Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Details on Characterization
2.3. Experimental Details on Water Collection Rate (WCR) Measurement
2.4. Finite Element Analysis (FEA) Details
3. Results and Discussion
3.1. Fabrication of the Hybrid Surface with 3D and 2D Patterns
3.2. Water Collection Process and WCR Measurement
3.3. WCR on a Curved Hybrid Surface
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, P.S.; Bhushan, B. Bioinspired Materials for Water Supply and Management: Water Collection, Water Purification and Separation of Water from Oil. Phil. Trans. R. Soc. A. 2016, 374, 20160135. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Huang, J.; Chen, Z.; Lai, Y. Bioinspired Special Wettability Surfaces: from Fundamental Research to Water Harvesting Applications. Small 2017, 13, 1602992. [Google Scholar] [CrossRef] [PubMed]
- Pinchasik, B.E.; Kappl, M.; Butt, H.J. Small Structures, Big Droplets: The Role of Nanoscience in Fog Harvesting. ACS Nano 2016, 10, 10627–10630. [Google Scholar] [CrossRef] [PubMed]
- Hamilto, W.J.; Seely, M.K. Fog Basking by the Namib Desert Beetle, Onymarcis unguicularis. Nature 1976, 262, 284. [Google Scholar] [CrossRef]
- Norgaard, T.; Dacke, M. Fog Basking Behavior and Water Collection Efficiency in Namib Desert Darkling Beetles. Front. Zool. 2010, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Parker, A.R.; Lawrence, C.R. Water Capture by a Desert Beetle. Nature. 2001, 414, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Wang, L.; Ju, J.; Sun, R.; Zheng, Y.; Jiang, L. Efficient Water Collection on Integrative Bioinspired Surfaces with Star Shaped Wettability Patterns. Adv. Mater. 2014, 26, 5025–5030. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, L.; Wang, Y.; Wang, P. Efficient and Anisotropic Fog Harvesting on a Hybrid and Directional Surface. Adv. Mater. Inter. 2017, 4, 1600801. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, J.; Hedhili, M.N.; Yang, X.; Wang, P. Inkjet Printing for Direct Micropatterning of a Superhydrophobic Surface: Toward Biomimetic Fog Harvesting Surfaces. J. Mater. Chem. A 2015, 3, 2844. [Google Scholar] [CrossRef]
- Yu, Z.; Yun, F.F.; Wang, Y.; Yao, L.; Dou, S.; Liu, K.; Jiang, L.; Wang, X. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harvesting. Small. 2017, 13, 1701403. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Wu, J.; Hedhili, M.N.; Wang, P. A Facile Strategy for the Fabrication of a Bioinspired Hydrophilic-Superhydrophobic Patterned Surface for Highly Efficient Fog-Harvesting. J. Mater. Chem. A 2015, 3, 18963. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, F.; Li, J.; Guo, Z. High-Efficiency Water Collection on Biomimetic Material with Superwettable Patterns. Chem. Commun. 2016, 52, 12415. [Google Scholar] [CrossRef]
- Dorrer, C.; Ruhe, J. Mimicking the Stenocara Beetle Dewetting of Drops from a Patterned Superhydrophobic Surface. Langmuir 2008, 24, 6154–6158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, X.; Lai, C.; Hu, H.; Kong, Y.; Fei, B.; Xin, J.H. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic bumps. ACS Appl. Mater. Interfaces 2016, 8, 2950–2960. [Google Scholar] [CrossRef] [PubMed]
- Beysens, D. Dew nucleation and growth. C. R. Physique. 2006, 7, 1082–1100. [Google Scholar] [CrossRef]
- Park, K.C.; Kim, P.; Grinthal, A.; He, N.; Fox, D.; Weaver, J.C.; Aizenberg, J. Condensation on Slippery Asymmetric Bumps. Nature. 2016, 531, 78–82. [Google Scholar] [CrossRef]
- Medici, M.G.; Mongruel, A.; Royon, L.; Beysens, D. Edge Effects on Water Droplet Condensation. Phys. Rev. E 2014, 90, 062403. [Google Scholar] [CrossRef]
- Byun, I.; Coleman, A.W.; Kim, B. Transfer of Thin Au Films to Polydimethylsiloxane (PDMS) with Reliable Bonding Using (3-mercaptopropyl) trimethoxysilane (MPTMS) as a Molecular Adhesive. J. Micromech. Microeng. 2013, 23, 085016. [Google Scholar] [CrossRef]
- Byun, I.; Coleman, A.W.; Kim, B. Microcontact Printing Using a Flat Metal-Embedded Stamp Fabricated Using a Dry Peel-Off Process. RSC Adv. 2013, 3, 24872–24876. [Google Scholar] [CrossRef]
- Barik, A.; Cherukulappurath, S.; Wittenberg, N.J.; Johnson, T.W.; Oh, S.H. Dielectrophoresis Assited Raman Spectroscopy of Intravesicular Analytes on Metallic Pyramids. Anal. Chem. 2016, 88, 1704–1710. [Google Scholar] [CrossRef]
- Yoo, D.; Johnson, T.W.; Cherukulappuarth, S.; Norris, D.J.; Oh, S.H. Template-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates. ACS Nano. 2015, 9, 10647–10654. [Google Scholar] [CrossRef] [PubMed]
- Gebhart, B.; Pera, L. The Nature of Vertical Natural Convection Flows Resulting from the Combined Buoyancy Effects of Thermal and Mass Diffusion. Int. J. Heat Mass Transfer. 1971, 14, 2025–2050. [Google Scholar] [CrossRef]
- Zamuruyev, K.O.; Baradaweel, H.K.; Carron, C.J.; Kenyon, N.J.; Brand, O.; Delplanque, J.P.; Davis, C.E. Continuous Droplet Removal upon Dropwise Condensation of Humid Air on a Hydrophobic Micropatterned Surface. Langmuir 2014, 30, 10133–10142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, F.; Williams, A.J.; Qu, X.; Feng, J.J.; Chen, C.H. Self-Propelled Droplet Removal from Hydrophobic Fiber Based Coalescers. Phys. Rev. Lett. 2015, 115, 074502. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Kim, S. Droplet Manipulation on a Structured Shape Memory Polymer Surface. Lab. Chip. 2017, 17, 1793–1801. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Park, J.K.; Kim, S. Magnetically Responsive Elastomer-Silicon Hybrid Surfaces for Fluid and Light Manipulation. Small. 2018, 14, 1702839. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Kim, S. Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain. ACS Appl. Mater. Interfaces 2017, 38, 33333–33340. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.K.; Kim, S. Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles. Micromachines 2019, 10, 201. https://doi.org/10.3390/mi10030201
Park JK, Kim S. Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles. Micromachines. 2019; 10(3):201. https://doi.org/10.3390/mi10030201
Chicago/Turabian StylePark, Jun Kyu, and Seok Kim. 2019. "Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles" Micromachines 10, no. 3: 201. https://doi.org/10.3390/mi10030201
APA StylePark, J. K., & Kim, S. (2019). Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles. Micromachines, 10(3), 201. https://doi.org/10.3390/mi10030201