Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Single-Crystal Diamond (SCD) Membranes
2.2. Morphological Characterization and Surface Analysis of SCD Samples
2.3. Bonding of SCD Membranes on Dielectric Mirrors and Cavity Characterization
3. Results and Discussion
3.1. Thin Single-Crystal Diamond Membranes
3.1.1. Cleaning Procedure
3.1.2. Optimizations in the Surface Roughness
3.1.3. Structuring of SCD Membranes
3.2. Van der Waals Bonding Procedure
3.3. Characterization of SCD Membranes in a Fiber-Based Microcavity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Lee, J.C.; Magyar, A.P.; Bracher, D.O.; Aharonovich, I.; Hu, E.L. Fabrication of thin diamond membranes for photonic applications. Diam. Relat. Mater. 2013, 33, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Piracha, A.H.; Rath, P.; Ganesan, K.; Kühn, S.; Pernice, W.H.P.; Prawer, S. Scalable fabrication of integrated nanophotonic circuits on arrays of thin single crystal diamond membrane windows. Nano Lett. 2016, 16, 3341–3347. [Google Scholar] [CrossRef]
- Jung, T.; Kreiner, L.; Pauly, C.; Mücklich, F.; Edmonds, A.M.; Markham, M.; Becher, C. Reproducible fabrication and characterization of diamond membranes for photonic crystal cavities. Phys. Status Solidi A 2016, 213, 3254–3264. [Google Scholar] [CrossRef]
- Pomorski, M.; Caylar, B.; Bergonzo, P. Super-thin single crystal diamond membrane radiation detectors. Appl. Phys. Lett. 2013, 103, 112106. [Google Scholar] [CrossRef] [Green Version]
- Ali Momenzadeh, S.; de Oliveira, F.F.; Neumann, P.; Bhaktavatsala Rao, D.D.; Denisenko, A.; Amjadi, M.; Chu, Z.; Yang, S.; Manson, N.B.; Doherty, M.W.; et al. Thin circular diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems. Phys. Rev. Appl. 2016, 6, 024026. [Google Scholar] [CrossRef] [Green Version]
- Bray, K.; Kato, H.; Previdi, R.; Sandstrom, R.; Ganesan, K.; Ogura, M.; Makino, T.; Yamasaki, S.; Magyar, A.P.; Toth, M.; et al. Single crystal diamond membranes for nanoelectronics. Nanoscale 2018, 10, 4028–4035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Huang, W.; Chow, T.P.; Butler, J.E. Free-standing diamond single crystal film for electronics applications. MRS Proc. 2005, 905. [Google Scholar] [CrossRef]
- Delfaure, C.; Pomorski, M.; de Sanoit, J.; Bergonzo, P.; Saada, S. Single crystal CVD diamond membranes for betavoltaic cells. Appl. Phys. Lett. 2016, 108, 252105. [Google Scholar] [CrossRef]
- Bormashov, V.; Troschiev, S.; Volkov, A.; Tarelkin, S.; Korostylev, E.; Golovanov, A.; Kuznetsov, M.; Teteruk, D.; Kornilov, N.; Terentiev, S.; et al. Development of nuclear microbattery prototype based on Schottky barrier diamond diodes. Phys. Status Solidi A 2015, 212, 2539–2547. [Google Scholar] [CrossRef]
- Shikata, S. Single crystal diamond wafers for high power electronics. Diam. Relat. Mater. 2016, 65, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Aharonovich, I.; Greentree, A.D.; Prawer, S. Diamond photonics. Nat. Photon 2011, 5, 397–405. [Google Scholar] [CrossRef]
- Hausmann, B.J.M.; Bulu, I.B.; Deotare, P.B.; McCutcheon, M.; Venkataraman, V.; Markham, M.L.; Twitchen, D.J.; Lončar, M. Integrated high-quality factor optical resonators in diamond. Nano Lett. 2013, 13, 1898–1902. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, P.; Challier, M.; Neu, E. Optimized single-crystal diamond scanning probes for high sensitivity magnetometry. New J. Phys. 2018, 20, 125001. [Google Scholar] [CrossRef]
- Maletinsky, P.; Hong, S.; Grinolds, M.S.; Hausmann, B.; Lukin, M.D.; Walsworth, R.L.; Loncar, M.; Yacoby, A. A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. Nat. Nanotechnol. 2012, 7, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Maurer, P.C.; Kucsko, G.; Latta, C.; Jiang, L.; Yao, N.Y.; Bennett, S.D.; Pastawski, F.; Hunger, D.; Chisholm, N.; Markham, M.; et al. Room-temperature quantum bit memory exceeding one second. Science 2012, 336, 1283–1286. [Google Scholar] [CrossRef] [Green Version]
