ 𝑡 ൏ 𝑡୮𝑡ఊሺ௧ሻ           𝑡୮ ൏ 𝑡  (1) 

where tp was defined as perforation time indicating the transfixion event during the ion milling 
(when the ion beam is punching through the membrane). Parameter γ determines the pore evolution 
rate, which was found to change during the process. These parameters (tp and γ) are complexly 
influenced by the ion beam properties (ion energy, ion mass, ion current) and the properties of the 
layer structure (sputtering rate and thickness of the different materials). 

Considering the inhomogeneous cross-sectional ion intensity of the beam, Hall and Sawafta 
described two clearly separated regimes during He2+ ion beam sculpturing of silicon-nitride 
membranes in [31] and [51]. In the beginning (lower time regime), the high ion intensity in the beam 
centre induces an accelerated evolution of the pore diameter. Later, in the higher time regimes, the 
beam periphery performs the milling process with a decreased sputtering rate. For the detailed 
comprehension of the pore evolution rate, the defined γ parameter was calculated as the logarithm of 
the time dependent pore diameter functions of Figure 5: 𝛾ሺ𝑡ሻ ∝ 𝑙𝑜𝑔௧𝑑୮ (2) 

As shown in Figure 6, in case of my assumption the γ parameter continuously decreases with 
milling time, contrary to Hall’s and Sawafta’s assumption. The material composition and thickness 
of the membrane influence the experimental γ parameter: in the case of the thinner silicon-nitride 
membrane the initial value is higher. 

Figure 5. Pore diameters of different layer structures as a function of milling time by ion milling with
10pA ion current at 30keV ion energy.Micromachines 2019, 10, x 9 of 17 

 

 
Figure 6. Pore diameter evolution rate parameter (γ) as a function of the milling time applying 10 pA 
ion current and 30 keV ion energy in the case of different layer structures. Values derived from the 
results of Figure 5. 

Therefore, a continuously decreasing pore diameter evolution rate is suggested, as the function 
of the milling time (or incident ion dose), instead of stationary rate regimes. The obtained function in 
Figure 6 can be explained by the Gaussian lateral ion intensity profile of the Ga+ ion beam. This 
assumption can account for the “saturation of the pore diameter” after a certain milling time. The 
final pore diameter can be defined by the geometry (diameter and convergence) and focal plane setup 
of the focused ion beam. 

The evolution of the pore shape during the milling process is demonstrated by the cross-
sectional SEM views of the nanopores fabricated by different incident ion doses in Figure 7. During 
ion sputtering, the pore walls were approaching the surface normal, while increasing the outlet 
aperture of the pore. The increasing (measured) pore diameter is visualised in Figures 5 and 8. 

 
Figure 7. Pore geometries shaped by 5 s (a) and 6s (b) ion milling of Au/SiNx/Au layer stacks when 
applying 5 pA Ga+ ion current (cross-sectional SEM view). 

The milling current also has a significant effect on the evolving pore geometry due to the ion 
dose dependency of the sputtering process. This is plotted in Figure 8 for pores milled in an Au/SiNx 
membrane from the direction of the dielectric layer. As pore diameter, the diameter of the hole 
obtained on the rare side of the membrane is defined. The evolution rate of the pore diameter is 
almost doubled comparing the cases of application 5 pA and 10 pA milling currents with the same 
Ga+ ion energy (30 keV). 

0

1

2

3

4

5

6

0 5 10 15 20

Po
re

 d
ia

m
et

er
 e

vo
lu

tio
n 

ra
te

 -
γ

Milling time [s]

SiNx
SiNx / Au
Au / SiNx
Au / SiNx / Au

Figure 6. Pore diameter evolution rate parameter (γ) as a function of the milling time applying 10 pA
ion current and 30 keV ion energy in the case of different layer structures. Values derived from the
results of Figure 5.

Therefore, a continuously decreasing pore diameter evolution rate is suggested, as the function
of the milling time (or incident ion dose), instead of stationary rate regimes. The obtained function
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in Figure 6 can be explained by the Gaussian lateral ion intensity profile of the Ga+ ion beam.
This assumption can account for the “saturation of the pore diameter” after a certain milling time. The
final pore diameter can be defined by the geometry (diameter and convergence) and focal plane setup
of the focused ion beam.

