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Abstract: It is known that in many cases a combination of drugs is more effective than single-drug
treatments both for reducing toxicity and increasing efficacy. With the advent of organoid screens,
personalised medicine has become possible for many diseases. Automated pipetting to well plates is
the pharmaceutical industry standard for drug screening, but this is relatively expensive and slow.
Here, a rotary microfluidic system is presented that can test all possible drug combinations at speed
with the use of droplets. For large numbers of combinations, it is shown how the experimental
scale is reduced by considering drug dilutions and machine learning. As an example, two cases
are considered; the first is a three-ring and three radii configuration and the second is a four ring
and forty-eight radii configuration. Between these two, all other cases are shown to be possible.
The proposed commercial instrument is shown to be flexible, the user choosing which wells to fill
and which driver-computational sub-routine to select. The major issues addressed here are the
programming theory of the instrument and the reduction of droplets to be generated by drug dilutions
and machine learning.
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1. Introduction

Combinatorial drug therapy has shown promising results for treating complex diseases such as
cancer, HIV, or malaria [1–3]. The administration of multiple compounds has shown a reduction in
side effects and toxicity compared to monotherapy and lowers the risk of resistance development [4–8].
With drug combinations, a more targeted treatment known as personalized medicine becomes possible
as different drugs can be tested on the cells of individual patients, thus customizing the care towards
their specific response [9–13]. This will be particularly important with the use of 3D cell culture
technologies such as organoids. Organoids can be established from patient-derived healthy and tumour
tissue samples that self-organise in culture to acquire in-vivo like organ complexity that have been
shown to be more translatable to in-vivo physiology [14–16]. However, to achieve this, large libraries
consisting of many active ingredients must be screened to find the required response [17]. Currently,
drug combinatorial tests are limited to combinations of two due to constraints in modern technology
specific to drug screening [18]. The cost and time that is required by the existing technology make it
unfeasible to test for all possible drug combinations [19,20]. Furthermore, to explore all the possible
combinations leads to challenges associated with the ‘Combinatorial Explosion’ in which the number
of combinations increases factorially with the number of drugs tested [21].

Figure 1 shows a prototype for ultra-high throughput, rotary, microfluidic drug screening. A novel
method of dispensing aqueous-in-oil droplets, Gap Switch Technology (GST) is described in more detail
in [22]. Stainless steel wells are filled from above, droplets are then dispensed from a 0.5 mm internal
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diameter outlet from below. Wells are designed to contain a range of biological fluids. Interfacial and
capillary forces prevent fluid flow between dispensing. When a brass dispensing shuttle aligns
with the well outlet, a liquid bridge is formed, and fluid flow is induced. The aqueous phase then
encounters the immiscible carrier silicone oil, where the aqueous phase necks and is sheared off as the
shuttle moves past the well. The aqueous phase is wrapped in the oil compartmentalising a droplet,
Figure 2. This process is repeated to dispense and mix a second droplet. The droplets are efficiently
mixed by having them of a different volume, hence the Laplace pressure difference drives mixing,
vorticity. The mixed droplets are then transferred into a reusable polytetrafluoroethylene (PTFE)
channel, for incubation and analysis.
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Figure 1. Prototype [22]. (a) CAD image of prototype. (b) Four-by-two prototype. (c) Circumferential 
movement of the ring is denoted by the red arrow and radial movement of the shuttle by the green 
arrow. (d) Corresponding CAD image. 

 
Figure 2. Gap Switch Technology (GST), Droplet Generation and Mixing. High-speed camera images 
taken of the GST. Images were taken using an IDT X-Stream XS-4 CMOS Camera at 1000 frames per 
second. The droplets are completely surrounded by silicone oil and therefore never contact a solid 
surface. This eliminates carry-over contamination and makes the system continuously reusable. 
Shuttle velocity is approximately 4mm/s. The dispensed droplet can be seen in the lower tube. The 
tubing is PTFE which attracts the oil and repels the aqueous, hence the wrapped droplets. 

  

Figure 1. Prototype [22]. (a) CAD image of prototype. (b) Four-by-two prototype. (c) Circumferential
movement of the ring is denoted by the red arrow and radial movement of the shuttle by the green
arrow. (d) Corresponding CAD image.