- Abobeih, M.H.; Cramer, J.; Bakker, M.A.; Kalb, N.; Markham, M.; Twitchen, D.J.; Taminiau, T.H. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 2018, 9, 2552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, C.E.; Randall, J.; Abobeih, M.H.; Berrevoets, R.C.; Degen, M.J.; Bakker, M.A.; Markham, M.; Twitchen, D.J.; Taminiau, T.H. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X 2019, 9, 031045. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, P.C.; Kalb, N.; Morits, J.P.J.; Schouten, R.N.; Vermeulen, R.F.L.; Twitchen, D.J.; Markham, M.; Hanson, R. Deterministic delivery of remote entanglement on a quantum network. Nature 2018, 558, 268–273. [Google Scholar] [CrossRef] [Green Version]
- Bhaskar, M.K.; Riedinger, R.; Machielse, B.; Levonian, D.S.; Nguyen, C.T.; Knall, E.N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D.D.; et al. Experimental demonstration of memory-enhanced quantum communication. Nature 2020, 580, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Wrachtrup, J.; Jelezko, F. Processing quantum information in diamond. J. Phys.: Condens. Matter 2006, 18, S807–S824. [Google Scholar] [CrossRef]
- Schröder, T.; Mouradian, S.L.; Zheng, J.; Trusheim, M.E.; Walsh, M.; Chen, E.H.; Li, L.; Bayn, I.; Englund, D. Quantum nanophotonics in diamond. J. Opt. Soc. Am. B 2016, 33, B65. [Google Scholar] [CrossRef]
- Greentree, A.D.; Fairchild, B.A.; Hossain, F.M.; Prawer, S. Diamond integrated quantum photonics. Mater. Today 2008, 11, 22–31. [Google Scholar] [CrossRef]
- Albrecht, R.; Bommer, A.; Deutsch, C.; Reichel, J.; Becher, C. Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett. 2013, 110, 243602. [Google Scholar] [CrossRef] [PubMed]
- Ruf, M.; IJspeert, M.; van Dam, S.; Jong, N.d.; van den Berg, H.; Evers, G.; Hanson, R. Optically coherent nitrogen-vacancy centers in μm-thin etched diamond membranes. Nano Lett. 2019, 19, 3987–3992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salz, M.; Herrmann, Y.; Nadarajah, A.; Stahl, A.; Hettrich, M.; Stacey, A.; Prawer, S.; Hunger, D.; Schmidt-Kaler, F. Cryogenic platform for coupling color centers in diamond membranes to a fiber-based microcavity. Appl. Phys. B 2020, 126, 1–13. [Google Scholar] [CrossRef]
- Häußler, S.; Benedikter, J.; Bray, K.; Regan, B.; Dietrich, A.; Twamley, J.; Aharonovich, I.; Hunger, D.; Kubanek, A. Diamond photonics platform based on silicon vacancy centers in a single-crystal diamond membrane and a fiber cavity. Phys. Rev. B 2019, 99, 165310. [Google Scholar] [CrossRef]
- Trycz, A.; Regan, B.; Kianinia, M.; Bray, K.; Toth, M.; Aharonovich, I. Bottom up engineering of single crystal diamond membranes with germanium vacancy color centers. Opt. Mater. Express 2019, 9, 4708. [Google Scholar] [CrossRef]
- Bray, K.; Regan, B.; Trycz, A.; Previdi, R.; Seniutinas, G.; Ganesan, K.; Kianinia, M.; Kim, S.; Aharonovich, I. Single crystal diamond membranes and photonic resonators containing germanium vacancy color centers. ACS Photonics 2018, 5, 4817–4822. [Google Scholar] [CrossRef] [Green Version]
- Aharonovich, I.; Neu, E. Diamond nanophotonics. Adv. Opt. Mater. 2014, 2, 911–928. [Google Scholar] [CrossRef]
- Hunger, D.; Steinmetz, T.; Colombe, Y.; Deutsch, C.; Hänsch, T.W.; Reichel, J. A fiber Fabry–Perot cavity with high finesse. New J. Phys. 2010, 12, 65038. [Google Scholar] [CrossRef]
- Qing, P.; Gong, J.; Lin, X.; Yao, N.; Shen, W.; Rahimi-Iman, A.; Fang, W.; Tong, L. A simple approach to fiber-based tunable microcavity with high coupling efficiency. Appl. Phys. Lett. 2019, 114, 21106. [Google Scholar] [CrossRef]
- Felgen, N.; Naydenov, B.; Jelezko, F.; Reithmaier, J.P.; Popov, C. Homoepitaxial diamond structures with incorporated SiV centers. Phys. Status Solidi A 2018, 215, 1800371. [Google Scholar] [CrossRef]
