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Abstract: Integrated microfluidic systems afford extensive benefits for chemical and biological fields,
yet traditional, monolithic methods of microfabrication restrict the design and assembly of truly
complex systems. Here, a simple, reconfigurable and high fluid pressure modular microfluidic
system is presented. The screw interconnects reversibly assemble each individual microfluidic
module together. Screw connector provided leak-free fluidic communication, which could withstand
fluid resistances up to 500 kPa between two interconnected microfluidic modules. A sample
library of standardized components and connectors manufactured using 3D printing was developed.
The capability for modular microfluidic system was demonstrated by generating sodium alginate gel
microspheres. This 3D printed modular microfluidic system makes it possible to meet the needs of
the end-user, and can be applied to bioassays, material synthesis, and other applications.
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1. Introduction

The reconfigurable microfluidic system are connected by basic module components together to
form an integrated microfluidic system, which could achieves specific functions of biochemical analysis,
such as emulsion generation [1], multi-organ-chips [2], gradient generation [3], and biochemical
analysis [4]. Existing systems often use a monolithic approach, where chemical reactors, sensors,
valves, pumps, and detectors are integrated on a single chip. The typical fabrication methods of
monolithic microfluidic systems, which include soft lithography, hot embossing, and femtosecond laser
writing, are time consuming and often expensive. Additionally, the complicated fabrication processes
would require more attention to the quality control [5]. Any part of failure of a monolithic microfluidic
system may require rebuilding the entire system, which will result in long development time and incur
substantial costs. The modular design approaches are an effective method to address this integration
problem. The advantage of a modular system is made of the assembly of basic modular components,
and each module can be designed and tested separately before connecting them together to form a
larger system.

Modular architecture using prefabricated microfluidic components could be easily assembled,
disassembled, reconfigured, and assembled again. Nevertheless, reconfigurable modular microfluidic
systems have brought challenges to ensure leak-free fluidic interconnections between connected
microfluidic modules after their assembly. Hsieh et al. presented an advanced Lego®-like swappable
fluidic module concept to achieve fully portable, disposable fluidic systems [6]. This module design
had self-aligning structures on both the male- and female-type Lego®-like for attaining the improved
sealing at block junctions. Bhargava et al. demonstrated an approach to microfluidic device design
based on discrete elements. These components were connected by a convex block embedded in a
concave block to complete the assembly of the entire microfluidic system [7–9]. The aforementioned
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microfluidic devices were adopted self-aligning structures for attaining the inter-block sealing at block
junctions. The instability of the module-to-module fluidic interconnects required to be considered,
easily led to fluid leakage, to operate the integrated device under high pressure. In addition, Rheea
and Burns proposed a standard set of modular microfluidic assembly block, using pre-fabricated
polydimethylsiloxane (PDMS) blocks [10]. This approach required an additional glue-like, UV curable
adhesive, as well as PDMS mixture to connect components. Lee et al. proposed an advanced
fabrication and assembly method for modular microfluidic devices using rubber O-rings and metal pins
interconnects [11]. From the user’s point of view, modular microfluidic devices allowed non-expert users
to assemble fully customizable microfluidic devices in minutes. However, these module-to-module or
world-to-chip fluidic interconnects are required to be strengthened by additional bonding and sealing
processes, which will result in a long development time and incur substantial costs.

Recently, 3D printing technology have been applied to fabricate miniaturized and complicated
devices, which are of high structural complexity and design flexibility [12–16]. In this work, we propose
an advanced reconfigurable modular microfluidic system employing 3D printed modules with assorted
channel geometries that can be easily assembled to create complex, modular, and reversible in three
dimensions. The microfluidic system consists of two basic functional components: A screw fastener
and an assembly module. Each assembly module has an own unique function (such as inlets, outlets,
channels, valves, pumps, mixers, and reservoirs) that is connected together and bonded to form a
multi-function microfluidic system using screw interconnects. Furthermore, screw connectors are
inserted into each microfluidic module’s threaded port to eliminate fluid leakage and enable high
pressure actuation. It offers a promising way to realize a larger integrated microfluidic system capable
of sophisticated functionalities.