An industry standard 96 well plate has a total assay volume in the order of 10−9 m3. The mixed
droplet volume is of order 6 × 10−11 m3, making it significantly smaller than a well. There is no
known reason why it should not be smaller. The aim is to provide a faster and lower-cost method
of combinatorial drug screening. Operating costs are reduced by removing the reliance on pipettes
and well plates and using smaller assay/reagent samples and removing the need for complex robotic
set-ups required for current drug screening technologies [23]. Dispensing time is reduced due to the
instruments enhanced mixing and encapsulation. These mass transport properties are due to the high
surface area to volume ratio, facilitating fast and controlled heating of droplets and creating shorter
diffusion distances between molecules [24–28].

The GST has been designed to be scaled into a rotational design, Figure 1, to increase microfluidic
throughput. The design allows movement of wells by concentric rotating rings into the pathway of
radial shuttle movements. This improves the throughput of the system through parallelization [29].
The shuttle can then selectively dispense and mix drugs from these wells along the radial shuttle
pathways. The flexibility of the design is due to the many potential configurations, depending on
which wells are filled and which computational sub-routine is selected. Four instrument strategies are
discussed:
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1. Measure every combination without dilutions.
2. Measure every meaningful combination with dilutions.
3. For large numbers of droplets, measure 1 and 2 with machine learning.
4. For 3 measure single dilutions first, then next dilution until synergy is found.

Micromachines 2020, 11, x 3 of 11 

 

 

Figure 1. Prototype [22]. (a) CAD image of prototype. (b) Four-by-two prototype. (c) Circumferential 
movement of the ring is denoted by the red arrow and radial movement of the shuttle by the green 
arrow. (d) Corresponding CAD image. 

 
Figure 2. Gap Switch Technology (GST), Droplet Generation and Mixing. High-speed camera images 
taken of the GST. Images were taken using an IDT X-Stream XS-4 CMOS Camera at 1000 frames per 
second. The droplets are completely surrounded by silicone oil and therefore never contact a solid 
surface. This eliminates carry-over contamination and makes the system continuously reusable. 
Shuttle velocity is approximately 4mm/s. The dispensed droplet can be seen in the lower tube. The 
tubing is PTFE which attracts the oil and repels the aqueous, hence the wrapped droplets. 

  

Figure 2. Gap Switch Technology (GST), Droplet Generation and Mixing. High-speed camera images
taken of the GST. Images were taken using an IDT X-Stream XS-4 CMOS Camera at 1000 frames
per second. The droplets are completely surrounded by silicone oil and therefore never contact a
solid surface. This eliminates carry-over contamination and makes the system continuously reusable.
Shuttle velocity is approximately 4mm/s. The dispensed droplet can be seen in the lower tube.
The tubing is PTFE which attracts the oil and repels the aqueous, hence the wrapped droplets.

2. Three-by-Three Example

To introduce the system a three-by-three configuration is considered, nomenclature is given in
Figure 3. Figure 4 shows a three radii, three ring build. It operates through three types of movements;

1. Circumferential movements: movement from one well to another well on the same ring,
2. Radial movements: movement from a well on one ring to a well on a different ring,
3. Mixed movements: a combination of radial and circumferential movements.
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Figure 4. Three-by-Three Configuration. (a) Overview of a 3 × 3 configuration. Drug combinations 
occur through either circumferential movement, the movement of a droplet from a well on one radius 
to a well on another radius, or through radial movements, the movement of a droplet along the same 
radius. There is a total of 84 combinations, requiring 28 positions for all combinations. (b) shows rotor 
position after movement. The movement of a droplet on ring 2 from a well on radius 1 to a well on 
radius 2 (a. 120° rotation) and a droplet on ring 3 moving from a well on radius 1 to a well on radius 
3 (a 240° rotation). (c) shows the next positions following (b). A, B and C are the outlet lines. 
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Figure 4. Three-by-Three Configuration. (a) Overview of a 3 × 3 configuration. Drug combinations
occur through either circumferential movement, the movement of a droplet from a well on one radius
to a well on another radius, or through radial movements, the movement of a droplet along the same
radius. There is a total of 84 combinations, requiring 28 positions for all combinations. (b) shows rotor
position after movement. The movement of a droplet on ring 2 from a well on radius 1 to a well on
radius 2 (a. 120◦ rotation) and a droplet on ring 3 moving from a well on radius 1 to a well on radius
3 (a 240◦ rotation). (c) shows the next positions following (b). A, B and C are the outlet lines.

