Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prototype of Micro Gas Chromatograph (GC)
2.2. Preconcentration Module
2.3. Experimental Setup for BTEX Generation
2.4. Breakthrough Test
3. Results and Discussion
3.1. Adsorption Capacity
3.2. Repeatability
3.3. GC Signal Versus Sample Volume
3.4. Calibration Curves and Detection Limit
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bruce, N.; Perez-Padilla, R.; Albalak, R.; Organization, W.H. The health effects of indoor air pollution exposure in developing countries. World Health Organ. 2002, 78, 1078–1092. [Google Scholar]
- Buka, I.; Koranteng, S.; Osornio-Vargas, A.R. The effects of air pollution on the health of children. Paediatr. Child Health 2006, 11, 513–516. [Google Scholar]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Esmaelnejad, F.; Hajizadeh, Y.; Pourzamani, H.; Amin, M. Monitoring of benzene, toluene, ethyl benzene, and xylene isomers emission from Shahreza gas stations in 2013. Int. J. Environ. Health Eng. 2015, 4, 17. [Google Scholar]
- Li, J.; Xie, S.D.; Zeng, L.M.; Li, L.Y.; Li, Y.Q.; Wu, R.R. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmos. Chem. Phys. 2015, 15, 7945–7959. [Google Scholar] [CrossRef]
- Madhoun, W.A.A.; Ramli, N.A.; Yahaya, A.S.; Yusuf, N.F.F.M.; Ghazali, N.A.; Sansuddin, N. Levels of benzene concentrations emitted from motor vehicles in various sites in Nibong Tebal, Malaysia. Air Qual. Atmos. Health 2011, 4, 103–109. [Google Scholar] [CrossRef]
- Miri, M.; Rostami Aghdam Shendi, M.; Ghaffari, H.R.; Ebrahimi Aval, H.; Ahmadi, E.; Taban, E.; Gholizadeh, A.; Yazdani Aval, M.; Mohammadi, A.; Azari, A. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 2016, 163, 601–609. [Google Scholar] [CrossRef]
- Campagnolo, D.; Saraga, D.E.; Cattaneo, A.; Spinazzè, A.; Mandin, C.; Mabilia, R.; Perreca, E.; Sakellaris, I.; Canha, N.; Mihucz, V.G.; et al. VOCs and aldehydes source identification in European office buildings—The OFFICAIR study. Build. Environ. 2017, 115, 18–24. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lin, C.-C.; Hsu, S.-C. Comparison of conventional and green building materials in respect of VOC emissions and ozone impact on secondary carbonyl emissions. Build. Environ. 2015, 87, 274–282. [Google Scholar] [CrossRef]
- Martins, E.M.; de Sá Borba, P.F.; dos Santos, N.E.; dos Reis, P.T.B.; Silveira, R.S.; Corrêa, S.M. The relationship between solvent use and BTEX concentrations in occupational environments. Environ. Monit. Assess. 2016, 188, 608. [Google Scholar] [CrossRef]
- Bari, M.A.; Kindzierski, W.B.; Wheeler, A.J.; Héroux, M.-È.; Wallace, L.A. Source apportionment of indoor and outdoor volatile organic compounds at homes in Edmonton, Canada. Build. Environ. 2015, 90, 114–124. [Google Scholar] [CrossRef]
- Romagnoli, P.; Balducci, C.; Perilli, M.; Vichi, F.; Imperiali, A.; Cecinato, A. Indoor air quality at life and work environments in Rome, Italy. Environ. Sci. Pollut. Res. Int. 2016, 23, 3503–3516. [Google Scholar] [CrossRef]
- Ueno, Y.; Horiuchi, T.; Morimoto, T.; Niwa, O. Microfluidic Device for Airborne BTEX Detection. Anal. Chem. 2001, 73, 4688–4693. [Google Scholar] [CrossRef]
- Hazrati, S.; Rostami, R.; Farjaminezhad, M.; Fazlzadeh, M. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran. Atmos. Environ. 2016, 132, 91–97. [Google Scholar] [CrossRef]
- Kandyala, R.; Raghavendra, S.P.C.; Rajasekharan, S.T. Xylene: An overview of its health hazards and preventive measures. J. Oral Maxillofac. Pathol. JOMFP 2010, 14, 1–5. [Google Scholar] [CrossRef]
- Rinsky, R.A.; Smith, A.B.; Hornung, R.; Filloon, T.G.; Young, R.J.; Okun, A.H.; Landrigan, P.J. Benzene and Leukemia. N. Engl. J. Med. 1987, 316, 1044–1050. [Google Scholar] [CrossRef]
