Micro-optical Components for Bioimaging on Tissues, Cells and Subcellular Structures
Abstract
:1. Introduction
2. Micro-optical Components
2.1. Waveguides
2.2. Mirrors
2.3. Lenses
3. Fabrication Technologies of Micro-optical Components
3.1. Technologies for Waveguide Fabrication
3.2. Technologies for Micromirror Fabrication
3.3. Technologies for Microlens Fabrication
4. Micro-optics Integrated within Bioimaging Systems
4.1. Micro-optical Components for in vitro Bioimaging
4.2. Micro-optical Components for in vivo Bioimaging
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kherlopian, A.R.; Song, T.; Duan, Q.; Neimark, M.A.; Po, M.J.; Gohagan, J.K.; Laine, A.F. A review of imaging techniques for systems biology. BMC Syst. Biol. 2008, 2, 74. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.S.; Sajda, P.; Saha, P.K.; Wehrli, F.W.; Guo, X.E. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J. Bone Miner. Res. 2006, 21, 1608–1617. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, R.; Suzuki, Y. X-ray microtomography in biology. Micron 2012, 43, 104–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrish, T.B.; Gitelman, D.R.; LaBar, K.S.; Mesulam, M.-M. Impact of signal-to-noise on functional MRI. Magn. Reson. Med. 2000, 44, 925–932. [Google Scholar] [CrossRef] [Green Version]
- Arias-Mendoza, F.; Brown, T.R. In vivo measurement of phosphorous markers of disease. Dis. Markers 2004, 19, 49–68. [Google Scholar] [CrossRef] [PubMed]
- Bolan, P.J.; Nelson, M.T.; Yee, D.; Garwood, M. Imaging in breast cancer: Magnetic resonance spectroscopy. Breast Cancer Res. 2005, 7, 149–152. [Google Scholar] [CrossRef]
- Karam, J.A.; Mason, R.P.; Koeneman, K.S.; Antich, P.P.; Benaim, E.A.; Hsieh, J.-T. Molecular imaging in prostate cancer. J. Cell. Biochem. 2003, 90, 473–483. [Google Scholar] [CrossRef]
- Jensen, J.A. Medical ultrasound imaging. Prog. Biophys. Mol. Biol. 2007, 93, 153–165. [Google Scholar] [CrossRef]
- Christiansen, J.P.; Lindner, J.R. Molecular and cellular imaging with targeted contrast ultrasound. Proc. IEEE 2005, 93, 809–818. [Google Scholar] [CrossRef]
- Lanza, G.M.; Wickline, S.A. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog. Cardiovasc. Dis. 2001, 44, 13–31. [Google Scholar] [CrossRef]
- König, K. Multiphoton microscopy in life sciences. J. Microsc. 2000, 200, 83–104. [Google Scholar] [CrossRef] [PubMed]
- Hell, S.W.; Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 1994, 19, 780–782. [Google Scholar] [CrossRef] [PubMed]
- Klar, T.A.; Jakobs, S.; Dyba, M.; Egner, A.; Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 2000, 97, 8206–8210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fölling, J.; Belov, V.; Riedel, D.; Schönle, A.; Egner, A.; Eggeling, C.; Bossi, M.; Hell, S.W. Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. ChemPhysChem 2008, 9, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Gijs, M.A.M. Micro-optics for microfluidic analytical applications. Chem. Soc. Rev. 2018, 47, 1391–1458. [Google Scholar] [CrossRef] [PubMed]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Diekmann, R.; Helle, Ø.I.; Øie, C.I.; McCourt, P.; Huser, T.R.; Schüttpelz, M.; Ahluwalia, B.S. Chip-based wide field-of-view nanoscopy. Nat. Photonics 2017, 11, 322–328. [Google Scholar] [CrossRef]
- Yurtsever, G.; Dumon, P.; Bogaerts, W.; Baets, R. Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography. Proc. SPIE 2010, 7554, 75514B. [Google Scholar]
- Tinguely, J.-C.; Helle, Ø.I.; Ahluwalia, B.S. Silicon nitride waveguide platform for fluorescence microscopy of living cells. Opt. Express 2017, 25, 27678–27690. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xie, H.; Fedder, G.K. Endoscopic optical coherence tomography based on a microelectromechanical mirror. Opt. Lett. 2001, 26, 1966–1968. [Google Scholar] [CrossRef]
- Strahman, M.; Liu, Y.; Li, X.; Lin, L.Y. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging. Opt. Express 2013, 21, 23934–23941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, M.J. Adaptive optical microscopy: The ongoing quest for a perfect image. Light Sci. Appl. 2014, 3, e165. [Google Scholar] [CrossRef]