There are nine filled wells containing either drugs, cells or organoids. The figure shows how the
different wells, rings and radii interact both mechanically and fluid mechanically. The shuttles move
radially to collect droplets from wells on the same radius and the rings would move circumferentially
to allow the shuttle to collect droplets from wells on different radii. The shuttle can pass under a well
without taking a droplet if it is moving at a high enough velocity. If drugs are combined in sets of
three, there will be a total of eighty-four combinations, Equation (1). This requires the instrument to
take up twenty-eight positions. The mathematics of the instrument is explained in the next section.
For commercialisation, a maximum forty-eight by four configuration is proposed. This is twice the
number of wells on a ninety-six well plate which is considered the industry standard [30].

3. Discrete Analysis

The binomial equation [31],

nCr =
n!

r!(n− r)!
(1)
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applied to the instrument design, Figures 3 and 4,

Np Nrad =

(
Nring Nrad

)
!

r!
(
Nring Nrad − r

)
!

(2)

describes its operation without dilutions. The number of droplets to complete a test is determined by
knowing the number of radii, the configuration and the number of combinations to test. The number
of droplets,

nCr = Np Nrad (3)

maybe derived in two, depending on how they are formed,

nCr = nCrr + nCrc (4)

If dilutions are used,

nC′r = nC′rr + nC′rc (5)

in which case,

nCr > nC′r (6)

which always gives a throughput advantage.
With dilutions the following restriction is applied,

Nring = Ndil = r (7)

then the required number of droplets is,

nC′r = r Nrad
r − 1 (Nrad − r + 1) (8)

by inspection, which cannot be proven, only shown. All of nCr and nCr
′

are integers. The inequality,
(6), becomes more numerically advantageous as the number of combinations increases, Table 1. In the
simple example of a three by three configuration, Figure 4, the number of droplets needed is reduced
from eighty-four to twenty-seven. The addition of four components, three drugs and a cell or multicell
line, is shown in Figure 5 for a four radii configuration.
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Figure 5. Movement on a four-by-four configuration. (a) 4 × 4 configuration. (b) illustrates the
movement of the shuttles and rings. The shuttle and rings move in programable increments. It begins
with the shuttle moving to the first ring to collect a droplet, the ring then rotates clockwise towards
the next radii to collect the next droplet. These movements are performed until all the droplets are
produced and the combinations dispensed.
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Table 1. Different configurations for the proposed 48 × 4 commercial design. nCr and nCr
′

for different
builds and combinations are given. The number of combinations r corresponds to the number of rings,
Nring. Each radius has a different drug and each ring a different dilution. The effect of dilution can be
observed in this table. The effect of machine learning can also be seen by comparing the time taken for
the droplets when dilutions are considered to the time taken with machine learning. All configurations
are for the same instrument.

r Nrad nCr nCr
′ Nc

′ Nr
′ Np

′ Time
(days)

Time ML (days),
Single Ring, See ML Section

2 2 6 4 2 2 2 0.0002 0.000001
2 3 15 12 6 6 4 0.0004 0.000003
2 4 28 24 12 12 6 0.0007 0.000007
2 6 66 60 30 30 10 0.001 0.00002
2 8 120 112 56 56 14 0.002 0.00003
2 10 190 180 90 90 18 0.002 0.00005
2 20 780 760 380 380 38 0.004 0.0002
2 30 1770 1740 870 870 58 0.007 0.0005
2 48 4560 4512 2256 2256 94 0.01 0.0014

3 3 84 27 3 24 9 0.001 0.000002
3 4 220 96 12 84 24 0.003 0.000007
3 6 816 432 60 372 72 0.008 0.00004
3 8 2024 1152 168 984 144 0.02 0.0001
3 10 4060 2400 360 2040 240 0.03 0.0002
3 20 34,220 21,600 3420 18,180 1080 0.13 0.0021
3 30 117,480 75,600 12,180 63,420 2520 0.3 0.0073
3 40 280,840 182,400 29,640 152,760 4560 0.5 0.0179
3 48 487,344 317,952 51,888 266,064 6624 0.5 0.0313

4 4 1820 256 4 252 64 0.007 0.000002
4 6 10,626 2592 60 2532 432 0.05 0.00003
4 8 35,960 10,240 280 9960 1280 0.15 0.0002
4 10 91,390 28,000 840 27,160 2800 0.3 0.0005
4 20 1,581,580 544,000 19,380 524,620 27,200 3.15 0.0117
4 30 8,214,570 2,916,000 109,620 2,806,380 97,200 11.3 0.0661
4 35 15,329,615 5,488,000 209,440 5,278,560 156,800 18.1 0.1263
4 40 26,294,360 9,472,000 365,560 91,06440 236,800 27.4 0.2204
4 48 54,870,480 19,906,560 778,320 19,128,240 414,720 48 0.4692

4. Reducing the Number of Combinations by Dilutions

Taking different dilutions of the drugs is important as it not only allows for a range of concentrations
to be tested, but also reduces interference from other substances that may be present in the samples [32].
Therefore, dilutions are often a necessary part of any drug testing experiment. In this context, dilutions
can also be used to reduce the combinatorial explosions. For a forty-eight-by-four system, this offers
the user a maximum input of forty-eight different drugs, in dilutions of four. Using Equation (1),
a total of some fifty-four million droplets need be produced to complete all possible combinations.
Every droplet will need to be repeated several times, so the maximum number of droplets is over
two-hundred million. Hence the need to reduce it.