- Schmidt, A.; Naydenov, B.; Jelezko, F.; Reithmaier, J.P.; Popov, C. Fabrication of highly dense arrays of nanocrystalline diamond nanopillars with integrated silicon-vacancy color centers during the growth. Opt. Mater. Express 2019, 9, 4545. [Google Scholar] [CrossRef]
- Jaffe, T.; Felgen, N.; Gal, L.; Kornblum, L.; Reithmaier, J.P.; Popov, C.; Orenstein, M. Deterministic arrays of epitaxially grown diamond nanopyramids with embedded silicon-vacancy centers. Adv. Opt. Mater. 2019, 7, 1800715. [Google Scholar] [CrossRef]
- Riedrich-Möller, J.; Arend, C.; Pauly, C.; Mücklich, F.; Fischer, M.; Gsell, S.; Schreck, M.; Becher, C. Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. Nano Lett. 2014, 14, 5281–5287. [Google Scholar] [CrossRef] [Green Version]
- Janitz, E.; Ruf, M.; Dimock, M.; Bourassa, A.; Sankey, J.; Childress, L. Fabry-Perot microcavity for diamond-based photonics. Phys. Rev. A 2015, 92, 92. [Google Scholar] [CrossRef] [Green Version]
- Kaupp, H.; Hümmer, T.; Mader, M.; Schlederer, B.; Benedikter, J.; Haeusser, P.; Chang, H.-C.; Fedder, H.; Hänsch, T.W.; Hunger, D. Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity. Phys. Rev. Appl. 2016, 6, 054010. [Google Scholar] [CrossRef] [Green Version]
- Benedikter, J.; Kaupp, H.; Hümmer, T.; Liang, Y.; Bommer, A.; Becher, C.; Krueger, A.; Smith, J.M.; Hänsch, T.W.; Hunger, D. Cavity-enhanced single-photon source based on the silicon-vacancy center in diamond. Phys. Rev. Appl. 2017, 7, 024031. [Google Scholar] [CrossRef] [Green Version]
- van Dam, S.B.; Ruf, M.; Hanson, R. Optimal design of diamond-air microcavities for quantum networks using an analytical approach. New J. Phys. 2018, 20, 115004. [Google Scholar] [CrossRef]
- Schuelke, T.; Grotjohn, T.A. Diamond polishing. Diam. Relat. Mater. 2013, 32, 17–26. [Google Scholar] [CrossRef]
- Hicks, M.-L.; Pakpour-Tabrizi, A.C.; Zuerbig, V.; Kirste, L.; Nebel, C.; Jackman, R.B. Optimizing reactive ion etching to remove sub-surface polishing damage on diamond. J. Appl. Phys 2019, 125, 244502. [Google Scholar] [CrossRef]
- Friel, I.; Clewes, S.L.; Dhillon, H.K.; Perkins, N.; Twitchen, D.J.; Scarsbrook, G.A. Control of surface and bulk crystalline quality in single crystal diamond grown by chemical vapour deposition. Diam. Relat. Mater. 2009, 18, 808–815. [Google Scholar] [CrossRef] [Green Version]
- Volpe, P.-N.; Muret, P.; Omnes, F.; Achard, J.; Silva, F.; Brinza, O.; Gicquel, A. Defect analysis and excitons diffusion in undoped homoepitaxial diamond films after polishing and oxygen plasma etching. Diam. Relat. Mater. 2009, 18, 1205–1210. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Zhou, T.X.; Stöhr, R.J.; Yacoby, A. Crystallographic Orientation Dependent Reactive Ion Etching in Single Crystal Diamond. Adv. Mater. 2018, 30, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radtke, M.; Render, L.; Nelz, R.; Neu, E. Plasma treatments and photonic nanostructures for shallow nitrogen vacancy centers in diamond. Opt. Mater. Express 2019, 9, 4716–4733. [Google Scholar] [CrossRef] [Green Version]
- Challier, M.; Sonusen, S.; Barfuss, A.; Rohner, D.; Riedel, D.; Koelbl, J.; Ganzhorn, M.; Appel, P.; Maletinsky, P.; Neu, E. Advanced fabrication of single-crystal diamond membranes for quantum technologies. Micromachines 2018, 9, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, P.; Gu, E.; Dawson, M.D.; Strain, M.J. Thin film diamond membranes bonded on-demand with SOI ring resonators. Diam. Relat. Mater. 2018, 88, 215–221. [Google Scholar] [CrossRef]
- Leite, F.L.; Bueno, C.C.; Da Róz, A.L.; Ziemath, E.C.; Oliveira, O.N. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856. [Google Scholar] [CrossRef]
