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Abstract: To improve the electrical performance and bias-stress stability of amorphous InGaZnO
thin-film transistors (a-IGZO TFTs), we fabricated and characterized buried-channel devices
with multiple-stacked channel layers, i.e., a nitrogen-doped a-IGZO film (front-channel layer),
a conventional a-IGZO film (buried-channel layer), and a nitrogen-doped a-IGZO film (back-channel
layer). The larger field-effect mobility (5.8 cm2V−1s−1), the smaller subthreshold swing value (0.8 V/dec,
and the better stability (smaller threshold voltage shifts during bias-stress and light illumination tests)
were obtained for the buried-channel device relative to the conventional a-IGZO TFT. The specially
designed channel-layer structure resulted in multiple conduction channels and hence large field-effect
mobility. The in situ nitrogen-doping caused reductions in both the front-channel interface trap
density and the density of deep states in the bulk channel layers, leading to a small subthreshold swing
value. The better stability properties may be related to both the reduced trap states by nitrogen-doping
and the passivation effect of the nitrogen-doped a-IGZO films at the device back channels.
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1. Introduction

Amorphous silicon thin-film transistors (a-Si TFTs) are the mainstream of active-matrix devices
for flat panel displays (FPDs); additionally, polycrystalline (p-Si) TFTs are used to address some
high-standard FPD products. In recent years, amorphous InGaZnO (a-IGZO) has been extensively
studied as a potential material for the channel layers of TFT devices. In fact, a-IGZO TFTs are considered
to replace silicon TFTs owing to their high mobility, low-temperature deposition, good large-area
uniformity, and simple processing methods [1–3].

However, the electrical performance and stability properties of a-IGZO TFTs still need further
improvements for their applications in FPDs and other fields [4,5]. Recently, some researchers—
including our group—reported that nitrogen-doping (N-doping) effectively improved the electrical
properties (e.g., subthreshold swing (SS) and bias-stress stability) of a-IGZO TFTs by decreasing
the number of deep states and oxygen vacancies (Vo) in the device channel layers and reducing
the channel/dielectric interface trap density with N atoms incorporated into the a-IGZO film [6–8].
However, the field-effect mobility (µFE) of the nitrogen-doped a-IGZO (a-IGZO:N) TFT devices also
decreases due to the suppression of the oxygen vacancy (Vo) level in their channel layers, the main
source of free electrons in oxide semiconductors [9,10]. Therefore, N-doping is an effective method for
improving the electrical properties of a-IGZO TFTs, but its shortcomings still need to be overcome.

In this study, buried-channel a-IGZO:N TFTs, i.e., devices with multiple-stacked channel layers,
were fabricated and evaluated. These devices showed better performance and stability than the
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conventional devices. Specifically, the channel layer of the buried-channel device consisted of an
a-IGZO:N layer (front-channel layer), an a-IGZO layer (buried-channel layer), and an a-IGZO:N layer
(back-channel layer). We believe this device structure is a feasible approach to improving the electrical
properties of a-IGZO TFTs.

2. Materials and Methods

Inverted staggered a-IGZO TFTs were prepared on p+ heavily doped silicon wafers with 100 nm
thick thermal oxide (SiO2). The silicon wafers and thermal SiO2 were used as the gate electrodes and
gate insulators of the TFT devices, respectively. For comparison, three types of TFT devices with
different channel layers were fabricated, as shown in Figure 1. A 30 nm thick single channel layer was
formed with conventional a-IGZO for Device A and with a-IGZO:N for Device B, respectively. Then,
Device C with the buried-channel layer structure (10 nm thick a-IGZO:N (front-channel layer) + 10 nm
thick a-IGZO (buried-channel layer) + 10 nm thick a-IGZO:N (back-channel layer)) was designed
and prepared.
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Figure 1. Schematic cross sections of the amorphous InGaZnO thin-film transistors (a-IGZO TFTs)
prepared in this study.

The channel layers and the source/drain (S/D) electrodes were deposited with the RF-magnetron
sputtering technique. The sputtering chamber was evacuated to a base pressure (<3 × 10−6 Torr)
before the film depositions. The gas pressure was fixed at 3 × 10−3 Torr during the sputtering process.
The channel layers were prepared at room temperature (RT) using an IGZO target (In2O3:Ga2O3:ZnO
= 1:1:1 mol%); the RF power and the Ar flow rate were 60 W and 10 sccm, respectively. As for the
depositions of the a-IGZO:N films, the nitrogen gas (N2) was fed into the sputtering chamber at the flow
rate of 1.2 sccm, and the Ar flow rate was fixed at 10 sccm. Then, the 100 nm thick indium-tin-oxide (ITO)
layers were prepared as S/D electrodes in the same sputtering chamber. For simplicity, no passivation
layers were prepared in this study. Both the channel layers and S/D electrodes were patterned by the
shadow masks during sputtering; the channel width (W) and length (L) of the a-IGZO TFTs were fixed
at 1000 and 250 µm, respectively. Finally, the TFT devices were annealed in N2 atmosphere at 380 ◦C
for 1 h.