2. Materials and Methods

2.1. Materials and Instruments

Ethanol, dye solutions (red and blue) and food grade mineral oil were purchased from Sinopharm
Chemical Reagent Co., Ltd. The dye solution was dissolved with deionized (DI) water. Sodium alginate
powder and calcium chloride powder were obtained from Sigma-Aldrich Corporation (Guang Dong,
China). Materials for the out phase were 2% (w/w) calcium chloride. The pre-gel aqueous phases were
2% (w/w) sodium alginate. The PDMS was obtained from Dow Corning (Midland, MI, USA). The PDMS
was heat cured at a temperature of 100 ◦C for 20 min in a vacuum drying oven. Fine sandpaper
(P1500 and P2000) was purchased from Xiamen Green Reagent Glass Instrument Co., Ltd. (Xiamen,
China). An optical microscope (Mitutoyo MF-U, Chongqing Aote Optical Instrument Co., Ltd.,
Chongqing, China) was used to take images of the mixer. A laser confocal scanning microscope
(Produced by Carl Zeiss AG, OLS1200, Carl Zeiss AG, Oberkochen, Germany) was used to measure the
surface roughness of model parts. The COLOR intensity was measured using ImageJ. The experimental
process was observed by a CCD camera (UI-2250SE-C-HQ, Shanghai Lingliang Optoelectronics
Technology Co., Ltd., Shanghai, China).

2.2. Fabrication of Basic Functional Components

To build the 3D models for all of the 3D microfluidic components in this work, we used the
computer-aided design (SolidWorks) software. We assembled the 3D models of the ports, components,
and systems within the software, and exported the assemblies to the STL format-a standard file
type for 3D printers. All modules were directly fabricated by a 3D printer (ProJet®D3510 SD, 3D
Systems). This printer is based on the multi jet modeling (MJM) technology using a print head that jets
the photopolymer (VisiJet® Crystal, 3D Systems) and the waxy support material (VisiJet® S300, 3D
Systems) layer by layer.

The assembly modules were carefully selected from well-known standard component as shown
in Figure 1a,b. The assembly modules, which were designed to a standard, cubic geometric footprint
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(with a size of 10 by 10 by 10 mm3), comprised functional elements (assembly module) as well as
inlet/outlet modules (screw fastener) for world-to-chip fluidic interconnects. The internal channels of
these module were designed into a square cross-section with 0.6 mm side length. Each module had
different functionality, which acts as basic building units to construct functional microfluidic device.
A multi-function microfluidic system was assembled form several modular components (Figure 1c).
The screw fastener acted as module-to-module or world-to-chip fluidic interconnects. The spacers
were cylindrical with screw pins at opposite sides. The modules were assembled by interlocking screw
pins connectors for each module. Following the 3D printing process, the modules were placed in the
convection oven at 80 ◦C to remove the wax layers. When the wax was fully melted, its residue was
first removed in a hot oil bath and was then rinsed by ultrasonication in a water bath that contained
detergent. The modules were then further rinsed by ultrasonication in a deionized water bath to ensure
that the detergent remains were fully removed, and that each procedure was conducted for at least
30 min.
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Figure 1. Schematic illustration of 3D printed microfluidic modular components. (a) basic microchannel
unit. (b) functional microchannel unit. (c) multifunctional microfluidic system. The device consists of
multiple basic channels and functional channels using screw connector.

3. Results and Discussion

3.1. Surface Treatment and Leak Testing

The printed microfluidic channels and their surfaces were observed with an optical microscope,
and typical images are shown in Figure 2a. The chip surface quality shown the traces of resin material
layers by layers. The surface roughness of the 3D printed module assembly was 2.161 µm. In order to
obtain optical transparency, the 3D printed modules were repeatedly polished by two types of fine
sandpaper to form a smooth surface. Additionally, the film layer of PDMS on the surface was coated
to make the chip more transparent. The surface roughness of the modular component after surface
modification was 0.595 µm. Figure 2b demonstrated a modular microfluidic system after polishing and
PDMS coating process. The excellent surface quality of the chip was achieved for easier observation of
the experiment results. Therefore, surface polishing and PDMS coating were a very effective method
to obtain high surface quality. Figure 2c showed that the internal channel structure still appears
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blurry. An optical microscope described the rough internal flow channel structure. To obtain a highly
transparent microchannel, it was also possible to apply PDMS solution inside. Evenly coating the
PDMS solution inside the microchannel could enhance the transparency. The key was to prevent the
PDMS solution from blocking the internal microchannel.
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Figure 2. Micrographs of the chip surface quality. (a) surface quality and surface roughness before
treatment. (b) surface quality and surface roughness after polishing and polydimethylsiloxane (PDMS)
treatment coating. (c) image of 3D printed module components.