With dilutions, many of the droplets contain redundant samples, combinations that contain
two or more dilutions of the same drugs. These samples are not needed. Therefore, by taking
account of dilutions, the number of total droplets to be produced for the test run can be significantly
reduced, Equation (8). Figure 6 illustrates the reduction in droplets between nCr and nCr

′

. For a
forty-eight-by-four system, with r = 4, the number of droplets reduces from around fifty million to
around nineteen million.
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5. Commercial Instrument

The proposed commercial design has a maximum of forty-eight drugs in combinations of four,
Figure 7. With no dilutions, this has of order of fifty-five million droplets required and over a million
rotor movements to dispense them. There are many lesser configurations, depending on which wells
are filled and which algorithm subroutine is selected.
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Figure 7. Proposed Commercial 48 × 4 Configuration. (a) 48 × 4 system containing forty-eight drugs in
four different dilutions. Each radius of the system contains a single drug, with each ring in that radius
containing a dilution of that drug. Each dot represents a well containing a drug dilution. Any number
of radii and rings may be utilised depending on the needs of the user. At maximum some produces
53 million combinations of four. (b) After exiting the rotors, the droplets are read using either fiber
optics or laser LEDs. (c) Typical droplet completely surrounded by silicone oil.
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If the maximum is chosen with dilutions, there are then forty-eight different drugs and four
dilutions of each drug. Equation (4) gives 19,906,560 combinations and 414,730 positions to dispense
them. This requires of order forty-eight days plus the well refill time. In personalized medicine, this is
a limitation on the use of multiple drug combinatorial discovery with organoids. For these reasons
machine learning is proposed.

6. Machine Learning

Machine learning (ML) uses algorithms to process data, learns from it, and makes a prediction
about the future state of any new data set [33]. With ML, a system can be trained to be able to predict
the outcome of a task by using a large amount of data and algorithms. In the context of combinatorial
drug screening, ML has the potential to reduce the scale by speeding up testing. This is particularly
beneficial for personalised medicine as accurate predictions to tailor patient-specific treatments would
be faster. ML can be used to focus in on a specific combination when synergy is detected using the
Loewe additivity or Bliss model for example [18]. When a ML test is run, a circumferential movement
on a single ring would be step one. If synergy were to be found between three drugs, then the
system will focus on that region (the drugs in that area). This can be achieved through scoring. If the
drugs display additive interactions, in which there is a difference in the way they interact together,
they would be scored 1. If they display antagonistic interactions, in which they hinder the response,
they would be scored 0, and if they show synergistic interactions, they score 2. This is one method
of synergy-searching. After one circumference is tested with no synergy, step two would be to test
another, etc. This may be a more hands-on process of filling only the wells in a circumference until
synergy is found.

7. Conclusions

It is demonstrated how the automatic microfluidic design has great flexibility in the many
configurations that may be chosen by the user. A 192 well system is proposed which can produce over
50 million combinations for synergy-searching. It is shown how this number is reduced by taking
dilutions, by machine learning, and by more user interaction with the instrument. Throughput and
drug volume consumed may follow a type of Moore’s law in the future.
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Nomenclature

Symbol Description
Nc Number of circumferential movements
Nc′ Number of circumferential movements with dilutions
Ndil Number of dilutions
Nr Number of radial movements
Nr′ Number of radial movements with dilutions
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Nrad Number of radii of the configuration
Nring Number of rings of the configuration
Np Number of positions the system must perform
Nwell Number of wells

mCnR
Number of droplets formed radially

mC′nR
Number of droplets formed radially with dilutions

mCnC
Number of droplets formed circumferentially

mC′nC
Number of droplets formed circumferentially with dilutions

nCr Number of droplets without dilutions

nCr
′

Number of droplets with dilutions
n Number of wells on the system
r Number of combinations
z Shuttle dispensing direction
R Radial movements, radial direction
θ Angular movements
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