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Abstract: Wavelength-tunable thulium-doped fiber laser is demonstrated employing a digital
micromirror device (DMD) in combination with a fixed grating. The diffraction property of four typical
models of DMDs and its steering efficiency for the laser system are analyzed based on two-dimensional
grating theory. By spatially modulating reflective patterns on a DMD, the stable, fast, and flexible
tuning of lasing wavelength from 1930 nm to 2000 nm is achieved with wavelength tuning accuracy
of 0.1 nm. The side-mode suppression ratio is larger than 50 dB around the 2 µm band with 3 dB
linewidth less than 0.05 nm. The wavelength drift and power fluctuation are lower than 0.05 nm and
0.1 dB within 1 h at the room temperature, respectively.
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1. Introduction

Space laser communication has the advantages of large transmission capacity and
anti-electromagnetic interference. The potential applications range from not only broadband access,
emergency/confidential communication, and cost-constrained communication occasions, but also in
aerospace measurement and control, earth observation, space experiment, navigation, and positioning.
Recently, fiber lasers operating around 2 µm region have become the most promising candidate in
direct energy transmission and atmospheric communication because of 2 µm “eye safe” wavelength
band and high transmittance up to 60% in organic gas [1].

The most conventional approaches to achieve radiation around 2 µm band are using pumped
thulium-doped, holmium-doped, or thulium/holmium co-doped fibers, and related studies have
been reported in the past few years [2–5]. M. Belal et al. proved that the 2 µm band optical time
domain reflectometry (OTDR) system has a dynamic range of 30 dB and a spatial resolution of 10 m.
The previous OTDR system works in common communication windows such as 1.3 µm, 1.5 µm,
and 1.6 µm, while 2 µm band OTDR system can be adopted in the next-generation telecommunication
equipment [6]. In 2013, Z. Li et al. reported the characteristics of Tm3+-doped fiber amplifiers in optical
communication with high gain (>35 dB), low noise (5 dB), and 100 nm bandwidth at 2 µm band [7].
Z. Liu et al. reported a novel OFDM transmitter operating in 2 µm band [8].

The laser linewidth determines the modulated signal rate. The fluctuation of output optical power
and spectrum leads to the accumulation of amplitude noise and the deterioration of the bit error rate at
the receiving end. Thus, how to achieve high stability, narrow linewidth, and wavelength flexibility with
rapid wavelength tuning or selection are the key to successful deployment for thulium-doped fibers
lasers (TDFL). The current tuning devices include fiber Bragg grating (FBG) [9–13], F-P cavity [14–16],
Sagnac fiber ring [17,18], Lyot filter [19–21], Mach–Zehnder interferometer [22–24], liquid crystal spatial
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light modulator [25], digital micromirror device (DMD) [26–28], and so on. Up to now, a DMD chip as
a semiconductor-based addressable micromirror array has drawn considerable attention due to its
flexible and fast filtering functionality in optical switching, interconnecting, and lasers. The diffracted
light from selected micro-mirrors on a DMD determines its spectral filtering characteristic. In this
paper, we propose a 2 µm band tunable TDFL by using a DMD chip in combination with a fixed grating.
The required architecture and the characteristics are experimentally demonstrated in the next section.

2. Operating Principle and System Design

2.1. Operating Principle of TDFL

Figure 1 depicts the configuration of the proposed tunable TDFL. The laser system consists
of a fiber-ring resonator and an optical filter module. The fiber module includes a thulium-doped
fiber amplifier (TDFA), a 90/10 coupler, a polarization controller, a fiber circulator, and a collimator.
The TDFA emits the spontaneous emission spectrum (ASE) of 1910–2020 nm by adding Tm3+-fiber into
a segment of double cladding pumped by 793 nm light. After a fiber coupler, 90% ASE light energy
returns into a ring and then continues to be coupled into optical filter module via a collimator.
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Figure 1. Schematic diagram of Tm-doped fiber laser based on a DMD chip. Inset is the pattern
uploaded on a DMD for steering the selected beam.

A diffraction grating and DMD are placed on the front and rear focal planes of a collimating
lens, respectively. The ASE spectrum from a collimator is irradiated on a grating and then produces
the 1st-order dispersion spectrum in a horizontal plane. After the lens, the collimated ASE spectrum
images onto different portion of a DMD.

A DMD is an array of highly reflective aluminum micromirrors. It is an electrical input, optical
output micro-electrical-mechanical system (MEMS) that allows performing high speed, efficient,
and reliable spatial light modulation. During operation, the DMD controller loads each underlying
memory cell with a ‘1’ or a ‘0’. Next, a mirror reset pulse is applied, which causes each micromirror to
be electrostatically deflected about a hinge to the associated +/− degree state. For example, a 0.7” DMD
is composed of 1024 × 768 micromirrors with a pitch 13.68 µm and fill factor 92%. Each micromirror
has +/−12◦ tilt angle corresponding to the ‘on’ and ‘off’ states. A typical hologram is demonstrated in
the inset of Figure 1. The white bar on a hologram drives the corresponding mirrors to tilt +12◦, so that
the corresponding waveband of ASE spectrum landing on the white area return into the collimator
while the others are dropped out with dramatic attenuation, thereby realizing the laser longitudinal
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mode selection and wavelength tuning. The selected waveband through the collimator into a ring
cavity is amplified by the TDFA, leading, after several re-circulations, to high-quality lasing generation.