Previous literature [17] reported that a wet etching technique was used to treat internal surface
roughness of microchannels. Ethanol-diluted acetone solution was circulated in an ultrasonic
bath to etch the chip surface. This method significantly reduced the surface roughness of the
microchannel without deformation, and the surface roughness after processing was less than 10 nm.
Chemical treatment of the internal channels was also an effective method to obtain transparency.
Photosensitive resin materials were highly sensitive to organic reagents. Placing the printed module
assembly in acetone will dissolve, and high concentrations of methanol and isopropanol (IPA) will
whiten the material of the module assembly [18].

To check the capability of screw fastener, we performed three different scenarios such as (a)
with using embedded connection [9] (Figure 3a), (b) untightened thread, and (c) tightened thread
(Figure 3b). All modules were used digital pressure gauges for leakage tests. The serious level of
leakage of bubbles was observed under embedded connection and untightened thread (Figure 3c,d,
Movie S1 and S2, Supporting Information). In contrast, the tightened thread modules could be held up
to 500 kPa (Figure 3e, Movie S3, Supporting Information). In addition, the Young’s modulus of the
post-cured clear resin was 2.7 GPa, which is much larger than that of PDMS. Therefore, our devices,
printed with this material, were capable of withstanding higher liquid flow rate and input pressure.
Compared with the previous literature (Table 1), the method of screw connection was simple and
fast. It could be disassembled and reassembled repeatedly to build different functions of novel
microfluidic system. It is widely applied in biochemical fields such as fluid mixing and droplet
generation. Importantly, the threaded connection provided high fluid pressure, avoiding fluid leakage
problems, and expanding its application.
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Figure 3. Connectivity of the modular microfluidic system. (a) schematic of modular assembly of
embedded connections. (b) schematic illustration of modular assembly with threaded connections.
(c) leakage experiment of embedded connected microfluidic system. (d) leakage experiment of threaded
connected microfluidic system (untightened thread). (e) leakage experiment of threaded connected
microfluidic system (tightened thread).

Table 1. Comparison of modular microfluidic systems.

References Connection Type Manufacturing
Characteristics Fluid Pressure

Bhargava et al. [7–9]
Square interface

embedded, comprising
spacer and connector

3D printed module,
male−male connector aligned

with female-type port,
reversible strong

As high as 200 mL·h−1

M. Rhee and M. A.
Burn [10] UV-curable glue bonding

PDMS coated glass substrate
using the curing agent as the

adhesive, reversible weak
40 kPa

Lee et al. [11]
Insert connection,
comprising rubber

O–ring and metal pins

3D printed module, concave
and convex cone–shaped
features, require auxiliary

components. reversible strong

Up to 200 kPa

Yue [19]
Magnetic interconnects,

comprising magnets and
sealing gaskets

3D printed module, simple,
require auxiliary components 6.8 kPa

Our work Screw connector
3D printed module, threaded

connection, simple,
reversible strong

Up to 500 kPa

A reconfigurable modular microfluidic system, comprising a mixer channel and various
microfluidic modules as well as inlet/outlet modules for world-to-chip fluidic interconnects,
was fabricated and used to demonstrate its reconfigurability to build various integrated microfluidic
systems by simply and reversibly assembling various modules together. Three different configurations
of a mixer channel modular microfluidic system were built using two (Figure 4a), three (Figure 4b),
and four (Figure 4c) outlet channel modules, and two inlet modules. The assembly described in
Figure 4a,b were modeled as an equivalent circuit consisting of two branch resistors R (R = Rstruct +Rre f )
and Rs (Rs = Rstruct + Rselect) grounded by two water reservoirs and terminated by outlet resistor
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Ro (Figure 4d,e). Each branch was designed to differ by only a reference (Rref) and selected (Rselect)
component resistance, while having identical support components resulting in equal structural
resistance (Rstruct). The volumetric mixing ratio M of streams combined in the outlet resistor was
predicted by nodal analysis to have simple dependency on only the selected, reference, and branch
structural resistances (Equation (1)) [20].