The electrical measurements for the a-IGZO TFTs were performed at RT using an electrical analyzer
(Keithley 4200, Keithley, Cleveland, OH, USA). For the transfer curve tests, the drain-source voltage
(VDS) was fixed at 10 V, and the gate-source voltage (VGS) ranged from −20 to 40 V.

3. Results and Discussion

Figure 2 and Table 1 show the transfer curves and the corresponding extracted electrical parameters
of the TFT devices, respectively. Here the µFE was obtained graphically from the square root of drain
current (IDS

1/2) versus the gate voltage (VGS) in the saturation region using the intercept and maximum
slope [11]. The threshold voltage (VTH) was extracted from the gate voltage value where IDS/(W/L) =

1 nA. The subthreshold swing (SS) was defined as the half value of the difference between the gate
voltages corresponding to the drain currents of 10−10 A and 10−8 A. The on–off current ratio (ION/IOFF)
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was obtained from the ratio of the maximum and minimum drain current values within the VGS range
of −20 to ~40 V.
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Table 1. Extracted electrical parameters of the amorphous InGaZnO thin film transistors (a-IGZO TFTs).

Device A B C

µFE (cm2V−1s−1) 5.8 4.7 5.8
SS (V/dec) 1.3 0.8 0.8
VTH (V) 2.0 5.0 3.5
ION/IOFF 2.2 × 108 3.4 × 108 5.6 × 108

As switching devices in FPDs, TFTs are expected to have high field-effect mobility and low
subthreshold swing, which can lead to better switching speed and smaller power consumption.
As shown in Figure 2 and Table 1, the a-IGZO:N TFT (Device B) showed an improved SS value
(0.8 V/dec) but degraded µFE (4.7 cm2V−1s−1) compared with those of the conventional IGZO TFT
(Device A, SS = 1.3 V/dec and µFE = 5.8 cm2V−1s−1). In fact, this result was consistent with the other
reported a-IGZO:N TFTs [7,9]. Besides, from Figure 2 one may clearly observe that the N-doping
process could cause a positive VTH shift for a-IGZO TFTs. As shown in Table 1, the VTH increased
from 2.0 V (Device A) to 5.0 V (Device B) with the nitrogen doped into the channel layers of the
a-IGZO TFT. This result also agreed well with the findings of a recent study of a-IGZO:N TFTs [12].
Most importantly, the buried-channel TFT (Device C) showed the best electrical performance in this
study. As shown in Table 1, Device C exhibited the smallest SS value (0.8 V/dec) as well as the largest
µFE (5.8 cm2V−1s−1) among all three devices. In addition, the VTH of the buried-channel device (3.5 V)
lay between those of the conventional a-IGZO TFT (Device A) and the a-IGZO:N TFT (Device B).
It should be noted here that all the tested devices exhibited reasonably good ION/IOFF values (>108),
as shown in Figure 2 and Table 1.

Figure 3 shows the transfer curves of the a-IGZO TFTs under positive bias stress (PBS) tests.
For measurements, the gate electrodes were applied by +30 V with the drain and source grounded;
after a period, the transfer curves were instantly measured (VDS = 10 V). As shown in Figure 3,
the transfer curves of the three devices shifted positively to different extents as the stressing time
elapsed. As shown in Figure 3a, the positive VTH shift of the conventional a-IGZO TFT (Device A) was
as large as +4.5 V under 2500 s of PBS testing. In contrast, the a-IGZO:N TFT (Device B) showed a
much smaller VTH shift (+3 V) than that of the conventional a-IGZO TFT, as shown in Figure 3b. As for
the buried-channel device (Device C), the maximum VTH shift value (+3.5 V, as shown in Figure 3c)
lay between those of Devices A and B. In fact, the PBS stability of Device C was quite close to that of
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Device B, as shown in Figure 3. In other words, during PBS tests, the buried-channel TFT (Device C)
showed more stable properties than the conventional a-IGZO TFT (Device A).
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Figure 3. Positive bias stress (PBS) testing results of the a-IGZO TFTs: (a) the conventional a-IGZO TFT
(Device A), (b) the a-IGZO:N TFT (Device B), and (c) the buried-channel TFT (Device C). The stressing
conditions were VGS = +30 V and VDS = 0 V.