- Morrison, J.; Imboden, M.; Bishop, D.J. Tuning the resonance frequencies and mode shapes in a large range multi-degree of freedom micromirror. Opt. Express 2017, 25, 7895–7906. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.; Imboden, M.; Little, T.D.C.; Bishop, D.J. Electrothermally actuated tip-tilt-piston micromirror with integrated varifocal capability. Opt. Express 2015, 23, 9555–9566. [Google Scholar] [CrossRef]
- Janak, S.; Xu, Y.; Premachandran, C.S.; Jason, T.H.S.; Chen, N. Novel 3D micromirror for miniature optical bio-probe SiOB assembly. Proc. SPIE 2008, 6886, 688608. [Google Scholar]
- Kuo, J.-N.; Hsieh, C.-C.; Yang, S.-Y.; Lee, G.-B. An SU-8 microlens array fabricated by soft replica molding for cell counting applications. J. Micromech. Microeng. 2007, 17, 693–699. [Google Scholar] [CrossRef]
- Oder, T.N.; Shakya, J.; Lin, J.Y.; Jiang, H.X. Nitride microlens arrays for blue and ultraviolet wavelength applications. Appl. Phys. Lett. 2003, 82, 3692–3694. [Google Scholar] [CrossRef] [Green Version]
- Malinauskas, M.; Gilbergs, H.; Zukauskas, A.; Purlys, V.; Paipulas, D.; Gadonas, R. A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses. J. Opt. 2010, 12, 035204. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, H.S.; Lee, B.-K.; Yang, S.S.; Kwon, T.H.; Lee, S.S. Replications and analysis of microlens array fabricated by a modified LIGA process. Polym. Eng. Sci. 2006, 46, 416–425. [Google Scholar] [CrossRef]
- Kim, J.Y.; Martin-Olmos, C.; Baek, N.S.; Brugger, J. Simple and easily controllable parabolic-shaped microlenses printed on polymeric mesas. J. Mater. Chem. C 2013, 1, 2152–2157. [Google Scholar] [CrossRef]
- Florian, C.; Piazza, S.; Diaspro, A.; Serra, P.; Duocastella, M. Direct laser printing of tailored polymeric microlenses. ACS Appl. Mater. Interfaces 2016, 8, 17028–17032. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Guo, W.; Li, L.; Luk’yanchuk, B.; Khan, A.; Liu, Z.; Chen, Z.; Hong, M. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope. Nat. Commun. 2011, 2, 218. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Gijs, M.A.M. Optical microscopy using a glass microsphere for metrology of sub-wavelength nanostructures. Microelectron. Eng. 2015, 143, 86–90. [Google Scholar] [CrossRef]
- Darafsheh, A.; Guardiola, C.; Palovcak, A.; Finlay, J.C.; Cárabe, A. Optical super-resolution imaging by high-index microspheres embedded in elastomers. Opt. Lett. 2015, 40, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Trouillon, R.; Huszka, G.; Gijs, M.A.M. Super-resolution imaging of a dielectric microsphere is governed by the waist of its photonic nanojet. Nano Lett. 2016, 16, 4862–4870. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Guo, W.; Yan, Y.; Lee, S.; Wang, R. Label-free super-resolution imaging of adenoviruses by submerged microsphere optical nanoscopy. Light Sci. Appl. 2013, 2, e104. [Google Scholar] [CrossRef]
- Yang, H.; Moullan, N.; Auwerx, J.; Gijs, M.A.M. Super-resolution biological microscopy using virtual imaging by a microsphere nanoscope. Small 2014, 10, 1712–1718. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, F.J.; Froner, E.; Rigo, E.; Gandolfi, D.; Scarpa, M.; Han, B.; Ghulinyan, M.; Pucker, G.; Pavesi, L. Silicon oxynitride waveguides as evanescent-field-based fluorescent biosensors. J. Phys. D Appl. Phys. 2014, 47, 405401. [Google Scholar] [CrossRef]
- Cleary, A.; Glidle, A.; Laybourn, P.J.R.; García-Blanco, S.; Pellegrini, S.; Helfter, C.; Buller, G.S.; Aitchison, J.S.; Cooper, J.M. Integrating optics and microfluidics for time-correlated single-photon counting in lab-on-a-chip devices. Appl. Phys. Lett. 2007, 91, 071123. [Google Scholar] [CrossRef]
