Biomimetic Anti-Adhesive Surface Microstructures on Electrosurgical Blade Fabricated by Long-Pulse Laser Inspired by Pangolin Scales
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Self-Organized Surface Structures Similar To Pangolin Scales
3.2. The Chemical Compositions and Crystal Structures of Self-Organized Surface Structures
3.3. The Formation Mechanism of Self-Organized Surface Structures
3.4. Test of Biomimetic Scales on the Electrosurgical Blades
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palanker, D.; Vankov, A.; Jayaraman, P. On mechanisms of interaction in electrosurgery. New J. Phys. 2008, 10, 123022. [Google Scholar] [CrossRef]
- Grodzinsky, A.; Chen, T.; Newton, D. Physical characterization of electrosurgical coagulation. J. Surg. Res. 1982, 33, 469–481. [Google Scholar] [CrossRef]
- Konesky, G. Porosity Evolution in Electrosurgical Blade Coatings. MRS Proc. 1998, 550, 550. [Google Scholar] [CrossRef]
- Shum, P.; Zhou, Z.; Li, K.Y. To increase the hydrophobicity and wear resistance of diamond-like carbon coatings by surface texturing using laser ablation process. Thin Solid Films 2013, 544, 472–476. [Google Scholar] [CrossRef]
- Ou, K.-L.; Chu, J.-S.; Hosseinkhani, H.; Chiou, J.-F.; Yu, C.-H. Biomedical nanostructured coating for minimally invasive surgery devices applications: Characterization, cell cytotoxicity evaluation and an animal study in rat. Surg. Endosc. 2014, 28, 2174–2188. [Google Scholar] [CrossRef]
- Ou, K.-L.; Weng, C.-C.; Sugiatno, E.; Ruslin, M.; Lin, Y.-H.; Cheng, H.-Y. Effect of nanostructured thin film on minimally invasive surgery devices applications: characterization, cell cytotoxicity evaluation and an animal study in rat. Surg. Endosc. 2015, 30, 3035–3049. [Google Scholar] [CrossRef]
- Wei, Q.; Narayan, R.J.; Sharma, A.K.; Oktyabrsky, S.; Sankar, J.; Narayan, J. Microstructure and Wear Resistance of Doped Diamondlike Carbon Prepared By Pulsed Laser Deposition. MRS Proc. 1997, 505, 505. [Google Scholar] [CrossRef]
- Brown, D.B. Concepts, Considerations, and Concerns on the Cutting Edge of Radiofrequency Ablation. J. Vasc. Interv. Radiol. 2005, 16, 597–613. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, H.; Zhang, L.; Zhang, D. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue. Appl. Surf. Sci. 2016, 385, 249–256. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, H.J.; Lin, Y.H.; Sugiatno, E.; Ruslin, M.; Su, C.Y.; Ou, K.L.; Cheng, H.Y. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices. J. Biomed. Mater. Res. B 2017, 105, 865–873. [Google Scholar] [CrossRef]
- Li, C.; Yang, L.; Yan, C.; Chen, W.; Cheng, G. Biomimetic anti-adhesive surface micro-structures of electrosurgical knife fabricated by fiber laser. J. Laser Micro Nanoen. 2018, 13, 309–313. [Google Scholar]
- Tong, J.; Lü, T.-B.; Ma, Y.-H.; Wang, H.-K.; Ren, L.-Q.; Arnell, R.D. Two-body abrasive wear of the surfaces of Pangolin scales. J. Bionic Eng. 2007, 4, 77–84. [Google Scholar] [CrossRef]
- Tong, J.; Ma, Y.-H.; Ren, L.-Q.; Li, J.-Q. Tribological characteristics of pangolin scales in dry sliding. J. Mater. Sci. Lett. 2000, 19, 569–572. [Google Scholar] [CrossRef]
- Tong, J.; Ren, L.-Q.; Chen, B.-C. Chemical constitution and abrasive wear behaviour of pangolin scales. J. Mater. Sci. Lett. 1995, 14, 1468–1470. [Google Scholar] [CrossRef]
- Wang, B.; Yang, W.; Sherman, V.R.; Meyers, M.A. Pangolin armor: Overlapping, structure, and mechanical properties of the keratinous scales. Acta Biomater. 2016, 41, 60–74. [Google Scholar] [CrossRef]
- Wang, B.; Sullivan, T.N. A review of terrestrial, aerial and aquatic keratins: the structure and mechanical properties of pangolin scales, feather shafts and baleen plates. J. Mech. Behav. Biomed. Mater. 2017, 76, 4–20. [Google Scholar] [CrossRef]