Figure 4 shows the transfer curves of the a-IGZO TFT devices under the negative bias stress
(NBS) tests, where the stressing conditions were as follows: VGS = −30 V and VDS = 0 V. The NBS
measurement operation was the same as that of PBS. One may observe from Figure 4 that the transfer
curves of the three devices exhibited different negative shifts during NBS tests. As shown in Figure 4a,b,
the maximum VTH shift of the conventional a-IGZO TFT (−3.3 V) was much larger than that of the
a-IGZO:N TFT (−1 V). Importantly, Device C showed a similar VTH shift (−1.7 V after 2500 s of NBS
testing) to that of Device B, implying that the buried-channel device (Device C) also exhibited better
stability than the conventional a-IGZO TFT (Device A) during NBS tests.
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Figure 4. Negative bias stress (NBS) testing results of the a-IGZO TFTs: (a) the conventional a-IGZO TFT
(Device A), (b) the a-IGZO:N TFT (Device B), and (c) the buried-channel TFT (Device C). The stressing
conditions were VGS = −30 V and VDS = 0 V.

Figure 5 shows the transfer curves of the a-IGZO TFT devices under negative bias stress with
ultraviolet (UV) light illumination (NBIS) tests. The stressing voltage was VGS = −20 V; the wavelength
and power intensity of the UV light were 380 nm and 0.1 mW/cm2, respectively. Both the light
illumination and gate stressing were applied for a period, and then the transfer curves were immediately
measured (VDS = 10 V). According to Figure 5, one may notice that all three devices exhibited serious
negative shifts during NBIS tests. As shown in Figure 5a, the maximum VTH shift of the conventional
a-IGZO TFT (Device A) was up to −7 V, which was the worst among all the tested samples. However,
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this negative VTH shift could be effectively reduced to −3 V using the buried-channel structure
(as shown in Figure 5c) or to −2 V by adopting the N-doping technology (as shown in Figure 5b).
Apparently, the NBIS stability of Device C was more similar to that of Device B than that of Device A.
In other words, the experimental results proved that the buried-channel device (Device C) could lead to
a significant improvement in NBIS stability compared with the conventional a-IGZO TFT (Device A).
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Figure 5. Negative bias stress with ultraviolet (UV) light illumination (NBIS) testing results of the
a-IGZO TFTs: (a) the conventional a-IGZO TFT (Device A), (b) the a-IGZO:N TFT (Device B), and (c)
the buried-channel TFT (Device C). The stressing voltage was VGS = −20 V; the wavelength and power
intensity of the UV light used in this test were 380 nm and 0.1 mW/cm2, respectively.

It has been reported by our group and other researchers that the field-effect mobilities of oxide
semiconductor TFTs were evidently improved by employing the double-stacked channel layers (DSCL)
with a high defect-density channel layer and a low defect-density channel layer [13–15]. In this study,
we further designed and prepared the buried-channel a-IGZO:N TFTs using the multiple-stacked
channel layers composed of a 10 nm thick a-IGZO:N layer (front-channel layer), a 10 nm thick a-IGZO
layer (buried-channel layer), and a 10 nm thick a-IGZO:N layer (back-channel layer). This design
exhibited the best electrical performance (e.g., the smallest SS value, the largest µFE, and the optimum
VTH), as shown in Table 1. Furthermore, the buried-channel device exhibited similar stable properties
to those of the a-IGZO:N TFT during PBS, NBS, and NBIS tests, which were much better than those of
the conventional a-IGZO TFT. The related physical mechanisms could be ascertained by analyzing the
channel-layer structure of these devices.

Figure 6 shows the energy band diagrams for Devices A, B, and C. As reported previously [7,9],
N-doping caused a mobility reduction due to the significant suppression of the Vo level in the bulk
channel layer. Former studies [15–17] indicated that N-doping reduced the Vo and defect density in
the a-IGZO films. Hence, there was more Vo acting as the origin of free carriers in the conventional
a-IGZO layer compared with that in the a-IGZO:N film. Therefore, one could assume that fewer free
electrons took part in conductivity for Device B compared with the case for Device A (as shown in
Figure 6a,b). This resulted in a lower mobility for Device B.