The evolution of the pore shape during the milling process is demonstrated by the cross-sectional
SEM views of the nanopores fabricated by different incident ion doses in Figure 7. During ion
sputtering, the pore walls were approaching the surface normal, while increasing the outlet aperture of
the pore. The increasing (measured) pore diameter is visualised in Figures 5 and 8.
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Figure 7. Pore geometries shaped by 5 s (a) and 6 s (b) ion milling of Au/SiNx/Au layer stacks when
applying 5 pA Ga+ ion current (cross-sectional SEM view).
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Figure 8. Pore diameters versus milling time in the case of Au/SiNx layer structure with different ion
currents (5 pA and 10 pA) at 30 keV ion energy. Note the time needed for the perforation the membrane
(tp) in both cases.

The milling current also has a significant effect on the evolving pore geometry due to the ion
dose dependency of the sputtering process. This is plotted in Figure 8 for pores milled in an Au/SiNx

membrane from the direction of the dielectric layer. As pore diameter, the diameter of the hole obtained
on the rare side of the membrane is defined. The evolution rate of the pore diameter is almost doubled
comparing the cases of application 5 pA and 10 pA milling currents with the same Ga+ ion energy
(30 keV).

For a realistic comparison of the pore-shape development in the cases of drilling membranes of
different thickness with changing milling conditions, a reference time has to be defined. This is the
time span required to perforate the membrane (when dout > 0), i.e., the extrapolated intersection of
the pore diameter vs. milling time curve with the x-axis (tp) in Figure 8. After aligning the curves
characterising different milling currents to their respective values (i.e., by shifting them parallel to
the x-axis to tp = 0), the resulting pore diameter ratios were calculated as the function of milling time
elapsed after the membrane perforated and illustrated in Figure 9 in the case of various layer structures.
The pore diameter ratio converges to 2 (according to the theoretical beam diameters) and the spread
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reduces with the milling time. Differences in the sputter-rate of the different layers (SiNx and Au)
will cause an additional spread in the results, certainly. The variation is larger in the case of thicker
membranes in accordance with the time dependent pore diameter functions in Figure 5. Higher ratios
could be experienced in the case of short drilling times due to the higher relative variation of the initial
diameters of the newly perforated pores just after the beam transfixion.
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Figure 9. Pore diameter ratios (d10pA/d5pA) versus milling time for different layer structures and ion
currents (5 pA and 10 pA, respectively). The energy of the Ga+ ions was 30 keV.

Based upon this analysis of the pore formation process, the adequate ion current and milling time
for the proposed pore diameter and membrane material combination can be defined. Pore diameter
variation can be reduced by avoiding to set the time/current parameters close to the membrane
perforation point (see Figure 8).

3.2. FIB Process Development

The statistical pore diameter distributions were defined by the practically applied process
parameters and membrane structures (gold covered silicon-nitride) to improve the reproducibility
of the nanopore formation process. Gold layers are adequate for the further thiol chemistry based
biofunctionalisation, so hereinafter this layer structure will be discussed. The variance of the pore
diameter distribution in Figure 10 is fairly large (in the range of 10 nm) for both 5 pA and 10 pA milling
current, and for the lower ion current, even incomplete pore formation has to be considered [49].
The uncertainty of the milling process can be caused by charging effects on the dielectric membranes.
It has to be taken into account that during Ga+ ion milling this electrostatic interaction causes ion beam
instability by defocusing.
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Figure 10. Pore diameters distribution obtained by ion milling of gold covered silicon-nitride layer
structures (from the silicon-nitride side) in the case of different milling currents (5 pA and 10 pA) at
30 keV ion energy.
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From the point of view of reproducibility, achieving a highly conformal pore size distribution with
given milling conditions is a real challenge. The formed pore geometry can be significantly distorted
due to the charging of the dielectric membranes and the defocusing of the incident milling Ga+ ion
beam according to Figure 11a. An additional front size metallisation and the electrical grounding of
the metallised surface improved the pore size conformity significantly (Figure 11b).
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Figure 11. Nanopore arrays fabricated by Ga+ ion milling in bare (a) and metallised (b) silicon-nitride
membranes. The distorted pore geometries are result of the beam defocusing effect of electrically
charged dielectric membrane.