2.2. Diffraction Performance of DMD

A DMD is adopted in TDFL as a wavelength-tunable component for selecting lasing wavelength.
In experiment, we upload holograms onto a DMD by LabVIEW to control the micromirrors status. Those
tilting micromirror array demonstates the diffraction effect, similar with a two-dimensional blazed
grating. The diffraction performance depends on the mirror pitch, tilting angle and incident wavelength.

In the TDFL, the configuration of a DMD must satisfy two basic conditions: (1) the diffracted
light by a DMD should meet the near-blazed condition to achieve the maximum diffraction efficiency
and reduce the insertion loss; (2) the selected wavelength channels must route back into the system
to build a closed loop. In order to choose a suitable DMD chip operating efficiently in 2 µm band,
the diffraction features of four typical DMD models launched by Texas Instruments are analyzed
in detail. Table 1 shows near-infrared DMD chipsets at TI website [29]. Figure 2 demonstrates the
diffraction distribution of a DMD in 2 µm band according to the two-dimensional DMD grating model
that was established in our previous work [30].

Table 1. Near-infrared DMD chipsets launched by Texas Instruments [29].

Type DLP2010 DLP4500 DLP650L DLP7000

Chip size 0.2” 0.45” 0.65” 0.7”
Micromirror array size 854 × 480 912 × 1140 1280 × 800 1024 × 768

Micromirror pitch 5.4 µm 7.6 µm 10.8 µm 13.68 µm
Micromirror tilt angle ±17◦ ±12◦ ±12◦ ±12◦

Figure 2(a1–d1) demonstrate the diffraction distribution on the bisecting plane when 2 µm
wavelength light radiates on 0.2”, 0.45”, 0.65”, and 0.7” DMDs at the incident angles 17◦ in Figure 2(a1,a2)
and 12◦ in Figure 2(b1–d1,b2–d2), respectively. Based on two-dimensional DMD grating model [30],
the principal maxima of multiple-pixel interference (blue peaks in Figure 2) are modulated by the
single-pixel diffraction envelope (red curves). Figure 2(a2–d2) show the corresponding diffraction
patterns. In Figure 2(c1,c2), when 2 µm light is incident on the 0.65” DMD, four distinct diffraction
orders occur in space. Thus, the energy is not concentrated and the diffraction efficiency is lower than
14% on average, called off-blazed. In Figure 2(b1,b2,d1,d2), the diffraction energy is focused on the first
order, and the diffraction efficiency is up to 60%, satisfying the ideal blazed condition. The diffracted
beam from 0.45” DMD, however cannot backtrack because the corresponding diffraction angle is away
from the original path, while the diffraction order from 0.7” DMD returns at 12◦, exactly along the
original path into the fiber ring. So the 0.7” DMD is appropriate for the closed-loop 2 µm laser.
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Figure 2. Diffraction distribution of 2µm-wavelength light radiating on 0.2”, 0.45”, 0.65” and 0.7” DMDs
at an incident angle 17◦ in (a1,a2) and 12◦ in (b1–d1,b2–d2), respectively. (a1–d1) are theoretical results
on the bisecting plane (Red curves represent the single-pixel diffraction envelop and the blue curves
are multi-pixel interference.). (a2–d2) are corresponding diffraction patterns in space by simulation.
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2.3. Optimization of Bulk Optics

In bulk optics, it is necessary to optimize the optical system so as to maximum utilize the DMD
workspace for higher tuning accuracy. The length of ASE dispersion covering a DMD is determined by
the focal length of a collimating lens. Therefore, a collimating lens with appropriate focal length is
important to improve the tuning accuracy.

According to the grating equation: d(sinα + sinβ = kλ), where k is the diffraction order (here only
the first order is considered), d is a grating period of 459 lines/mm, λ is the wavelength, and α and β
are the incident angle and diffraction angle, respectively. The laser operates between 1930 nm and
2000 nm and α = 17◦ (the blazed angle of the grating), so that β=36.40◦@1930 nm and 38.72◦@2000 nm.

We choose the focal length to be 200 mm, 300 mm, and 400 mm for comparison. The calculation
shows the dispersion length on a DMD after the collimating lens are 8.1 mm, 12.1 mm, and 16.2 mm,
respectively. For the size of 0.7” DMD in the horizontal axis is 14 mm, when the focal length of
a collimating lens is 300 mm, the utilization ratio of the DMD is up to 86%.