M =
Rstruct + Rre f

Rstruct + Rselect
(1)
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3.2. Reconfigurable Modular System Demonstration

A simple modular microfluidic system was built using one mixer module, a T type module,
a flow channel, and three inlet/outlet modules (Figure 5a). To demonstrate the 3D mixing mechanism,
numerical simulation using finite element analysis software (COMSOL Multiphysics 5.1) was performed
to simulate the mixing effects of microfluidic system with straight-channel modular and a mixer
channel modular (Figure 5b). Two streams of solution with a relative species concentration of 1 mol/L
and 0 were injected into the mixer module through the inlets; the concentration fields were obtained by
solving the incompressible Navier–Stokes and convection diffusion equations in the stationary mode.
In Figure 5c, the cross-section (terminal position) of the microfluidic system with the mixer modular
shows a uniform distribution of the concentration gradient after passing through 30 mm in length.
The normalized concentration shows that the spiral mixer was evenly distributed compared to the
straight channel. The microfluidic system with a mixer can achieve 99.7% mixing efficiency at the
terminal, while the straight-channel microfluidic system could only achieve 88.3% mixing efficiency.
Red and blue color food dye solutions were used to test the modular microfluidic system. Each food
dye solution was pumped into the modular microfluidic system at ~20 µL/min by micropump. The dye
solution did not have sufficient time to mix through laminar diffusion; hence, the different unmixed
streams (a clear fluid interface) could be seen after they pass through the straight-channel (Figure 5e).
However, experiments were performed at the same flow rate in a microfluidic system with a mixer
(Figure 5d). As the diffusion of dye solution had occurred and the fluids were fully mixed in the
designed length. The experimental values well match the simulated ones.
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of the microchannel). (d,e) mixing effects of fluids in straight channel and mixer channel modules.

As a biological hydrogel, sodium alginate was usually encapsulated cells or other biomolecules.
Due to its good gelling properties, sodium alginate has been widely used in the field of biomedicine [21].
Sodium alginate was a typical example of a cross-linked hydrogel, which can react with divalent cations
to form a hydrogel such as calcium, copper, and iron. To demonstrate the versatility of a modular
microfluidic system. A versatile droplet generation microfluidic system had assembled to generate
single droplet and dual droplets (Figure 6a). Sodium alginate passed through two branch channels as
a carrier phase solution; calcium chloride passed through the main channel as a cross-linking phase
solution. Two screw pumps modules in the microfluidic system were used to control the input of
two branch solutions. When the sodium alginate was cross-linked with the calcium chloride solution,
calcium ions diffused from the outside to the inside, and finally formed the sodium alginate hydrogel
(Figure 6b). When one of the threaded pumps in the system was turned off, a single droplet mode
was formed. Figure 6c illustrated the formation of sodium alginate droplets (Movie S4, Supporting
Information). The formation rate of sodium alginate droplets was mainly related to the diffusion
rate, concentration of calcium ions, and the concentration of sodium alginate. When the flow rate of
the carrier phase solution was 0.5 mL/h, the relationship between the length, generation frequency
of the alginate gel microspheres and the flow rate of the calcium chloride aqueous solution was
obtained. As the flow rate of the calcium chloride solution increased, the length of the sodium alginate
microspheres decreased. More sodium alginate microsphere gel could be produced as shown in
Figure 6d. Finally, the dual droplet generation mode by controlling two screw pump modules was
demonstrated (Figure 6e, Movie S5, Supporting Information). The droplet patterns spaced with red and
blue can be generated by adjusting the flow rate of the red solution and the blue solution (Figure 6f).
Such modular microfluidic systems provided flexibility and versatility to manipulate micro-flows
for enhanced and extended applications. Furthermore, the ability to build a reconfigurable modular
microfluidic system would be an advantageous platform to substantially enhance design flexibility
and improve the system performances of various bio-chemical processes.
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