According to the analysis of more than 100 nanopores, discharging of the membrane layer during
milling significantly reduced the spread in the pore geometry, as reflected by the narrow statistical
pore size distributions in Figure 12. By this advanced technique, the pore diameter variation could
be reduced to ~5 nm (5–8%). Note that the centre of the pore diameter distributions shifted to lower
values as the membrane thickness increased by the additionally deposited metal layer.
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Figure 12. Statistical pore diameter distribution in the gold coated silicon-nitride membrane was
significantly improved by grounding the additional front side metallisation (FIB parameters: 5 pA and
10 pA milling current at 30 keV for 4 s).
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3.3. Pore size Dependent Sensitivity of Molecule Detection

To underline the cardinal importance of the precise nanoengineering, the pore size dependent
sensitivity of the impedance based molecule sensing was studied [52,53]. Gold covered silicon-nitride
membranes with an array of 64 nanopores were used for monitoring avidin-biotin binding in
the nanopores. The free gold surfaces were biofunctionalised by an adequate biotinylation reagent:
NHS-SS-Biotin (biotin disulfide N-hydroxysuccinimide ester) utilising single step thiol chemistry [54,55].
For electrochemical analysis, 0.01 M Phosphate Buffer Saline (PBS - 0.01 M phosphate buffer, 0.0027 M
potassium chloride and 0.137 M sodium chloride, pH 7.4, at 25 ◦C, ρ 64.8 Ω·cm) was applied as
electrolyte, and PBS spiked by avidin as test sample. The avidin concentration was set to 0.1 mM to
ensure the high surface coverage inside the pores. The platinum reference and working electrodes
were installed on the opposite side of the nanoporous membrane. The impedance was recorded in the
frequency domain of 1 Hz to 1 MHz with−0.3–0.3 V peak-to-peak potential using Gamry Reference
600 [56] electrochemical impedance spectroscope. The actual resistances of the nanopore arrays (Rpa)
were calculated from the results of Electrochemical Impedance Spectroscopy (EIS) using the built-in
impedance models of the applied EIS300 software (Verson 6.33, Gamry Instruments, Warminster, PA,
USA) (see the inset in Figure 13). Membrane resistances were measured before (Rpa0) and 10, 20 and
30 min after (Rpa) the sample injection and the relative change (Rpa/Rpa0) was calculated. The relative
impedance variation values were averaged and plotted vs. nanopore diameter in Figure 13 [53].
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Figure 13. Theoretical and measured relative impedance variation of the solid-state nanopore array
as a function of the nanopore-diameter after avidin binding. In the inset Rc is the resistance of the
electrochemical cell, Rpa is the resistance of the nanopore array and CPE is the constant phase element
(capacity of the membrane). Rpa/Rpa0 denotes the relative resistance change of the nanopore arrays,
where Rpa0 and Rpa are the impedance values before and after target molecule injection, respectively.

The experimental pore array resistances were compared to the theoretical ones estimated as [11,57]:

Rpa =
4L

n·σs·π·din·dout
(3)

where n is the number, L is the length and din and dout are the characteristic inlet and outlet diameters
of pores, respectively. σs represents the specific conductivity of the electrolyte that fills the nanochannel.
This theoretical consideration can estimate adequately the pore resistance as demonstrated in a
preliminary work in case multi-layered nanoporous membranes, as demonstrated in [49]. To calculate
the theoretical impedance variation (Rpa/Rpa0) of the nanopore array, homogeneous monomolecular
coverage of the gold surfaces was considered in the tapering (outlet) region of the pores, thus only the
outlet diameter of the pore was decreased by the molecule size. The applied physical parameters for
this estimation are summarised in Table 3. [58–61]
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To estimate the theoretical relative impedance change, the gold coated silicon-nitride membrane
was modelled as two serially connected nanopore arrays. Contrary to the non-coated silicon-nitride
layer, the pores formed in the gold layer can be easily functionalized. The resulting resistance variation
is caused by the molecules having bonded in the golden pores, since the silicon-nitride layer exhibits
a constant resistance (see the inset in Figure 13). As Figure 13 demonstrates, the relative pore array
resistance change is significantly affected by the pore diameter in the case of a certain target molecule
size. Considering the theoretical predictions, it can be assumed that the sensor signal (the relative
change of membrane impedance) and thus the sensitivity of impedance based molecule sensing
significantly increases as the pore diameter approaches the target molecule size.

Table 3. Pore and molecular parameters applied for theoretical impedance estimation [58–61].