- Casabone, B.; Benedikter, J.; Hümmer, T.; Oehl, F.; Lima, K.d.O.; Hänsch, T.W.; Ferrier, A.; Goldner, P.; Riedmatten, H.d.; Hunger, D. Cavity-enhanced spectroscopy of a few-ion ensemble in Eu3+: Y2O3. New J. Phys. 2018, 20, 95006. [Google Scholar] [CrossRef] [Green Version]
- Kulisch, W.; Voss, A.; Merker, D.; Reithmaier, J.P.; Merz, R.; Kopnarski, M.; Popov, C. Plasma surface fluorination of ultrananocrystalline diamond films. Surf. Coat. Technol. 2016, 302, 448–453. [Google Scholar] [CrossRef]
- Appel, P.; Neu, E.; Ganzhorn, M.; Barfuss, A.; Batzer, M.; Gratz, M.; Tschöpe, A.; Maletinsky, P. Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 2016, 87, 63703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangtawesin, S.; Dwyer, B.L.; Srinivasan, S.; Allred, J.J.; Rodgers, L.V.H.; de Greve, K.; Stacey, A.; Dontschuk, N.; O’Donnell, K.M.; Hu, D.; et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X 2019, 9, 031052. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.L.; Gu, E.; Dawson, M.D.; Friel, I.; Scarsbrook, G.A. Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma. Diam. Relat. Mater. 2008, 17, 1292–1296. [Google Scholar] [CrossRef]
- Crawford, K.G.; Tallaire, A.; Li, X.; Macdonald, D.A.; Qi, D.; Moran, D.A.J. The role of hydrogen plasma power on surface roughness and carrier transport in transfer-doped H-diamond. Diam. Relat. Mater. 2018, 84, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Toros, A.; Kiss, M.; Graziosi, T.; Sattari, H.; Gallo, P.; Quack, N. Precision micro-mechanical components in single crystal diamond by deep reactive ion etching. Microsyst. Nanoeng. 2018, 4, 12. [Google Scholar] [CrossRef] [PubMed]
- Mi, S.; Toros, A.; Graziosi, T.; Quack, N. Non-contact polishing of single crystal diamond by ion beam etching. Diam. Relat. Mater. 2019, 92, 248–252. [Google Scholar] [CrossRef]
- Kubota, A.; Nagae, S.; Motoyama, S. High-precision mechanical polishing method for diamond substrate using micron-sized diamond abrasive grains. Diam. Relat. Mater. 2020, 101, 107644. [Google Scholar] [CrossRef]
- Siyushev, P.; Kaiser, F.; Jacques, V.; Gerhardt, I.; Bischof, S.; Fedder, H.; Dodson, J.; Markham, M.; Twitchen, D.; Jelezko, F.; et al. Monolithic diamond optics for single photon detection. Appl. Phys. Lett. 2010, 97, 241902. [Google Scholar] [CrossRef] [Green Version]
- Jayich, A.M.; Sankey, J.C.; Zwickl, B.M.; Yang, C.; Thompson, J.D.; Girvin, S.M.; Clerk, A.A.; Marquardt, F.; Harris, J.G.E. Dispersive optomechanics: A membrane inside a cavity. New J. Phys. 2008, 10, 95008. [Google Scholar] [CrossRef]
Type | C [at%] | O [at%] | F [at%] | Co [at%] | Zn [at%] | N [at%] |
---|---|---|---|---|---|---|
single-crystal diamond (SCD) as-received | 92.5 | 6.6 | 0.1 | 0.1 | 0.1 | 0.56 |
SCD O2 mod. | 94.7 | 5.0 | 0.2 | 0.03 | 0.02 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heupel, J.; Pallmann, M.; Körber, J.; Merz, R.; Kopnarski, M.; Stöhr, R.; Reithmaier, J.P.; Hunger, D.; Popov, C. Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities. Micromachines 2020, 11, 1080. https://doi.org/10.3390/mi11121080
Heupel J, Pallmann M, Körber J, Merz R, Kopnarski M, Stöhr R, Reithmaier JP, Hunger D, Popov C. Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities. Micromachines. 2020; 11(12):1080. https://doi.org/10.3390/mi11121080
Chicago/Turabian StyleHeupel, Julia, Maximilian Pallmann, Jonathan Körber, Rolf Merz, Michael Kopnarski, Rainer Stöhr, Johann Peter Reithmaier, David Hunger, and Cyril Popov. 2020. "Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities" Micromachines 11, no. 12: 1080. https://doi.org/10.3390/mi11121080
APA StyleHeupel, J., Pallmann, M., Körber, J., Merz, R., Kopnarski, M., Stöhr, R., Reithmaier, J. P., Hunger, D., & Popov, C. (2020). Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities. Micromachines, 11(12), 1080. https://doi.org/10.3390/mi11121080