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Abstract: The large random errors in Micro-Electro-Mechanical System (MEMS) gyros are one of the
major factors that affect the precision of inertial navigation systems. Based on the indoor inertial
navigation system, an improved wavelet threshold de-noising method was proposed and combined
with a gradient radial basis function (RBF) neural network to better compensate errors. We analyzed
the random errors in an MEMS gyroscope by using Allan variance, and introduced the traditional
wavelet threshold methods. Then, we improved the methods and proposed a new threshold function.
The new method can be used more effectively to detach white noise and drift error in the error
model. Finally, the drift data was modeled and analyzed in combination with the RBF neural
network. Experimental results indicate that the method is effective, and this is of great significance
for improving the accuracy of indoor inertial navigation based on MEMS gyroscopes.

Keywords: MEMS gyroscope; wavelet threshold de-noising; RBF neural network; inertial
navigation system

1. Introduction

Since the 1970s, when the concept of MEMS was put forward, MEMS gyroscopes have been
widely used in military fields and civil fields [1]. Because they are small in size, low in cost, and simple
in structure [2], in inertial navigation technology, the gyro is one of the core pieces of equipment for
modern precision navigation, guidance, and control systems, especially in the application of indoor
navigation [3]. However, the limited structural defects and processing technology cause a large
random error in the gyroscope [4]. When the system is working for a long time, the random error
of the gyroscope will accumulate over time, resulting in errors or even failures of the indoor inertial
navigation system. An effective and feasible method is to use the filtering technique to compensate
the random error in real time. Therefore, the accurate modeling and compensation of a gyroscope’s
random errors becomes an effective method to achieve higher navigation accuracy based on MEMS
device accuracy [5]. This is great for improving the accuracy of indoor inertial navigation systems.

Gyro drift has the characteristics of random time-varying, so it is necessary to analyze the error
and noise characteristics of the gyroscope. The Allan variance method is a time domain analysis
technique with obvious advantages in analyzing random errors. In recent years, scholars have used
Allan variance to analyze the error of inertial devices [6]. Then, the wavelet threshold is used to
separate the white noise from the drift error. The hard and soft threshold denoising method was
proposed by David L. Donoho and Iain M. Johnstone, but the threshold denoising method was not
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improved [7]. Some scholars have proposed improved methods, such as the semi-soft threshold
function [8], Xing threshold function [9], and genetic adaptive threshold function [10]; however, these
threshold functions are simple to handle on different scales and have poor adaptability. Therefore, it
is necessary to propose an improved threshold denoising method that can be applied to an indoor
inertial navigation system, which can improve system navigation accuracy. The radial basis function
neural network (RBF) is also applicable to the stochastic process of MEMS gyroscopes because of its
nonlinear, adaptive, and self-learning characteristics; if the improved wavelet threshold denoising
method is compared with the RBF neural network, it can effectively compensate the random drift error,
which is of great significance for improving the accuracy of the indoor inertial navigation system based
on MEMS gyroscopes.

This paper is devoted to the research of inertial signals. Compared with the traditional method,
the method improves the utilization of high-frequency effective signals and has better adaptability.
The paper is organized as follows. Firstly, the Allan analysis of variance is used to perform random
error analysis on the signal output from a MEMS gyro. Then, the advantages and disadvantages
of conventional wavelet threshold denoising are analyzed and an improved method is proposed,
separating white noise and gyroscope drift errors with improved threshold functions. The gradient error
model is then modeled by using a gradient radial basis (RBF) neural network. The RBF neural network
has strong nonlinear processing capability [11], which allows for more effective error compensation
for MEMS gyros. Finally, the feasibility and effectiveness of the improved method are proven by
experiments and simulation analysis.

2. MEMS Gyroscopes Allan Variance Analysis

The Allan variance method was originally used to study the phase and frequency instability of
the oscillator [12]. Allan variance becomes a measure of sensor output stability if inertial sensors are
configured to vibrate at their resonance (frequency output sensors), unless there is not any use of Allan
variance in amplitude modulation [13]. Therefore, Allan variance is widely used in noise analysis and
performance evaluation of MEMS inertial sensors [14]. In this paper, a simple Allan square difference
segment fitting method was used to estimate the noise figure of the gyroscope. This method can
avoid a lot of calculations, can intuitively read out various noise coefficients, and effectively avoid
calculation errors.

