Nonlinear Vibration of a Micro Piezoelectric Precision Drive System
Abstract
:1. Introduction
2. Operating Principle of the Drive System
3. Dynamic Models and Equations
4. Results and Discuss
4.1. Nonlinear Free Vibration Analysis
4.2. Nonlinear Forced Vibration Analysis
4.3. Simulation Verification Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.R.; Zhong, W.; Li, C.; Fang, J.; Liu, F. Development of a contactless air conveyor system for transporting and positioning planar objects. Micromachines 2018, 9, 487. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Ji, X.; Li, C.; Fang, J.; Liu, F. Determination of permeability and inertial coefficients of sintered metal porous media using an isothermal chamber. Appl. Sci. 2018, 8, 1670. [Google Scholar] [CrossRef]
- Li, C.; Xing, J.C. Dynamic optimization of an electromechanical integrated harmonic piezoelectric motor. J. Mech. Sci. Technol. 2018, 32, 2517–2526. [Google Scholar] [CrossRef]
- Li, C. Design and mechanical analysis of a mesh-type rotary harmonic piezoelectric motor. Int. J. Appl. Electromagnet. Mech. 2018, 56, 461–478. [Google Scholar] [CrossRef]
- Zhu, X.B.; Wen, Z.J.; Chen, G.Z.; Liang, J.; Liu, P. A decoupled flexure-based rotary micropositioning stage with compact size. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 4167–4179. [Google Scholar] [CrossRef]
- Yang, Y.L.; Lou, J.Q.; Wu, G.H.; Wei, Y.D.; Fu, L. Design and position/force control of an S-shaped MFC microgripper. Sens. Actuators A Phys. 2018, 282, 63–78. [Google Scholar] [CrossRef]
- Yoon, S.; Kim, J.; Cho, K.; Ko, Y.H.; Lee, S.K.; Koh, J.H. Piezoelectric energy generators based on spring and inertial mass. Materials 2018, 11, 2163. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.; Niu, S.K.; Hu, Y.T. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances. Smart Mater. Struct. 2017, 26, 065015. [Google Scholar] [CrossRef]
- Ozaki, T.; Hamaguchi, K. Bioinspired flapping-wing robot with direct-driven piezoelectric actuation and its takeoff demonstration. IEEE Robot. Autom. 2018, 3, 4217–4224. [Google Scholar] [CrossRef]
- David, O.U.; Johan, S.; Ralf, S. Improved tactile resonance sensor for robotic assisted surgery. Mech. Syst. Signal Process 2018, 99, 600–610. [Google Scholar] [Green Version]
- Zhang, X.F.; Zhang, G.B.; Nakamura, K.; Ueha, S. A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor. Sens. Actuators A Phys. 2011, 169, 206–210. [Google Scholar] [CrossRef]
- Tajitsu, Y. Piezoelectric Poly-L-lactic acid fabric and its application to control of humanoid robot. Ferroelectrics 2017, 515, 44–58. [Google Scholar] [CrossRef]
- Dharmawan, A.G.; Hariri, H.H.; Soh, G.S.; Foong, S.; Wood, K.L. Design, analysis, and characterization of a two-legged miniature robot with piezoelectric-driven four-bar linkage. J. Mech. Robot. 2018, 10, 021003. [Google Scholar] [CrossRef]
- Fang, J.W.; Zhang, L.F.; Long, Z.L.; Wang, M.Y. Fuzzy adaptive sliding mode control for the precision position of piezo-actuated nano positioning stage. Int. J. Precis. Eng. Manuf. 2018, 19, 1447–1456. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Ke, X.; Lou, X.; Zhou, S. The design and micro fabrication of a sub 100 mg insect-scale flapping-wing robot. Micro Nano Lett. 2017, 12, 297–300. [Google Scholar] [CrossRef]
- Li, C. Frequency sensitivity and mode characteristics of body structure for a piezoelectric-based UUV. Appl. Sci. 2018, 8, 1774. [Google Scholar] [CrossRef]