- Bonse, J.; Hohm, S.; Kirner, S.V.; Rosenfeld, A.; Krüger, J. Laser-Induced Periodic Surface Structures-A Scientific Evergreen. IEEE J. Sel. Top. Quant. 2017, 23, 9000615. [Google Scholar] [CrossRef]
- Bonse, J.; Koter, R.; Hartelt, M.; Spaltmann, D.; Pentzien, S.; Höhm, S.; Rosenfeld, A.; Krüger, J. Femtosecond laser-induced periodic surface structures on steel and titanium alloy for tribological applications. Appl. Phys. A 2014, 117, 103–110. [Google Scholar] [CrossRef]
- Lu, J.; Huang, T.; Liu, Z.; Zhang, X.; Xiao, R. Long-term wettability of titanium surfaces by combined femtosecond laser micro/nano structuring and chemical treatments. Appl. Surf. Sci. 2018, 459, 257–262. [Google Scholar] [CrossRef]
- Kasischke, M.; Maragkaki, S.; Volz, S.; Ostendorf, A.; Gurevich, E.L. Simultaneous nanopatterning and reduction of graphene oxide by femtosecond laser pulses. Appl. Surf. Sci. 2018, 445, 197–203. [Google Scholar] [CrossRef]
- Dusser, B.; Sagan, Z.; Soder, H.; Faure, N.; Colombier, J.P.; Jourlin, M.; Audouard, E. Controlled nanostructures formation by ultrafast laser pulses for color marking. Opt. Express 2010, 18, 2913–2924. [Google Scholar] [CrossRef] [PubMed]
- Misch, C.E. Contemporary Implant Dentistry. Implant Dent. 1999, 8, 90. [Google Scholar] [CrossRef]
- Hu, D.; Lu, Y.; Cao, Y.; Zhang, Y.; Xu, Y.; Li, W.; Gao, F.; Cai, B.; Guan, B.-O.; Qiu, C.-W.; et al. Laser-Splashed Three-Dimensional Plasmonic Nanovolcanoes for Steganography in Angular Anisotropy. ACS Nano 2018, 12, 9233–9239. [Google Scholar] [CrossRef] [PubMed]
- Inogamov, N.A.; Zhakhovskii, V.V.; Khokhlov, V.A. Jet formation in spallation of metal film from substrate under action of femtosecond laser pulse. J. Exp. Theor. Phys. 2015, 120, 15–48. [Google Scholar] [CrossRef]
- Wang, X.W.; Kuchmizhak, A.A.; Li, X.; Juodkazis, S.; Vitrik, O.B.; Kulchin, Y.N.; Zhakhovsky, V.V.; Danilov, P.A.; Ionin, A.A.; Kudryashov, S.I.; et al. Laser-Induced Translative Hydrodynamic Mass Snapshots: Noninvasive Characterization and Predictive Modeling via Mapping at Nanoscale. Phys. Rev. Appl. 2017, 8, 44016. [Google Scholar] [CrossRef]
- Lippold, J.C. Solidification behaviour and cracking susceptibility of pulsed laser welds in austenitic stainless-steels. Weld J. 1994, 73, 129s–139s. [Google Scholar]
- Kell, J.; Tyrer, J.R.; Higginson, R.L.; Thomson, R. Microstructural characterization of autogenous laser welds on 316L stainless steel using EBSD and EDS. J. Microsc. 2005, 217, 167–173. [Google Scholar] [CrossRef]
- Marmur, A. Wetting of Hydrophobic Rough Surfaces: To be heterogeneous or not to be? Langmuir 2003, 19, 8343–8348. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yang, Y.; Yang, L.; Shi, Z. Biomimetic Anti-Adhesive Surface Microstructures on Electrosurgical Blade Fabricated by Long-Pulse Laser Inspired by Pangolin Scales. Micromachines 2019, 10, 816. https://doi.org/10.3390/mi10120816
Li C, Yang Y, Yang L, Shi Z. Biomimetic Anti-Adhesive Surface Microstructures on Electrosurgical Blade Fabricated by Long-Pulse Laser Inspired by Pangolin Scales. Micromachines. 2019; 10(12):816. https://doi.org/10.3390/mi10120816
Chicago/Turabian StyleLi, Chen, Yong Yang, Lijun Yang, and Zhen Shi. 2019. "Biomimetic Anti-Adhesive Surface Microstructures on Electrosurgical Blade Fabricated by Long-Pulse Laser Inspired by Pangolin Scales" Micromachines 10, no. 12: 816. https://doi.org/10.3390/mi10120816
APA StyleLi, C., Yang, Y., Yang, L., & Shi, Z. (2019). Biomimetic Anti-Adhesive Surface Microstructures on Electrosurgical Blade Fabricated by Long-Pulse Laser Inspired by Pangolin Scales. Micromachines, 10(12), 816. https://doi.org/10.3390/mi10120816