- Teo, E.J.; Bettiol, A.A.; Breese, M.B.H.; Yang, P.; Mashanovich, G.Z.; Headley, W.R.; Reed, G.T.; Blackwood, D.J. Three-dimensional control of optical waveguide fabrication in silicon. Opt. Express 2008, 16, 573–578. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Dai, C.-L.; Lee, C.-Y.; Chen, P.-H.; Chang, P.-Z. A circular micromirror array fabricated by a maskless post-CMOS process. Microsyst. Technol. 2005, 11, 444–451. [Google Scholar] [CrossRef]
- Houlet, L.; Helin, P.; Bourouina, T.; Reyne, G.; Dufour-Gergam, E.; Fujita, H. Movable vertical mirror arrays for optical microswitch matrixes and their electromagnetic actuation. IEEE J. 2002, 8, 58–63. [Google Scholar] [CrossRef]
- Ma, Y.; Islam, S.; Pan, Y.-J. Electrostatic torsional micromirror with enhanced tilting angle using active control methods. IEEE ASME Trans. Mechatron. 2011, 16, 994–1001. [Google Scholar] [CrossRef]
- Yoo, B.-W.; Park, J.-H.; Jin, J.-Y.; Jang, Y.-H.; Kim, Y.-K. Design and fabrication of a self-aligned parallel-plate-type silicon micromirror minimizing the effect of misalignment. J. Micromech. Microeng. 2009, 19, 055004. [Google Scholar] [CrossRef]
- Kim, D.-H.; Kim, M.-W.; Jeon, J.-W.; Lim, K.S.; Yoon, J.-B. Modeling, design, fabrication, and demonstration of a digital micromirror with interdigitated cantilevers. J. Microelectromech. Syst. 2009, 18, 1382–1395. [Google Scholar]
- Ponoth, S.S.; Agarwal, N.T.; Persans, P.D.; Plawsky, J.L. Fabrication of micromirrors with self-aligned metallization using silicon back-end-of-the-line processes. Thin Solid Films 2005, 472, 169–179. [Google Scholar] [CrossRef]
- Lee, M.-W.; Choi, C.H.; Lim, K.J.; Beom-Hoan, O.; Lee, S.G.; Park, S.-G.; Lee, E.H. Novel fabrication of a curved micro-mirror for optical interconnection. Microelectron. Eng. 2006, 83, 1343–1346. [Google Scholar] [CrossRef]
- Koh, J.; Kim, J.; Shin, J.H.; Lee, W. Fabrication and integration of microprism mirrors for high-speed three-dimensional measurement in inertial microfluidic system. Appl. Phys. Lett. 2014, 105, 114103. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Chao, C.-K.; Lin, C.-P.; Shen, S.-C. Micro-ball lens array modeling and fabrication using thermal reflow in two polymer layers. J. Micromech. Microeng. 2004, 14, 277–282. [Google Scholar] [CrossRef]
- Fujita, T.; Nishihara, H.; Koyama, J. Fabrication of micro lenses using electron-beam lithography. Opt. Lett. 1981, 6, 613–615. [Google Scholar] [CrossRef]
- Ni, H.; Yuan, G.; Sun, L.; Chang, N.; Zhang, D.; Chen, R.; Jiang, L.; Chen, H.; Gu, Z.; Zhao, X. Large-scale high-numerical-aperture super-oscillatory lens fabricated by direct laser writing lithography. RSC Adv. 2018, 8, 20117–20123. [Google Scholar] [CrossRef] [Green Version]
- Harriott, L.R.; Scotti, R.E.; Cummings, K.D.; Ambrose, A.F. Micromachining of integrated optical structures. Appl. Phys. Lett. 1986, 48, 1704–1706. [Google Scholar] [CrossRef]
- Naessens, K.; Ottevaere, H.; Baets, R.; Van Daele, P.; Thienpont, H. Direct writing of microlenses in polycarbonate with excimer laser ablation. Appl. Opt. 2003, 42, 6349–6359. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-K.; Kim, D.S.; Kwon, T.H. Replication of microlens arrays by injection molding. Microsyst. Technol. 2004, 10, 531–535. [Google Scholar] [CrossRef]
- Ohki, K.; Chung, S.; Ch’ng, Y.H.; Kara, P.; Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005, 433, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.; Adusumilli, P.S.; Fong, Y. Advances in oncolytic viral therapy. Curr. Opin. Investig. Drugs 2006, 7, 549–559. [Google Scholar] [PubMed]
- Ramachandra, M.; Rahman, A.; Zou, A.; Vaillancourt, M.; Howe, J.A.; Antel-man, D.; Sugarman, B.; Demers, G.W.; Engler, H.; Johnson, D.; et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat. Biotechnol. 2001, 19, 1035–1041. [Google Scholar] [CrossRef]
- Yokokawa, R.; Kitazawa, Y.; Terao, K.; Okonogi, A.; Kanno, I.; Kotera, H. A perfusable microfluidic device with on-chip total internal reflection fluorescence microscopy (TIRFM) for in situ and real-time monitoring of live cells. Biomed. Microdevices 2012, 14, 791–797. [Google Scholar] [CrossRef]