- Mandin, C.; Trantallidi, M.; Cattaneo, A.; Canha, N.; Mihucz, V.G.; Szigeti, T.; Mabilia, R.; Perreca, E.; Spinazzè, A.; Fossati, S.; et al. Assessment of indoor air quality in office buildings across Europe—The OFFICAIR study. Sci. Total Environ. 2017, 579, 169–178. [Google Scholar] [CrossRef]
- Norbäck, D.; Hashim, J.H.; Hashim, Z.; Ali, F. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue. Sci. Total Environ. 2017, 592, 153–160. [Google Scholar] [CrossRef]
- Xu, J.; Szyszkowicz, M.; Jovic, B.; Cakmak, S.; Austin, C.C.; Zhu, J. Estimation of indoor and outdoor ratios of selected volatile organic compounds in Canada. Atmos. Environ. 2016, 141, 523–531. [Google Scholar] [CrossRef]
- Yurdakul, S.; Civan, M.; Özden, Ö.; Gaga, E.; Döğeroğlu, T.; Tuncel, G. Spatial variation of VOCs and inorganic pollutants in a university building. Atmos. Pollut. Res. 2017, 8, 1–12. [Google Scholar] [CrossRef]
- Zhong, L.; Su, F.-C.; Batterman, S. Volatile Organic Compounds (VOCs) in Conventional and High Performance School Buildings in the U.S. Int. J. Environ. Res. Public Health 2017, 14, 100. [Google Scholar] [CrossRef]
- Zampolli, S.; Elmi, I.; Mancarella, F.; Betti, P.; Dalcanale, E.; Cardinali, G.C.; Severi, M. Real-time monitoring of sub-ppb concentrations of aromatic volatiles with a MEMS-enabled miniaturized gas-chromatograph. Sens. Actuators B Chem. 2009, 141, 322–328. [Google Scholar] [CrossRef]
- Skog, K.M.; Xiong, F.; Kawashima, H.; Doyle, E.; Soto, R.; Gentner, D.R. Compact, Automated, Inexpensive, and Field-Deployable Vacuum-Outlet Gas Chromatograph for Trace-Concentration Gas-Phase Organic Compounds. Anal. Chem. 2019, 91, 1318–1327. [Google Scholar] [CrossRef]
- Nasreddine, R.; Person, V.; Serra, C.A.; Le Calvé, S. Development of a novel portable miniaturized GC for near real-time low level detection of BTEX. Sens. Actuators B Chem. 2016, 224, 159–169. [Google Scholar] [CrossRef]
- Gregis, G.; Sanchez, J.-B.; Bezverkhyy, I.; Guy, W.; Berger, F.; Fierro, V.; Bellat, J.-P.; Celzard, A. Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor. Sens. Actuators B Chem. 2018, 255, 391–400. [Google Scholar] [CrossRef]
- Sun, J.; Xue, N.; Wang, W.; Wang, H.; Liu, C.; Ma, T.; Li, T. Compact Prototype GC-PID System integrated with Micro-PC and Micro GC Column. J. Micromech. Microeng. 2019, 29, 1–6. [Google Scholar] [CrossRef]
- Sun, J.; Geng, Z.; Xue, N.; Liu, C.; Ma, T. A Mini-System Integrated with Metal-Oxide-Semiconductor Sensor and Micro-Packed Gas Chromatographic Column. Micromachines 2018, 9, 408. [Google Scholar] [CrossRef]
- Wang, J.; Bryant-Genevier, J.; Nuñovero, N.; Zhang, C.; Kraay, B.; Zhan, C.; Scholten, K.; Nidetz, R.; Buggaveeti, S.; Zellers, E.T. Compact prototype microfabricated gas chromatographic analyzer for autonomous determinations of VOC mixtures at typical workplace concentrations. Microsyst. Nanoeng. 2018, 4, 17101. [Google Scholar] [CrossRef]
- Soo, J.-C.; Lee, E.G.; LeBouf, R.F.; Kashon, M.L.; Chisholm, W.; Harper, M. Evaluation of a portable gas chromatograph with photoionization detector under variations of VOC concentration, temperature, and relative humidity. J. Occup. Environ. Hyg. 2018, 15, 351–360. [Google Scholar] [CrossRef]
- Trzciński, J.W.; Pinalli, R.; Riboni, N.; Pedrini, A.; Bianchi, F.; Zampolli, S.; Elmi, I.; Massera, C.; Ugozzoli, F.; Dalcanale, E. In Search of the Ultimate Benzene Sensor: The EtQxBox Solution. ACS Sens. 2017, 2, 590–598. [Google Scholar] [CrossRef]
- Lee, J.; Zhou, M.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X. Fully Automated Portable Comprehensive 2-Dimensional Gas Chromatography Device. Available online: http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b03000 (accessed on 14 January 2019).
