Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper
Abstract
:1. Introduction
2. Structure Design and Motion Principle of the Microgripper
2.1. Structure Design of the Microgripper
2.2. Movement Principle of the Microgripper
3. Finite Element Analysis
3.1. Size Parameter Optimization
3.2. Performance Analysis of Microgripper
4. Experiments
4.1. Physical Model of Microgripper
4.2. Experimental Verification
4.3. Performance Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lyshevski, S.E. Nano-and Micro-Electromechanical Systems: Fundamentals of Nano- and Microengineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Zhang, S.J.; To, S.; Wang, S.J.; Zhu, Z.W. A review of surface roughness generation in ultra-precision machining. Int. J. Mach. Tools Manuf. 2015, 91, 76–95. [Google Scholar] [CrossRef]
- Madl, C.M.; Heilshorn, S.C.; Blau, H.M. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018, 557, 335–342. [Google Scholar] [CrossRef]
- Kim, I.; Kim, M.-H.; Lim, S. Reproductive hazards still persist in the microelectronics industry: Increased risk of spontaneous abortion and menstrual aberration among female workers in the microelectronics industry in South Korea. PLoS ONE 2015, 10, e0123679. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, S.; Liu, K.; Zhang, X.; Jinde, Y.; Wu, F.; Liu, T. Development of optical fiber temperature sensor for aviation industry. In Proceedings of the 2016 15th International Conference on Optical Communications and Networks (ICOCN), Hangzhou, China, 24–27 September 2016. [Google Scholar]
- Yong, Y.K.; Bhikkaji, B.; Moheimani, S.O.R. Design, modeling, and FPAA-based control of a high-speed atomic force microscope nanopositioner. IEEE/ASME Trans. Mechatron. 2013, 18, 1060–1071. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Tian, Y.; Liu, X.; Wang, F.; Zhou, C.; Zhang, D. Experimental investigation of the tip based micro/nano machining. Appl. Surf. Sci. 2017, 426, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Nachippan, N.M.; Venkatesh, A.P.; Muniyappan, M. Modelling and analysis of piezoelectric microgripper for unmanned aerial vehicle. Mater. Today Proc. 2018, 5, 19456–19462. [Google Scholar] [CrossRef]
- Shi, H.; Shi, W.; Zhang, R.; Zhai, J.; Chu, J.; Dong, S. A micromachined piezoelectric microgripper for manipulation of micro/nanomaterials. Rev. Sci. Instrum. 2017, 88, 065002. [Google Scholar] [CrossRef] [PubMed]
- Boudaoud, M.; Gorrec, Y.L.; Haddab, Y.; Lutz, P. Gain scheduling control of a nonlinear electrostatic microgripper: Design by an eigenstructure assignment with an observer-based structure. IEEE Trans. Control Syst. Technol. 2015, 23, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- Phelan, M.; Furlong, C. Characterization of a MEMS Electrostatic Microgripper for Micromanipulation and Sensing. In Micro and Nanomechanics; Springer: Cham, Germany, 2018; Volume 5, pp. 65–72. [Google Scholar]
- Zandi, A.M.; Wang, C.; Voicu, R.-C.; Muller, R. Testing and characterisation of electrothermal microgrippers with embedded microheaters. In Proceedings of the 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Budapest, Hungary, 30 May–2 June 2016. [Google Scholar]
- Al-Zandi, M.H.M.; Wang, C.; Voicu, R.; Muller, R. Measurement and characterisation of displacement and temperature of polymer based electrothermal microgrippers. Microsyst. Technol. 2018, 24, 379–387. [Google Scholar] [CrossRef]
- Chang, R.-J.; Lai, Y.-H. Design and implementation of micromechatronic systems: SMA drive polymer microgripper. In Design, Control and Applications of Mechatronic Systems in Engineering; IntechOpen: London, UK, 2017; p. 65. [Google Scholar]
- Munasinghe, K.C.; Bowatta, B.G.C.T.; Abayarathne, H.Y.R.; Kumararathna, N.; Maduwantha, L.K.A.H.; Arachchige, N.M.P.; Amarasinghe, Y.W.R. New MEMS based micro gripper using SMA for micro level object manipulation and assembling. In Proceedings of the 2016 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 5–6 April 2016. [Google Scholar]
- Choi, A.; Gultepe, E.; Gracias, D.H. Pneumatic delivery of untethered microgrippers for minimally invasive biopsy. In Proceedings of the 2017 13th IEEE International Conference on Control & Automation (ICCA), Ohrid, Macedonia, 3–6 July 2017. [Google Scholar]
- Gursky, B.; Bütefisch, S.; Leester-Schädel, M.; Li, K.; Matheis, B. A disposable pneumatic microgripper for cell manipulation with image-based force sensing. Micromachines 2019, 10, 707. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q. Adaptive discrete-time sliding mode impedance control of a piezoelectric microgripper. IEEE Trans. Robot. 2013, 29, 663–673. [Google Scholar] [CrossRef]
- Nkoonbin, A.; Hassani Niaki, M. Deriving and analyzing the effective parameters in microgrippers performance. Sci. Iran. 2012, 19, 1554–1563. [Google Scholar]
- Chen, W. Research on Piezoelectric Driven Microgripper Based on Compliant Mechanisms. Ph.D. Thesis, South China University of Technology, Guangzhou, China, 2017. [Google Scholar]