Figure 3 shows schematic diagram of light path in bulk optics and the dispersion spectrum of
1930–2000 nm on a 0.7” DMD simulated by OpticStudio. The single pixel tuning accuracy of a DMD is
defined as: p = δ∆λ

L , where ∆λ = 70 nm is the tuning range of TDFL, δ = 13.68 µm is the pitch size,
and L = 12.1 mm is the dispersion length. So, p is calculated to be 0.079 nm/pixel.
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Figure 3. (a) Schematic diagram of light path in bulk optics and (b) dispersion spectrum of 1930–2000 nm
on a 0.7” DMD.

3. Characteristics of Tunable TDFL

The wavelength tunability of a DMD filter is important for the tuning performance of a laser.
We upload the patterns onto the DMD to obtain signal output with different wavelength and bandwidth.
Figure 4 demonstrates the tunable wavelength and flexsible bandwidth by a DMD filter in ASE spectrum
of TDFA when the loop is open. The measured total loss of bulk optics from the input and output of
a circulator is around 10.6 dB, which is mainly caused by the diffraction grating and DMD processor.
The detailed loss of the components in the TDFL is shown in Table 2.
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Table 2. Loss from components used in TDFL in 2 µm-band.

Component Total Loss (dB)

Circulator 1.8
Collimator 1.1

Diffraction grating 3.6
Lens 0.3

Digital Micromirror Device 3.8

Total loss 10.6

Figure 5 shows the typical output signal of TDFL. The laser wavelength is 1997.21 nm and the
3 dB-width is less than 0.05 nm, limited by spectrometer resolution. The side-mode suppression ratio
(SMSR) is more than 50 dB.



Micromachines 2020, 11, 1036 7 of 10

Micromachines 2020, 11, x FOR PEER REVIEW 7 of 10 

than 50 dB. The power distribution between these wavelengths can be modified by changing the 
height of each reflective column on the DMD to control the wavelength dependent feedback 
efficiency. The tuning time of TDFL depends on the flip speed of micromirrors on a DMD chip. The 
switching time of this type DMD used in the system is around 80 μs. 

 
Figure 5. Typical output from thulium-doped fiber laser based on a DMD chip. 

  
Figure 6. Output signal from thulium-doped fiber laser by coarse-tuning. 

Figure 7 demonstrates the fine tuning output signals of TDFL around 1939.5 nm by fine tuning. 
The tuning accuracy is less than 0.1 nm. The reflection loss of a DMD cover glass, as well as the 
self-phase modulation and nonlinear effect caused by high pump power affect the laser contour [16]. 

Figure 8 shows the drift of central wavelength at 1975 nm (dotted line) and the fluctuation of 
peak power (solid line) when the pump power is 5 W. At room temperature, the maximum power 
fluctuation is 0.1 dB, and the maximum wavelength drift is less than 0.05 nm within 1 h. This 
fluctuation is mainly caused by the fluctuation of TDFA pumping power and the doping uniformity 
of the gain fiber. 

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
-80

-70

-60

-50

-40

-30

-20

-10

Po
w

er
 (d

Bm
)

Wavelength (nm)

Figure 5. Typical output from thulium-doped fiber laser based on a DMD chip.

Figure 6 shows nine different laser spectra by coarse tuning, that exhibits high uniformity and
stability. By moving the reflective area on a DMD, the wavelength tuning range from 1930–2000 nm
is achieved, limited by the ASE spectrum covering a 0.7” DMD. The SMSR in whole range is greater
than 50 dB. The power distribution between these wavelengths can be modified by changing the
height of each reflective column on the DMD to control the wavelength dependent feedback efficiency.
The tuning time of TDFL depends on the flip speed of micromirrors on a DMD chip. The switching
time of this type DMD used in the system is around 80 µs.
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Figure 7 demonstrates the fine tuning output signals of TDFL around 1939.5 nm by fine tuning.
The tuning accuracy is less than 0.1 nm. The reflection loss of a DMD cover glass, as well as the
self-phase modulation and nonlinear effect caused by high pump power affect the laser contour [16].
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Figure 8 shows the drift of central wavelength at 1975 nm (dotted line) and the fluctuation of peak
power (solid line) when the pump power is 5 W. At room temperature, the maximum power fluctuation
is 0.1 dB, and the maximum wavelength drift is less than 0.05 nm within 1 h. This fluctuation is mainly
caused by the fluctuation of TDFA pumping power and the doping uniformity of the gain fiber.
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4. Conclusions

Wavelength-tunable thulium-doped fiber laser is demonstrated based on a DMD chip. The laser
achieves flexible and fast tuning of wavelength by modulating the reflective area on the DMD.
The operating wavelength is continuously tunable from 1930 nm to 2000 nm with a wavelength
selectivity accuracy of 0.1 nm. The 3 dB linewidth of output signals is less than 0.05 nm and the SMSR
is over 50 dB. The proposed tunable TDFL has the potential applications in space communication, laser
spectroscopy, medical treatment and mid-infrared systems.
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