- Wang, J.; Nuñovero, N.; Lin, Z.; Nidetz, R.; Buggaveeti, S.; Zhan, C.; Kurabayashi, K.; Steinecker, W.H.; Zellers, E.T. A Wearable MEMS Gas Chromatograph for Multi-Vapor Determinations. Procedia Eng. 2016, 168, 1398–1401. [Google Scholar] [CrossRef]
- Tzeng, T.-H.; Kuo, C.-Y.; Wang, S.-Y.; Huang, P.-K.; Huang, Y.-M.; Huang, Y.-M.; Hsieh, W.-C.; Huang, Y.-J.; Kuo, P.-H.; Yu, S.-A.; et al. A Portable Micro Gas Chromatography System for Lung Cancer Associated Volatile Organic Compound Detection. IEEE J. Solid-State Circuits 2016, 51, 259–272. [Google Scholar]
- Qin, Y.; Gianchandani, Y.B. A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants. Microsyst. Nanoeng. 2016, 2, 15049. [Google Scholar] [CrossRef]
- Garg, A.; Akbar, M.; Vejerano, E.; Narayanan, S.; Nazhandali, L.; Marr, L.C.; Agah, M. Zebra GC: A mini gas chromatography system for trace-level determination of hazardous air pollutants. Sens. Actuators B Chem. 2015, 212, 145–154. [Google Scholar] [CrossRef]
- Nasreddine, R.; Person, V.; Serra, C.A.; Schoemaecker, C.; Le Calvé, S. Portable novel micro-device for BTEX real-time monitoring: Assessment during a field campaign in a low consumption energy junior high school classroom. Atmos. Environ. 2016, 126, 211–217. [Google Scholar] [CrossRef]
- Lara-lbeas, I.; Trocquet, C.; Nasreddine, R.; Andrikopoulou, C.; Person, V.; Cormerais, B.; Englaro, S.; Le Calvé, S. BTEX near real-time monitoring in two primary schools in La Rochelle, France. Air Qual. Atmos. Health 2018, 11, 1091–1107. [Google Scholar] [CrossRef]
- Camara, E.H.M.; Breuil, P.; Briand, D.; de Rooij, N.F.; Pijolat, C. A micro gas preconcentrator with improved performance for pollution monitoring and explosives detection. Anal. Chim. Acta 2011, 688, 175–182. [Google Scholar] [CrossRef]
- Dettmer, K.; Engewald, W. Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal. Bioanal. Chem. 2002, 373, 490–500. [Google Scholar] [CrossRef]
- Leidinger, M.; Rieger, M.; Sauerwald, T.; Alépée, C.; Schütze, A. Integrated pre-concentrator gas sensor microsystem for ppb level benzene detection. Sens. Actuators B Chem. 2016, 236, 988–996. [Google Scholar] [CrossRef]
- Vellingiri, K.; Kumar, P.; Deep, A.; Kim, K.-H. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure. Chem. Eng. J. 2017, 307, 1116–1126. [Google Scholar] [CrossRef]
Ref. | Size (cm) | Weight (kg) | Sampling Time (min) | Analysis Time (min) | Preconcentrator l (mm) × d (µm) × w (mm) | Adsorbent | GC Column l (m) × d (µm) × w (µm) | Stationary Phase and Thickness | Carrier Gas Flow Rate (mL/min) | Detector | LOD (ppb) |
---|---|---|---|---|---|---|---|---|---|---|---|
This work | 32 × 29 × 14 | ∼5 | 4 | 15 | Cavity 4.6 × 350 × 7.4 | Basolite C300 5.8 mg | Capillary 20 × 180 (i.d.) | Rxi 624 Sil MS 1 μm | N2 2.5 | PID | 0.1–1.6 (BTEX) |
GC-PID [23] | 31 × 30 × 20 | 32 | 20 | ∼15 | Tube 0.165 cm i.d. | ResSil-B 75 mg | Capillary 15 × 530 (i.d.) | MXT-1 3 μm | A.A. 0.8−2.2 | PID | 0.002–0.011 (BTEX) |
GC-MOS [25] | n. d. | n. d. | 5 | 4 | Cavity with micro-pillars 10 × 400 × 5 | Zeolite DaY ~ 13 µm | Circular spiral 5 × 100 × 100 | PDMS 100 nm | 7 | MOS | 24 (toluene) 5 (o-xylene) |
GC-PID [26] | n. d. | n. d. | 1 | 5 (5 comp.) | 4 Parallel channels n.d × 400 × 0.6 | SWNTs 0.15 mg | Serpentine with micropillars 4 × 350 × 320 | OV-101 0.2 µm | A.A. 5 | PID | <1 (benzene) |