- Chen, W.; Shi, X.; Chen, W.; Zhang, J. A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling. Rev. Sci. Instrum. 2013, 84, 115111. [Google Scholar] [CrossRef]
- Blideran, M.M.; Bertsche, G.; Henschel, W.; Kern, D.P. A mechanically actuated silicon microgripper for handling micro- and nanoparticles. Microelectron. Eng. 2006, 83, 1382–1385. [Google Scholar] [CrossRef]
- Sun, L.; Chen, L.; Rong, W. Key technologies of micromanipulation equipment for microelectromechanical system assembly and packaging. J. Mech. Eng. 2008, 44, 13–19. [Google Scholar] [CrossRef]
- Li, Z.; Sun, B.; Yang, G. Design of a microgripper based on topology optimization. J. Dalian Univ. Technol. 2005, 45, 210–214. [Google Scholar]
- Cui, Y.G.; Zhu, Y.X.; Lou, J.Q. Detection of finger displacement and clamping force of piezoelectric micro-gripper. Opt. Precis. Eng. 2015, 23, 1372–1379. [Google Scholar] [CrossRef]
- Sun, X.; Chen, W.; Fatikow, S.; Tian, Y.; Zhou, R.; Zhang, J.; Mikczinski, M. A Novel piezo-driven microgripper with a large jaw displacement. Microsyst. Technol. 2015, 21, 931–942. [Google Scholar] [CrossRef]
- Wang, F.; Liang, C.; Tian, Y.; Zhao, X.; Zhang, D. Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation. IEEE/ASME Trans. Mechatron. 2016, 21, 1262–1271. [Google Scholar] [CrossRef]
- Koo, B.W.; Hong, S.P.; Kim, S.I.; Kang, C.S.; Han, S.S.; Oh, K.H.; Kim, Y.W. Design and application of a novel in situ nano-manipulation stage for transmission electron microscopy. Microsc. Microanal. 2015, 21, 298–306. [Google Scholar] [CrossRef]
- Xing, Q. Design of asymmetric flexible micro-gripper mechanism based on flexure hinges. Adv. Mech. Eng. 2015, 7, 1–8. [Google Scholar]
- Zhang, D.; Zhang, Z.; Gao, Q.; Xu, D.; Liu, S. Development of a monolithic compliant SPCA-driven micro-gripper. Mechatronics 2015, 25, 37–43. [Google Scholar] [CrossRef]
- Liang, C.; Wang, F.; Shi, B.; Huo, Z.; Zhou, K.; Tian, Y.; Zhnag, D. Design and control of a novel asymmetrical piezoelectric actuated microgripper for micromanipulation. Sens. Actuators A Phys. 2018, 269, 227–237. [Google Scholar] [CrossRef]
- Zelenika, S.; Munteanu, M.G.; De Bona, F. Optimized flexural hinge shapes for microsystems and high-precision applications. Mech. Mach. Theory 2009, 44, 1826–1839. [Google Scholar] [CrossRef]
- Linß, S.; Schorr, P.; Zentner, L. General design equations for the rotational stiffness, maximal angular deflection and rotational precision of various notch flexure hinges. Mech. Sci. 2017, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Valentini, P.P.; Pennestrì, E. Elasto-kinematic comparison of flexure hinges undergoing large displacement. Mech. Mach. Theory 2017, 110, 50–60. [Google Scholar] [CrossRef]
- Awtar, S.; Slocum, A.H. Closed-form nonlinear analysis of beam-based flexure modules. In Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, 24–28 September 2005; pp. 101–110. [Google Scholar]
- Luo, Y.; Liu, W.; Wu, L. Analysis of the displacement of lumped compliant parallel-guiding mechanism considering parasitic rotation and deflection on the guiding plate and rigid beams. Mech. Mach. Theory 2015, 91, 50–68. [Google Scholar] [CrossRef]
- Gräser, P.; Linß, S.; Zentner, L.; Theska, R. Design and experimental characterization of a flexure hinge-based parallel four-bar mechanism for precision guides. In Microactuators and Micromechanisms; Springer: Cham, Germany, 2017; pp. 139–152. [Google Scholar]
Parameter | Description | Value |
---|---|---|
L2 × t3 | Dimensions of rectangular flexure hinges | 0.64 × 0.28 mm2 |
L3 | Dimensions of the side length of the bridge amplifier | 7.72 × 1.88 mm2 |
L1 × t2 | Dimensions of rectangular flexure hinges | 2.87 × 0.28 mm2 |
L4 | Dimension of the lever short arm | 16.12 mm |
L5 | Dimension of the lever long arm | 23.64 mm |
L6 | Dimension of the lever short arm | 3.96 mm |
L7 | Dimension of the lever long arm | 11.37 mm |
R × t1 | Dimension of asymmetric right-circular flexure hinges | 1.18 × 0.28 mm2 |
No. | Driven Power (V) | Input Displacement (μm) | Tip Displacement (μm) | k |
---|---|---|---|---|
1 | 150 | 22.06 | 697.1 | 31.60 |
2 | 150 | 21.93 | 693.65 | 31.63 |
3 | 150 | 22.15 | 699.94 | 31.60 |
4 | 150 | 22.18 | 700.44 | 31.58 |
5 | 150 | 21.97 | 694.03 | 31.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Deng, Z.; Hu, S.; Gao, J.; Gao, X. Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper. Micromachines 2020, 11, 25. https://doi.org/10.3390/mi11010025
Chen X, Deng Z, Hu S, Gao J, Gao X. Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper. Micromachines. 2020; 11(1):25. https://doi.org/10.3390/mi11010025
Chicago/Turabian StyleChen, Xiaodong, Zilong Deng, Siya Hu, Jinhai Gao, and Xingjun Gao. 2020. "Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper" Micromachines 11, no. 1: 25. https://doi.org/10.3390/mi11010025
APA StyleChen, X., Deng, Z., Hu, S., Gao, J., & Gao, X. (2020). Design of a Compliant Mechanism Based Four-Stage Amplification Piezoelectric-Driven Asymmetric Microgripper. Micromachines, 11(1), 25. https://doi.org/10.3390/mi11010025