Supplementary information

Fig. S1: Linearised response characteristics plot, $\Delta V_{th}(sat) ((Kc)^{\beta} + 1) vs. (Kc)^{\beta}$, for the response characteristics, inset Fig. 2b, with straight- line- fits for determination of limit-of- detection (LoD) with eq. 4. All other LoDs reported here were determined by similar plots and analysis.

Fig. S2: Repeated transfer characteristics of La loaded chelating resin- sensitised SnO₂ WGTFT gated under increasing F⁻ concentrations from NaF in the outer pool. Inset: Response characteristic with fit to eq. 3.

Fig. S3: Repeated transfer characteristics of finer ground La loaded chelating resinsensitised SnO₂ WGTFT gated under increasing F⁻ concentrations from NaF in the outer pool. Inset: Response characteristic with fit to eq. 3.

Fig. S4: Repeated transfer characteristics of Al loaded chelating resin- sensitised SnO₂ WGTFT gated under increasing F⁻ concentrations from NaF in the outer pool. Inset: Response characteristic with fit to eq. 3.

Table S1: K, $c_{1/2}$, $\Delta V_{th}(sat)$, β , and LoD for the repeated response of WGTFTs sensitised with La- and AI loaded chelating resins to fluoride corresponding to table 1 in the main manuscript. These parameters are similar to their values in table 1 within error.

Metal	Fluoride	К	C1/2	ΔV _{th} (sat)	β	LoD
loading	source	[10 ⁸ L/mol]	[pM] / [nM]	[mV]		[pM]
(ground)						
La (coarse)	NaF	85 ±21	(118±30) pM	227 ± 7	0.35 ±0.03	0.25
La (fine)	NaF	432±95	(23 ±5)pM	555±14	0.34±0.04	0.13
Al (coarse)	NaF	33±20	(0.3± 0.18) nM	154±6	0.55±0.2	73

Figure S5. Control experiment: WGTFT using a membrane loaded with as- received Puromet MTS9501 resin that was never activated with La. In the absence of La, no response to fluoride is observed.

Figure S6. These figures illustrate an example for determining the threshold voltage ΔV_{th} (c) with its error for sensing F⁻ (from NaF) with La-loaded chelating resin- sensitised SnO₂ WGTFT platform. The transfer characteristics for c = 0 and 0.01 nM fluoride concentration are shown in Figure S6a. Figure S6b shows the 0.01 nM fluoride transfer characteristic shifted along the gate voltage (V_G) axis by 90 mV for visually best match to the c = 0 fluoride transfer. Shifting by 5mV more (Figure S6c) or less (Figure S6d) already gives a visible mismatch. Hence, in this example, ΔV_{th} (0.01 nM F⁻) = (90 +/- 5) mV.