GC-MOS [27] | n. d. | n. d. | n. d. | 60 (3 comp.) | n. p. | n. p. | Serpentine 1.6 × 1200 × 600 | Porapak Q | A.A. | MOS | 5 (benzene) |
PEMM-1 [28] | 19 × 30 × 14 | 3.5 | 1 | 4 (17 comp.) | 2 Cavities (V ~ 9.4 μL) 380 (d) | C-B 2.0 mg C-X 2.3 mg | Square spiral 3.1 × 240 × 150 | PDMS 0.20 μm | He 3 | 5 μCR | 420–890 (BTEX) |
Frog 4000 [29] | 25 × 19 × 37 | <2.2 | 0.5 | 5 | n. d. | Silica gel aerogel | 4.8 * | PDMS 0.8 μm | A.A. | PID | ~ppb |
GC-PID [30] | n. d. | n. d. | 50 | 13 | n. d. | EtQxBox 10 mg | n. p. | n. p. | A.A. 30 | PID | 1.25 (benzene) |
GC-PID [31] | 60 × 50 × 10 | <5 | 2 | 14.2 (50 comp.) | Cavity 8.15 × 250 × 2.9 | C-B 1.135 mg | 1D: 10 × 250 (i.d.) 2D: 3 × 250 (i.d.) | 1D: Rtx-5MS 2D: Rtx-200 0.25 µm | He 2 | µPID | n. d. |
GC-CR [32] | 20 × 15 × 9 | 2.1 | 2.5 min (9 comp.) | 2 Cavities (V ~ 9.4 μL) | C-B 2.0 mg C-X 2.3 mg | 6 * | PDMS 0.2 µm | n. d. | µCR | n. d. | |
GC-CMOS [33] | 16 × 11 × 11 | n. d. | n. d. | n. d. | Cavity with micro-pillars 10 × 250 × 2 | Carbon film | Square spiral 3 × 250 × 100 | DB-1 | n. d. | CMOS | 15 (1,3,5-TMB) |
iGC3.2 [34] | 8 × 10 | n. d. | 120 | 10 | U shape n.d. × 300 × 1350 | C-B + C-X | 2 Serpentines 0.30 × 230 (i.d.) | OV-1 0.2 μm | A.A. 0.2 | 2 CD | 10–2 (BTEX) |
Zebra GC [35] | 15 × 30 × 10 | ∼1.8 | 10 | <2 | Cavity with micro-pillars 13 × 240 × 13 | Tenax TA ∼ 200 nm | Serpentine 2 × 70 × 240 | OV-1 ∼250 nm | He 1 | TCD | ∼25 (TEX) |
GC-PID [24] | 32 × 29 × 14 | ∼4 | 1 | 10 | n. p. | n. p. | Capillary 20 × 180 (i.d.) | Rxi 624 Sil MS 1 μm | N2 2.5 | PID | 0.8–3.2 (BTEX) |
GC-MOX [22] | n. d. | n. d. | 55 | ∼12 | Ten parallel channels 800 µm depth | QxCav | Square spiral 0.5 × 900 × 900 | Carbograph 2 0.2% Carbowax | A.A. 15 | MOS | 0.1 (benzene) |
Compound | Calibration Equation | R2 | LOD 1 (ppb) * (This Work) | LOD 2 (ppb) Nasreddine et al. [24] | Ratio LOD 2/LOD 1 |
---|---|---|---|---|---|
Benzene | y = 2828.2 x | 0.9913 | 0.20 | 0.72 | 3.6 |
Toluene | y = 1206.3 x | 0.9777 | 0.26 | 1.16 | 4.46 |
Ethylbenzene | y = 454.2 x | 0.9895 | 0.49 | 2.10 | 4.40 |
m/p-Xylenes | y = 311.9 x | 0.9959 | 0.80 | 1.40 | 1.75 |
o-Xylene | y = 427.0 x | 0.9949 | 1.70 | 2.63 | 1.55 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lara-lbeas, I.; Rodríguez-Cuevas, A.; Andrikopoulou, C.; Person, V.; Baldas, L.; Colin, S.; Le Calvé, S. Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines 2019, 10, 187. https://doi.org/10.3390/mi10030187
Lara-lbeas I, Rodríguez-Cuevas A, Andrikopoulou C, Person V, Baldas L, Colin S, Le Calvé S. Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines. 2019; 10(3):187. https://doi.org/10.3390/mi10030187
Chicago/Turabian StyleLara-lbeas, Irene, Alberto Rodríguez-Cuevas, Christina Andrikopoulou, Vincent Person, Lucien Baldas, Stéphane Colin, and Stéphane Le Calvé. 2019. "Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit" Micromachines 10, no. 3: 187. https://doi.org/10.3390/mi10030187
APA StyleLara-lbeas, I., Rodríguez-Cuevas, A., Andrikopoulou, C., Person, V., Baldas, L., Colin, S., & Le Calvé, S. (2019). Sub-ppb Level Detection of BTEX Gaseous Mixtures with a Compact Prototype GC Equipped with a Preconcentration Unit. Micromachines, 10(3), 187. https://doi.org/10.3390/mi10030187