(1) The output angular rate of the MEMS gyro is collected at the sampling interval Ts to obtain a
sample space with a total length of T, and the number of sampling points is N = T/Ts;

(2) Each successive n (n = 1, 2, 3..., N, N < T/2) data are used as a subset to average the sample
space data, a total of J = rounded (T / n) subsets can be divided. Each set of data is averaged to obtain a
set of random variables whose elements are group averages:

ωk(n) =
1
n

∑n

i=1
ω(k−1)n+i , k = 1, 2, . . . , j (1)

(3) The Allan variance is calculated for each different averaging time:

σ2(τm) =
1

2(k− 1)

∑k−1

k=1
[ωk+1(n) −ωk(n)]

2 (2)

In the formula, K is the number of divided subsets. The duration of each data subset is expressed
as τm = nTs [15].

In this paper, an inertial measurement sensor, using a combination of an ADXRS450E gyroscope
and an ADXL354 accelerometer manufactured by Analog Devices, with the three MEMS gyroscopes
in orthogonal relationship, was used to measure the carrier angular velocity. The MEMS inertial
sensor was placed statically on the three-axis turntable, the data acquisition frequency set to 50 Hz, the
gyroscope data preheated for 1 h. There was continuous acquisition of the gyroscope data for three
hours, and the above process was repeated for five days. A total of 30 minutes of data were taken as a
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sample and the Allan analysis of variance was performed. Figures 1 and 2 show the measurement
sensors and experimental equipment used during the test.
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Figure 2. Setup equipment used during the test.

Allan’s mean square logarithm plot can clearly depict the various error components of the
gyroscope, there were different error terms and different time intervals, and the slope of the double
logarithmic curve was different. In Figure 3, S is the slope of the curve. The slope of −1 corresponds to
the gyro quantization noise. The part with a slope of −1/2 corresponds to the angle random walk, the
part with a slope of 0 corresponds to the zero offset instability [16]. They are represented by Q, N, and
B, respectively.
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Figure 4 shows the Allan standard deviation double logarithmic curve of the X-axis gyro, Taking
the quantization noise as an example, the specific calculation method was as follows: According to
Figure 3, Q corresponds to the portion of the Allan mean square error logarithm curve with a slope
of −1. After the straight line fitting of the quantization noise was completed, the variance formula
according to the quantization noise was σ2

N(τ) =
N2

τ , which took an average time of
√

3 s, then found
Q. After the above processing steps, different error term coefficients of various MEMS gyroscopes were
obtained. The results are shown in Table 1.
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Table 1. X-axis values of the parameters Allan variance.

Noise Types Result

Quantization noise Q/s−1 0.09492

Angle random walk N/(◦)/h
1
2 0.04748

Zero bias instability B/(◦)/h 0.00670
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3. Improved Wavelet Threshold Denoising Method

3.1. Wavelet Threshold Denoising

In the actual computer control system, the sampling signal is polluted by various noises and
interferences. Getting a “pure” signal from these noise-interfering signals is the key to establishing a
high-precision model of the system and achieving high-performance control.

The wavelet threshold denoising method is based on the fact that the wavelet coefficients of
signals and noise at a certain scale have different characteristics, and the signal containing noise is
wavelet transformed on a certain scale. After the transformation, the real signal generally exists in a
large value and a small number of low-frequency wavelets. Among the coefficients, the noise signal
generally exists in the high-frequency coefficient, with a small amplitude and a large number. Wavelet
threshold denoising is to set the threshold on different scales of wavelet decomposition [17]. It is
considered that a wavelet coefficient smaller than the threshold is a noise signal, which can be set to 0.
If it is greater than the set threshold, it belongs to the real signal, and directly preserves or performs
compression transformation. Then, the processed wavelet coefficients are inversely transformed by the
wavelet to obtain a filtered signal.

The wavelet threshold denoising method generally includes the following three steps:

(a) Wavelet decomposition with noise signal, select an appropriate wavelet base, determine the level
N of wavelet decomposition, process the signal, and obtain the wavelet coefficient;

(b) Quantify the high frequency coefficients of the wavelet decomposition and select a threshold
for processing:

hard threshold method:

Ŵ =

{
W, |W| ≥ λ
0, |W| < λ

(3)

soft threshold function:

Ŵ =

{
Sign(W)(|W| − λ), |W| ≥ λ

0, |W| < λ
(4)

where W is the wavelet coefficient and λ is the wavelet threshold.