- Breslauer, D.N.; Maamari, R.N.; Switz, N.A.; Lam, W.A.; Fletcher, D.A. Mobile phone based clinical microscopy for global health applications. PLoS ONE 2009, 4, e6320. [Google Scholar] [CrossRef]
- Ozcan, A.; McLeod, E. Lensless imaging and sensing. Annu. Rev. Biomed. Eng. 2016, 18, 77–102. [Google Scholar] [CrossRef]
- Cui, X.; Lee, L.M.; Heng, X.; Zhong, W.; Sternberg, P.W.; Psaltis, D.; Yang, C. Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl. Acad. Sci. USA 2008, 105, 10670–10675. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Leitao, R.; Zheng, G.; Yang, S.; Rodriguez, A.; Yang, C. Color capable sub-pixel resolving optofluidic microscope and its application to blood cell imaging for Malaria diagnosis. PLoS ONE 2011, 6, e26127. [Google Scholar] [CrossRef] [PubMed]
- Arpali, S.A.; Arpali, C.; Coskun, A.F.; Chiang, H.-H.; Ozcan, A. High-throughput screening of large volumes of whole blood using structured illumination and fluorescent on-chip imaging. Lab Chip 2012, 12, 4968–4971. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.; Su, T.-W.; Tseng, D.K.; Erlinger, A.; Ozcan, A. Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 2009, 9, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Mavandadi, S.; Coskun, A.F.; Yaglidere, O.; Ozcan, A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal. Chem. 2011, 83, 6641–6647. [Google Scholar] [CrossRef]
- Wei, Q.; McLeod, E.; Qi, H.; Wan, Z.; Sun, R.; Ozcan, A. On-chip cytometry using plasmonic nanoparticle enhanced lensfree holography. Sci. Rep. 2013, 3, 1699. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Isikman, S.O.; Mudanyali, O.; Greenbaum, A.; Ozcan, A. Optical imaging techniques for point-of-care diagnostics. Lab Chip 2013, 13, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.; Puoris’haag, M.; Cóté, D.; Lin, C.P.; Yun, S.H. In vivo confocal and multiphoton microendoscopy. J. Biomed. Opt. 2008, 13, 010501. [Google Scholar] [CrossRef] [PubMed]
- Barretto, R.P.J.; Messerschmidt, B.; Schnitzer, M.J. In vivo fluorescence imaging with high-resolution microlenses. Nat. Methods 2009, 6, 511–512. [Google Scholar] [CrossRef]
- Llewellyn, M.E.; Barretto, R.P.J.; Delp, S.L.; Schnitzer, M.J. Minimally invasive high-speed imaging of sarcomere contractile dynamics in mice and humans. Nature 2008, 454, 784–788. [Google Scholar] [CrossRef]
- Zhao, Y.; Nakamura, H.; Gordon, R.J. Development of a versatile two-photon endoscope for biological imaging. Biomed. Opt. Express 2010, 1, 1159–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, J.D.; Landau, S.; Tkaczyk, T.S.; Descour, M.R.; Rahman, M.S.; Richards-Kortum, R.; Kärkäinen, A.H.O. Imaging performance of a miniature integrated microendoscope. J. Biomed. Opt. 2008, 13, 054020. [Google Scholar] [CrossRef] [PubMed]
- Aljasem, K.; Froehly, L.; Seifert, A.; Zappe, H. Scanning and tunable micro-optics for endoscopic optical coherence tomography. J. Microelectromech. Syst. 2011, 20, 1462–1472. [Google Scholar] [CrossRef]
- Mu, X.; Sun, W.; Feng, H.; Yu, A.; Chen, K.W.S.; Fu, C.Y.; Olivo, M. MEMS micromirror integrated endoscopic probe for optical coherence tomography bioimaging. Sens. Actuator A Phys. 2011, 168, 202–212. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Zhang, Y.; Chen, S.; Hao, R. Micro-optical Components for Bioimaging on Tissues, Cells and Subcellular Structures. Micromachines 2019, 10, 405. https://doi.org/10.3390/mi10060405
Yang H, Zhang Y, Chen S, Hao R. Micro-optical Components for Bioimaging on Tissues, Cells and Subcellular Structures. Micromachines. 2019; 10(6):405. https://doi.org/10.3390/mi10060405
Chicago/Turabian StyleYang, Hui, Yi Zhang, Sihui Chen, and Rui Hao. 2019. "Micro-optical Components for Bioimaging on Tissues, Cells and Subcellular Structures" Micromachines 10, no. 6: 405. https://doi.org/10.3390/mi10060405
APA StyleYang, H., Zhang, Y., Chen, S., & Hao, R. (2019). Micro-optical Components for Bioimaging on Tissues, Cells and Subcellular Structures. Micromachines, 10(6), 405. https://doi.org/10.3390/mi10060405