Pore outlet diameters 20–60 nm

Pore length 450 nm (300 nm in SiNx and 150 nm in Au)

Pore wall angle (see Figure 7) 5◦

Pore inlet diameters (estimated) 68–108 nm

Number of nanopores/array 64

Target molecule/estimated size Avidin/5.7 nm × 4.4 nm × 4.4 nm

Receptor molecule/estimated length Biotin/2.43 nm

Electrolyte conductivity
(0.01 M PBS)

150–200 S/m
(15–20 mS/cm, 15–20 mho/cm)

The experimental results in Figure 13 also demonstrate a similar tendency in the case of
35 nm/49 nm/54 nm/56 nm pore diameters, however, compared to the theoretical results, higher
sensor responses were detected. The theoretical calculations only considered the steric repulsion
of the bound target molecule layer, although further electrochemical effects—such as electrostatic
repulsion—can also appear. In case of the theoretical calculation, a monomolecular coverage was
assumed, however, the formation of a self-assembled monolayer (SAM) was not proven. Note that the
incomplete electrolyte filling of the nanopores or specific local ion conductivity can also significantly
affect the measured resistance values. Therefore, an adequate wetting protocol is needed to make the
method reliable and reproducible. [49,62]

The size dependent performance of nanopore based sensors were demonstrated and discussed
in various case of applications regarding DNA detection [63], ion selectivity [64] or amino acid
identification [65]. Since the resistance change is caused by pore blocking effects and so the sensitivity
of the transducer is significantly influenced by the precise setting of the pore diameter to the expected
size of the target molecule.

4. Conclusions

Considering nanopore based biosensing principles, the precise tailoring of pore geometries and
adjusting to target molecule conformation and size unambiguously improves the signal-to-noise level
and sensitivity of the identification method—in our case electrochemical impedance spectroscopy
(EIS). Accordingly, the comprehensive pore geometry engineering is essential for the reliable and
reproducible manufacturing of integrable solid state nanopore arrays for molecule diagnostic devices.
Respecting the need of mechanically robust structure and area selective functionalisation of the pore
surfaces, a complex material structure and a precise pore fabrication technology has to be elaborated.

In this work, the FIB milling process was considered as a flexibly applicable MEMS compatible
nanostructuring method for shaping composite nanopore arrays. The evolving pore diameter depends
on the material composition, and the thickness of the membrane, as well as on the applied milling time,
ion dose, current and energy. The continuous evolution of pore geometries was characterized in order to
define the appropriate process parameters for the reliable and reproducible manufacturing of nanopore
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arrays in multi-layered membranes. The resulting time (and dose) dependent pore diameter functions
were determined for differently structured silicon-nitride/gold multi-layers. As a novel approach time
dependent pore diameter evolution rate parameter (γ) was defined, its continuous regression during the
milling process verified and interpreted by the Gaussian profile of the spatial ion intensity distribution
of the ion beam. The dependency of the pore formation on the ion current was also evaluated and a
linear relationship was found between the pore diameter evolution rates, excluding the vicinity of
the membrane perforation occurrence. The cross-sectional nanopore geometries were also analysed
by high resolution SEM, TEM and ion scanning imaging. High throughput pore diameter detection
method was elaborated by detection of secondary electrons generated by translocated scanning Ga+

ions. Based on the comprehensive characterization adequate milling parameters (current, time) could
be defined to achieve a precise and predictable pore evolution in various membrane structure. The
pore diameter variation can be reduced by avoiding to choose the time/current parameters close to the
membrane perforation point.

The statistical geometric parameters of a large number of nanopores were recorded and analysed.
The reproducibility of the FIB nanoprocessing was improved by neutralization (electrostatic grounding)
of the sample surface applying an additional conducting layer. Preventing the electrical charging
of the dielectric layers can significantly decrease the resulting deterioration of the ion beam shape.
By this technique the distortion of the pore diameter could be reduced significantly, and the pore size
variations kept reproducibly below 5 nm.

The performance of membrane impedance analysis based molecule detection was studied by
avidin-biotin binding in the nanopore array. The application of uniform pores is of pivotal importance
according to theory and experiment as well, since the sensor response depends both on the concentration
of the target molecule and the pore size. The development of precise nanoprocessing techniques of
predictable yield is therefore an elementary requirement for molecule sensing. By this work, adequate
process parameters and techniques were defined for computer-controlled FIB milling [supplementary
video] of composite membranes consisting multiple nanopores with conform size. The chip level and
wafer level reproducibility of nanopore formation can be an initial step towards the high throughput
fabrication of solid-state nanopore based biosensor systems.

Supplementary Materials: The following video is available online at http://www.mdpi.com/2072-666X/10/11/774/
s1, Computer controlled nanopore drilling by Focused Ion Beam (Ga+) milling in silicon-nitride membrane.
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