But, why did the buried-channel device not show degraded mobility as the a-IGZO:N TFT did?
We attributed this fact to the particular energy band structure of the buried-channel device, as shown in
Figure 6c. The electrons tended to inject from the conventional a-IGZO layer towards both the bottom
a-IGZO:N layer and the top a-IGZO:N layer owing to the electron concentration difference between the
conventional a-IGZO layer and the a-IGZO:N layer. Due to the positive polarity of the a-IGZO layer,
the electrons accumulated in both the bottom a-IGZO:N/a-IGZO interface and the top a-IGZO/a-IGZO:N
interface. During the operation of the buried-channel TFT device, these accumulated electrons also
took part in conductivity, forming a first sub-channel at the bottom a-IGZO:N/a-IGZO interface and a
second sub-channel at the top a-IGZO/a-IGZO:N interface. In other words, the conduction current
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in the buried-channel TFT was not only dominated by the main channel (channel layer/dielectric
layer interface), but also the two additional sub-channels (bottom a-IGZO:N/a-IGZO interface and top
a-IGZO/a-IGZO:N interface). The total carrier concentration from these three conduction channels
in the buried-channel device might be comparable only with that from the front channel in the
conventional a-IGZO TFT, as shown in Figure 6a,c, leading to the µFE values of the buried-channel
device (Device C) that were nearly equal to those of the conventional a-IGZO TFT (Device A). In fact,
these qualitative analyses might also be confirmed by numerical simulations, which are commonly
used in explaining and discussing electrical properties of semiconductor devices [18,19]. The related
study is still ongoing.
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Figure 6. Energy band diagrams for (a) the conventional a-IGZO TFT (Device A), (b) the a-IGZO:N
TFT (Device B), and (c) the buried-channel a-IGZO TFT (Device C). (d) The schematic illustration of the
improvement effect for the N-doping process on the trap states in the bulk-layers and interfaces.

As mentioned before, N-doping effectively decreased the interface trap density as well as the deep
defect density in the channel layer by incorporating the N atoms into the a-IGZO film (as shown in
Figure 6d). Since the SS values of TFTs are closely related to the channel/dielectric trap density and the
number of deep states in the channel layers [7,9,20], it is quite reasonable that the a-IGZO:N TFT had
smaller SS values than the conventional a-IGZO TFT. As shown in Figure 6b,c, both the front-channel
interface and the nearby channel layer of the buried-channel device were the same as those of the
a-IGZO:N TFT, which naturally led to the same SS values for both cases.

The evident stability improvements (during PBS, NBS, and NBIS tests) of the a-IGZO:N TFT
with respect to the conventional a-IGZO TFTs were assumed to result from the following reasons.
First, the incorporation of N atoms into the a-IGZO film led to the suppression of trap states in the
bulk channel layer as well as those in the front-channel interface (as shown in Figure 6d). Second,
the nitrogen atoms doped at the back channel might act as a passivation layer, which could effectively
protect the device from the influence of ambient gas (such as O2, moisture, etc.). Third, the back-channel
a-IGZO:N layer might shield the channel from UV light influence to a certain extent. As for the
buried-channel device, the aforementioned stability-improving effects were also valid. However,
the existence of the buried-channel layer (a-IGZO) more or less increased the trap states in the bulk
channel layers compared with the a-IGZO:N TFT (Device B). Therefore, the stability properties (PBS,
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NBS, and NBIS) of the buried-channel device (Device C) were a little worse than those of the a-IGZO:N
TFT (Device B), but still much better than those of the conventional a-IGZO TFT (Device A).

So far, we can make some overall comments on the buried-channel TFT devices. Compared
with the conventional a-IGZO TFT, the buried-channel device exhibited better electrical performance
(smaller SS value and non-degraded µFE) and more stable properties (much smaller VTH shifts during
PBS, NBS, and NBIS tests). Compared with the a-IGZO:N TFT, the buried-channel device showed a
little worse stability under PBS, NBS, and NBIS tests, but better electrical properties (larger µFE and the
same SS value). Notably, the buried-channel structure could be easily achieved by one-pump-down
depositions in the sputtering machines. Therefore, we believe the use of buried-channel devices is
a feasible approach for improving the electrical performance and stability properties of amorphous
oxide thin-film transistors.

4. Conclusions

Buried-channel TFTs with multiple-stacked channel layers including an a-IGZO:N film
(front-channel layer), an a-IGZO film (buried-channel layer), and an a-IGZO:N film (back-channel
layer) were fabricated and measured in this work. Compared with those of the conventional a-IGZO
TFT, the better electrical performance (e.g., smaller SS value, larger µFE, and optimum VTH) as well
as the improved stability properties (e.g., smaller VTH shifts during PBS, NBS, and NBIS tests) were
obtained for the buried-channel device. The a-IGZO:N film used as the front-channel layer in the
buried-channel structure could reduce both the interface trap density and the bulk-layer deep state
density, leading to a smaller SS value (0.8 V/dec) in comparison with the conventional a-IGZO TFT
device (SS = 1.3 V/dec). The non-degraded µFE (5.8 cm2V−1s−1) for the buried-channel TFT might be
attributed to its three conduction channels, including the main channel at the interface between the
channel layer and the dielectric layer, the first sub-channel formed at the bottom a-IGZO:N/a-IGZO
interface, and the second sub-channel formed at the top a-IGZO/a-IGZO:N interface. In addition,
the improved bias-stress and NBIS stability of the buried-channel TFT compared with those of the
conventional a-IGZO TFT might be mainly due to the suppression of the trap states in the bulk channel
layers, the reduction in the defects at the front-channel interface, and the passivation effect created by
using the a-IGZO:N film as the back-channel layer.
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