3.2. Limitations of Soft and Hard Threshold Denoising

The key point of wavelet threshold denoising is to choose the appropriate wavelet threshold.
The criteria determined by different thresholds correspond to different wavelet threshold denoising
methods. The hard threshold and soft threshold are simple and easy to use.

However, hard thresholds and soft thresholds each have disadvantages [18]. The hard threshold
method leaves only a large wavelet coefficient, and sets the smaller wavelet coefficient to 0, which
causes the signal to oscillate, and the processed wavelet coefficient is discontinuous at the threshold.
The soft threshold method instead performs the contraction transformation. Although the continuity
is good, there is a constant deviation λ between the processed wavelet coefficients Ŵ and |W|, which
affects the degree of approximation of the reconstructed signal and the original signal.

In addition, both the hard threshold method and the soft threshold method set the wavelet
coefficient smaller than the threshold to zero, which completely eliminates the useful signal in the
noise spectrum, which inevitably leads to a certain deviation between the reconstructed signal and the
actual signal.
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3.3. Improved Threshold Function

A continuity test is performed on the improved threshold function, then the improved wavelet
threshold function takes the limit at the threshold λ:

lim
|W|→λ

Ŵ =

{
0, |W| ≥ λ
λe−f, |W| < λ

(5)

When |W| = λ, Ŵ = 0, so the improved threshold function is continuous at |W| = λ, overcoming
the disadvantage that the hard threshold function is discontinuous at the threshold.

In order to verify the denoising effect of the improved wavelet threshold algorithm, verify the
validity of the improved threshold function, and compare the data of Allan variance analysis before,
the data length was 18,000, and shown in Figure 5 are the collected gyro static data.
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We used the hard threshold method, the soft threshold method, and the improved wavelet
threshold method to filter the same data. The wavelet transform selected the wavelet base db6, the
decomposition layer number was five, the threshold value λ = σ

√
2 ln(N), and σ represents the noise

standard deviation. N is the length of the sampled signal. The comparison between the original data
and the noise-reduced data is as follows.

It can be seen from Figure 6, above, that after denoising with a hard threshold function, the
waveform of the signal will fluctuate somewhat, and the overall observed waveform will be rough.
After denoising by soft threshold function, it can be seen that the signal waveform is smoother, but the
signal reconstruction accuracy is low, and some useful information may be lost. In the last waveform
diagram, the improved wavelet threshold denoising method combined the soft threshold and the
hard threshold method to minimize the oscillation of the waveform and suppress the loss of useful
information. This improved the reliability of the reconstructed signal.
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For a signal with noise, the signal-to-noise ratio of the signal after denoising is larger, and the
smaller the mean square error, the better the denoising effect of the signal. As shown in Table 2, the
improved threshold denoising method is superior to the traditional hard threshold and soft threshold
methods. MSE means square error and SNR is signal to noise ratio.

Table 2. X-axis values of the parameters Allan variance.

Threshold Function SNR MSE

Hard threshold 34.3 0.049
Soft threshold 38.6 0.023
improvement 44.9 0.0157

In addition, the improved threshold function can adjust the degree of shrinkage of the wavelet
coefficients according to the size of the wavelet coefficients, which has certain adaptability.

The threshold denoising method as a typical wavelet transform method has the advantages of
a simple algorithm and small computational complexity, so it is widely used in signal processing.
Applying the threshold denoising method to the noise separation of MEMS gyroscopes is one of the
effective ways to improve the signal-to-noise ratio of existing devices.

Then, the improved wavelet threshold method was used to effectively separate the drift error
and white noise according to the error separation algorithm of wavelet transform. The drift error and
white noise after separation are as shown in Figure 7.
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4. Determination of the RBF Neural Network Model

In this paper, the RBF neural network proposed by Broomhead and Lowe was used for drift
prediction. Compared with other neural networks, the RBF neural network consists of only the input
layer, the hidden layer, and the output layer, and is a feedforward local approximation neural network.
Therefore, the training speed and convergence speed of the RBF neural network are faster [19].