- Abdelkefi, A.; Nayfeh, A.H.; Hajj, M.R. Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 2012, 67, 1221–1232. [Google Scholar] [CrossRef]
- Meesala, V.C.; Hajj, M.R. Identification of nonlinear piezoelectric coefficients. J. Appl. Phys. 2018, 124, 065112. [Google Scholar] [CrossRef]
- Takahashi, S.; Yamamoto, M.; Sasaki, Y. Nonlinear piezoelectric effect in ferroelectric ceramics. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Note Rev. Pap. 1996, 37, 5292–5296. [Google Scholar] [CrossRef]
- Ozaki, R.; Liu, Y.; Hosaka, H.; Morita, T. Piezoelectric nonlinear vibration focusing on the second-harmonic vibration mode. Ultrasonics 2018, 82, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xu, L.Z.; Gao, L.C. Nonlinear free vibration of driving system of an electromechanical integrated harmonic piezoelectric motor. J. Vib. Shock 2016, 35, 7–12. [Google Scholar]
- Li, C.; Xing, J.C.; Xu, L.Z.; Sun, L. Nonlinear dynamics of a piezoelectric precision drive system used for robot joint. Int. J. Appl. Electromagnet. Mech. 2018, 58, 57–77. [Google Scholar] [CrossRef]
- Li, C.; Xing, J.C. Effects of nonlinear axial forces on chaotic vibration for a mesh-type harmonic piezoelectric motor. Int. J. Appl. Electromagnet. Mech. 2018, 56, 505–622. [Google Scholar] [CrossRef]
- Li, C.; Xing, J.C.; Fang, J.W.; Zhao, Z. Numerical analysis on chaotic vibration of drive system for a movable tooth piezoelectric motor. Shock Vib. 2017, 2017, 3216010. [Google Scholar] [CrossRef]
- Li, C.; Xu, L.Z.; Zhang, J.Q. Bifurcation and chaotic vibration for an electromechanical integrated harmonic piezodrive system. J. Mech. Sci. Technol. 2016, 30, 2961–2970. [Google Scholar] [CrossRef]
- Zhao, C.S. Ultrasonic Motors Technologies and Applications; Science Press: Beijing, China, 2010. [Google Scholar]
Parameters | Rotor | Central Gear | Harmonic Rod | Movable Tooth |
---|---|---|---|---|
mj (Kg) | 1.31 × 10−2 | 5.64 × 10−2 | 2.59 × 10−2 | 3.30 × 10−5 |
Ij (Kg) | 9.34 × 10−3 | 8.41 × 10−2 | 1.30 × 10−2 | 1.32 × 10−5 |
rj (mm) | 31.6 | 33.2 | 29 | 2 |
Number of Meshing Teeth | Frequencies (rad/s) | ω01 | ω02 | ω03 |
---|---|---|---|---|
16 | ω0i | 347,066 | 233,801 | 230,295 |
ωi | 349,023 | 249,219 | 191,179 | |
Δωi | 1957 | 15,418 | 39,116 | |
Δωi/ω0i × 100 | 0.56 | 6.59 | 16.99 | |
15 | ω0i | 346,874 | 235,535 | 229,473 |
ωi | 336,116 | 269,738 | 168,614 | |
Δωi | 10,758 | 34,202 | 60,858 | |
Δωi/ω0i × 100 | 3.10 | 14.52 | 26.52 |
Order | ω1 | ω2 | ω3 |
---|---|---|---|
Theoretical value (rad/s) | 349,023 | 249,219 | 191,179 |
Simulation value (rad/s) | 362,690 | 254,236 | 190,217 |
Error (%) | 3.92 | 2.01 | 0.50 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhong, W.; Fang, J.; Sun, L. Nonlinear Vibration of a Micro Piezoelectric Precision Drive System. Micromachines 2019, 10, 159. https://doi.org/10.3390/mi10030159
Li C, Zhong W, Fang J, Sun L. Nonlinear Vibration of a Micro Piezoelectric Precision Drive System. Micromachines. 2019; 10(3):159. https://doi.org/10.3390/mi10030159
Chicago/Turabian StyleLi, Chong, Wei Zhong, Jiwen Fang, and Lining Sun. 2019. "Nonlinear Vibration of a Micro Piezoelectric Precision Drive System" Micromachines 10, no. 3: 159. https://doi.org/10.3390/mi10030159
APA StyleLi, C., Zhong, W., Fang, J., & Sun, L. (2019). Nonlinear Vibration of a Micro Piezoelectric Precision Drive System. Micromachines, 10(3), 159. https://doi.org/10.3390/mi10030159