As shown in Figure 8, the input layer node transmits an input signal to the hidden layer; the
hidden layer node is formed by a radial function similar to a Gaussian function. The action basis
function responds to the local input signal, that is, when the input signal is close to the center of the
base function, the hidden layer node produces a larger output, and the output layer node is generally
the simplest linear function. It responds to the input mode [20].
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Where X = {x1,x2, . . . xp} is the network input, C = {c1,c2, . . . cq} is the center of the hidden layer
basis function, W = {w1,w2, . . . wq} is the weight vector, and there is also w0 as the output layer
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offset. p and q are the dimensions of the network input layer and the number of hidden layer neurons,
respectively. This paper chose the Gaussian function as the hidden layer node function:

ωi(x) = exp
(
||x− ci||

2

2βi2

)
. (6)

In the formula,ωi W is the output of the i-th hidden layer node; ci is the center of the i-th Gaussian
function; the i-th Gaussian function scale factor βi determines the sensitive domain of the basis function
around the center point; the vector norm ‖x− ci‖ represents the distance between x and ci. General
RBF network expressions:

f(x) =
∑q

i=1
wiωi(x) + w0. (7)

It can be seen from Equation (5) that the center and local sensitivity domains of each neuron in the
hidden layer of the RBF neural network determine the position and width of the radial basis function.
With enough hidden neurons, proper center position, local receptive field and weight, the RBF network
can approximate any function with arbitrary precision. The main factor affecting the prediction speed
and accuracy is the determination of the input parameters. If the input parameters are inaccurate, it
will cause the RBF neural network to generate a large number of neurons in the prediction process,
which will cause the prediction speed to decrease, or even lead to non-convergence. The selected
sample data cannot estimate the distribution of the entire data. In order to prevent over-fitting, more
training data are taken.

Therefore, in the prediction estimation, the RBF neural network input layer was set to four and
the output layer to one. The first 9.9 × 104 data of the gyro random drift time series were set as the
training samples, and the training error accuracy was 5.1 × 10−6. The trained neural network predicted
the last 1000 data, and the predicted and true values are shown in Figure 9.
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The improved wavelet threshold denoising method was used to separate the drift error from the
white noise in the above, and then the RBF neural network was used to model the separated drift
error. The compensation effect after modeling is shown in Figure 10. It can be seen that the RBF
neural network model established in this paper had good generalization ability and higher precision
prediction and compensation ability for MEMS gyro drift error.
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For the RBF neural network modeling compensated signal (X-axis), Allan standard deviation
analysis was performed. The results are shown in Figure 11.
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The noise figure obtained by Allan data processing is shown in Table 3.
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Table 3. X-axis values of the parameters Allan variance.

Noise Types Raw Data RBF Compensation

Quantization noise Q/s−1 0.09492 0.04387

Angle random walk N/(◦)/h
1
2 0.04748 0.03292

Zero bias instability B/(◦)/h 0.00670 0.00410

As shown in the above table, after wavelet threshold denoising and RBF neural network modeling
compensation, the quantization coefficient was relatively small, indicating that the data acquisition
system had high precision, and the angle random walk coefficient and the zero point offset instability
coefficient were small, indicating that the detection mode had good stability. The various error
coefficients in the Allan analysis of variance were significantly reduced, which indicates that the
method can effectively reduce the random error of MEMS gyro performance and improve the accuracy
of MEMS gyroscope output information.

5. Conclusions

This paper first provided the basic principle of Allan analysis of variance, and analyzed the
error coefficients of MEMS gyroscopes, which can play a good role in identification. Then, based on
the analysis of conventional wavelet threshold denoising, an improved wavelet threshold denoising
method was proposed. This threshold function avoided the complete elimination of the useful signal
in the noise and preserved the effective signal as much as possible. Then, based on the analysis of
conventional wavelet threshold denoising, an improved wavelet threshold denoising method was
proposed. This threshold function avoided the complete elimination of the useful signal in the noise
and preserved the effective signal as much as possible. The white noise and drift error of the MEMS
gyroscope were successfully separated by the improved wavelet threshold denoising method. The
separation of the error terms helped to remove and compensate the error of the MEMS sensor. Finally,
the drift error was effectively compensated using the RBF neural network. The experimental results
show that in the indoor inertial navigation system, the improved wavelet threshold method was
used to decompose the random error and the RBF neural network modeling compensation, which
effectively improved the accuracy of the output angle information of the MEMS gyroscope. It is of
great significance to improve the accuracy of indoor inertial navigation based on MEMS gyroscopes.
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